/* * Copyright 2018 Advanced Micro Devices, Inc. * Copyright 2019 Raptor Engineering, LLC * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include #include "dm_services.h" #include "dc.h" #include "dcn21_init.h" #include "resource.h" #include "include/irq_service_interface.h" #include "dcn20/dcn20_resource.h" #include "clk_mgr.h" #include "dcn10/dcn10_hubp.h" #include "dcn10/dcn10_ipp.h" #include "dcn20/dcn20_hubbub.h" #include "dcn20/dcn20_mpc.h" #include "dcn20/dcn20_hubp.h" #include "dcn21_hubp.h" #include "irq/dcn21/irq_service_dcn21.h" #include "dcn20/dcn20_dpp.h" #include "dcn20/dcn20_optc.h" #include "dcn21/dcn21_hwseq.h" #include "dce110/dce110_hw_sequencer.h" #include "dcn20/dcn20_opp.h" #include "dcn20/dcn20_dsc.h" #include "dcn21/dcn21_link_encoder.h" #include "dcn20/dcn20_stream_encoder.h" #include "dce/dce_clock_source.h" #include "dce/dce_audio.h" #include "dce/dce_hwseq.h" #include "virtual/virtual_stream_encoder.h" #include "dce110/dce110_resource.h" #include "dml/display_mode_vba.h" #include "dcn20/dcn20_dccg.h" #include "dcn21/dcn21_dccg.h" #include "dcn21_hubbub.h" #include "dcn10/dcn10_resource.h" #include "dce110/dce110_resource.h" #include "dce/dce_panel_cntl.h" #include "dcn20/dcn20_dwb.h" #include "dcn20/dcn20_mmhubbub.h" #include "dpcs/dpcs_2_1_0_offset.h" #include "dpcs/dpcs_2_1_0_sh_mask.h" #include "renoir_ip_offset.h" #include "dcn/dcn_2_1_0_offset.h" #include "dcn/dcn_2_1_0_sh_mask.h" #include "nbio/nbio_7_0_offset.h" #include "mmhub/mmhub_2_0_0_offset.h" #include "mmhub/mmhub_2_0_0_sh_mask.h" #include "reg_helper.h" #include "dce/dce_abm.h" #include "dce/dce_dmcu.h" #include "dce/dce_aux.h" #include "dce/dce_i2c.h" #include "dcn21_resource.h" #include "vm_helper.h" #include "dcn20/dcn20_vmid.h" #include "dce/dmub_psr.h" #include "dce/dmub_abm.h" #define DC_LOGGER_INIT(logger) struct _vcs_dpi_ip_params_st dcn2_1_ip = { .odm_capable = 1, .gpuvm_enable = 1, .hostvm_enable = 1, .gpuvm_max_page_table_levels = 1, .hostvm_max_page_table_levels = 4, .hostvm_cached_page_table_levels = 2, .num_dsc = 3, .rob_buffer_size_kbytes = 168, .det_buffer_size_kbytes = 164, .dpte_buffer_size_in_pte_reqs_luma = 44, .dpte_buffer_size_in_pte_reqs_chroma = 42,//todo .dpp_output_buffer_pixels = 2560, .opp_output_buffer_lines = 1, .pixel_chunk_size_kbytes = 8, .pte_enable = 1, .max_page_table_levels = 4, .pte_chunk_size_kbytes = 2, .meta_chunk_size_kbytes = 2, .writeback_chunk_size_kbytes = 2, .line_buffer_size_bits = 789504, .is_line_buffer_bpp_fixed = 0, .line_buffer_fixed_bpp = 0, .dcc_supported = true, .max_line_buffer_lines = 12, .writeback_luma_buffer_size_kbytes = 12, .writeback_chroma_buffer_size_kbytes = 8, .writeback_chroma_line_buffer_width_pixels = 4, .writeback_max_hscl_ratio = 1, .writeback_max_vscl_ratio = 1, .writeback_min_hscl_ratio = 1, .writeback_min_vscl_ratio = 1, .writeback_max_hscl_taps = 12, .writeback_max_vscl_taps = 12, .writeback_line_buffer_luma_buffer_size = 0, .writeback_line_buffer_chroma_buffer_size = 14643, .cursor_buffer_size = 8, .cursor_chunk_size = 2, .max_num_otg = 4, .max_num_dpp = 4, .max_num_wb = 1, .max_dchub_pscl_bw_pix_per_clk = 4, .max_pscl_lb_bw_pix_per_clk = 2, .max_lb_vscl_bw_pix_per_clk = 4, .max_vscl_hscl_bw_pix_per_clk = 4, .max_hscl_ratio = 4, .max_vscl_ratio = 4, .hscl_mults = 4, .vscl_mults = 4, .max_hscl_taps = 8, .max_vscl_taps = 8, .dispclk_ramp_margin_percent = 1, .underscan_factor = 1.10, .min_vblank_lines = 32, // .dppclk_delay_subtotal = 77, // .dppclk_delay_scl_lb_only = 16, .dppclk_delay_scl = 50, .dppclk_delay_cnvc_formatter = 8, .dppclk_delay_cnvc_cursor = 6, .dispclk_delay_subtotal = 87, // .dcfclk_cstate_latency = 10, // SRExitTime .max_inter_dcn_tile_repeaters = 8, .xfc_supported = false, .xfc_fill_bw_overhead_percent = 10.0, .xfc_fill_constant_bytes = 0, .ptoi_supported = 0, .number_of_cursors = 1, }; struct _vcs_dpi_soc_bounding_box_st dcn2_1_soc = { .clock_limits = { { .state = 0, .dcfclk_mhz = 400.0, .fabricclk_mhz = 400.0, .dispclk_mhz = 600.0, .dppclk_mhz = 400.00, .phyclk_mhz = 600.0, .socclk_mhz = 278.0, .dscclk_mhz = 205.67, .dram_speed_mts = 1600.0, }, { .state = 1, .dcfclk_mhz = 464.52, .fabricclk_mhz = 800.0, .dispclk_mhz = 654.55, .dppclk_mhz = 626.09, .phyclk_mhz = 600.0, .socclk_mhz = 278.0, .dscclk_mhz = 205.67, .dram_speed_mts = 1600.0, }, { .state = 2, .dcfclk_mhz = 514.29, .fabricclk_mhz = 933.0, .dispclk_mhz = 757.89, .dppclk_mhz = 685.71, .phyclk_mhz = 600.0, .socclk_mhz = 278.0, .dscclk_mhz = 287.67, .dram_speed_mts = 1866.0, }, { .state = 3, .dcfclk_mhz = 576.00, .fabricclk_mhz = 1067.0, .dispclk_mhz = 847.06, .dppclk_mhz = 757.89, .phyclk_mhz = 600.0, .socclk_mhz = 715.0, .dscclk_mhz = 318.334, .dram_speed_mts = 2134.0, }, { .state = 4, .dcfclk_mhz = 626.09, .fabricclk_mhz = 1200.0, .dispclk_mhz = 900.00, .dppclk_mhz = 847.06, .phyclk_mhz = 810.0, .socclk_mhz = 953.0, .dscclk_mhz = 489.0, .dram_speed_mts = 2400.0, }, { .state = 5, .dcfclk_mhz = 685.71, .fabricclk_mhz = 1333.0, .dispclk_mhz = 1028.57, .dppclk_mhz = 960.00, .phyclk_mhz = 810.0, .socclk_mhz = 278.0, .dscclk_mhz = 287.67, .dram_speed_mts = 2666.0, }, { .state = 6, .dcfclk_mhz = 757.89, .fabricclk_mhz = 1467.0, .dispclk_mhz = 1107.69, .dppclk_mhz = 1028.57, .phyclk_mhz = 810.0, .socclk_mhz = 715.0, .dscclk_mhz = 318.334, .dram_speed_mts = 3200.0, }, { .state = 7, .dcfclk_mhz = 847.06, .fabricclk_mhz = 1600.0, .dispclk_mhz = 1395.0, .dppclk_mhz = 1285.00, .phyclk_mhz = 1325.0, .socclk_mhz = 953.0, .dscclk_mhz = 489.0, .dram_speed_mts = 4266.0, }, /*Extra state, no dispclk ramping*/ { .state = 8, .dcfclk_mhz = 847.06, .fabricclk_mhz = 1600.0, .dispclk_mhz = 1395.0, .dppclk_mhz = 1285.0, .phyclk_mhz = 1325.0, .socclk_mhz = 953.0, .dscclk_mhz = 489.0, .dram_speed_mts = 4266.0, }, }, .sr_exit_time_us = 12.5, .sr_enter_plus_exit_time_us = 17.0, .urgent_latency_us = 4.0, .urgent_latency_pixel_data_only_us = 4.0, .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, .urgent_latency_vm_data_only_us = 4.0, .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 80.0, .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 75.0, .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 40.0, .max_avg_sdp_bw_use_normal_percent = 60.0, .max_avg_dram_bw_use_normal_percent = 100.0, .writeback_latency_us = 12.0, .max_request_size_bytes = 256, .dram_channel_width_bytes = 4, .fabric_datapath_to_dcn_data_return_bytes = 32, .dcn_downspread_percent = 0.5, .downspread_percent = 0.38, .dram_page_open_time_ns = 50.0, .dram_rw_turnaround_time_ns = 17.5, .dram_return_buffer_per_channel_bytes = 8192, .round_trip_ping_latency_dcfclk_cycles = 128, .urgent_out_of_order_return_per_channel_bytes = 4096, .channel_interleave_bytes = 256, .num_banks = 8, .num_chans = 4, .vmm_page_size_bytes = 4096, .dram_clock_change_latency_us = 11.72, .return_bus_width_bytes = 64, .dispclk_dppclk_vco_speed_mhz = 3600, .xfc_bus_transport_time_us = 4, .xfc_xbuf_latency_tolerance_us = 4, .use_urgent_burst_bw = 1, .num_states = 8 }; #ifndef MAX #define MAX(X, Y) ((X) > (Y) ? (X) : (Y)) #endif #ifndef MIN #define MIN(X, Y) ((X) < (Y) ? (X) : (Y)) #endif /* begin ********************* * macros to expend register list macro defined in HW object header file */ /* DCN */ /* TODO awful hack. fixup dcn20_dwb.h */ #undef BASE_INNER #define BASE_INNER(seg) DMU_BASE__INST0_SEG ## seg #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define SRI(reg_name, block, id)\ .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRIR(var_name, reg_name, block, id)\ .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define DCCG_SRII(reg_name, block, id)\ .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define VUPDATE_SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ mm ## reg_name ## _ ## block ## id /* NBIO */ #define NBIO_BASE_INNER(seg) \ NBIF0_BASE__INST0_SEG ## seg #define NBIO_BASE(seg) \ NBIO_BASE_INNER(seg) #define NBIO_SR(reg_name)\ .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name /* MMHUB */ #define MMHUB_BASE_INNER(seg) \ MMHUB_BASE__INST0_SEG ## seg #define MMHUB_BASE(seg) \ MMHUB_BASE_INNER(seg) #define MMHUB_SR(reg_name)\ .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ mmMM ## reg_name #define clk_src_regs(index, pllid)\ [index] = {\ CS_COMMON_REG_LIST_DCN2_1(index, pllid),\ } static const struct dce110_clk_src_regs clk_src_regs[] = { clk_src_regs(0, A), clk_src_regs(1, B), clk_src_regs(2, C), clk_src_regs(3, D), clk_src_regs(4, E), }; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; static const struct bios_registers bios_regs = { NBIO_SR(BIOS_SCRATCH_3), NBIO_SR(BIOS_SCRATCH_6) }; static const struct dce_dmcu_registers dmcu_regs = { DMCU_DCN20_REG_LIST() }; static const struct dce_dmcu_shift dmcu_shift = { DMCU_MASK_SH_LIST_DCN10(__SHIFT) }; static const struct dce_dmcu_mask dmcu_mask = { DMCU_MASK_SH_LIST_DCN10(_MASK) }; static const struct dce_abm_registers abm_regs = { ABM_DCN20_REG_LIST() }; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCN20(_MASK) }; #define audio_regs(id)\ [id] = {\ AUD_COMMON_REG_LIST(id)\ } static const struct dce_audio_registers audio_regs[] = { audio_regs(0), audio_regs(1), audio_regs(2), audio_regs(3), audio_regs(4), audio_regs(5), }; #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) static const struct dce_audio_shift audio_shift = { DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) }; static const struct dccg_registers dccg_regs = { DCCG_COMMON_REG_LIST_DCN_BASE() }; static const struct dccg_shift dccg_shift = { DCCG_MASK_SH_LIST_DCN2(__SHIFT) }; static const struct dccg_mask dccg_mask = { DCCG_MASK_SH_LIST_DCN2(_MASK) }; #define opp_regs(id)\ [id] = {\ OPP_REG_LIST_DCN20(id),\ } static const struct dcn20_opp_registers opp_regs[] = { opp_regs(0), opp_regs(1), opp_regs(2), opp_regs(3), opp_regs(4), opp_regs(5), }; static const struct dcn20_opp_shift opp_shift = { OPP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn20_opp_mask opp_mask = { OPP_MASK_SH_LIST_DCN20(_MASK) }; #define tg_regs(id)\ [id] = {TG_COMMON_REG_LIST_DCN2_0(id)} static const struct dcn_optc_registers tg_regs[] = { tg_regs(0), tg_regs(1), tg_regs(2), tg_regs(3) }; static const struct dcn_optc_shift tg_shift = { TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dcn_optc_mask tg_mask = { TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; static const struct dcn20_mpc_registers mpc_regs = { MPC_REG_LIST_DCN2_0(0), MPC_REG_LIST_DCN2_0(1), MPC_REG_LIST_DCN2_0(2), MPC_REG_LIST_DCN2_0(3), MPC_REG_LIST_DCN2_0(4), MPC_REG_LIST_DCN2_0(5), MPC_OUT_MUX_REG_LIST_DCN2_0(0), MPC_OUT_MUX_REG_LIST_DCN2_0(1), MPC_OUT_MUX_REG_LIST_DCN2_0(2), MPC_OUT_MUX_REG_LIST_DCN2_0(3), MPC_DBG_REG_LIST_DCN2_0() }; static const struct dcn20_mpc_shift mpc_shift = { MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT), MPC_DEBUG_REG_LIST_SH_DCN20 }; static const struct dcn20_mpc_mask mpc_mask = { MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK), MPC_DEBUG_REG_LIST_MASK_DCN20 }; #define hubp_regs(id)\ [id] = {\ HUBP_REG_LIST_DCN21(id)\ } static const struct dcn_hubp2_registers hubp_regs[] = { hubp_regs(0), hubp_regs(1), hubp_regs(2), hubp_regs(3) }; static const struct dcn_hubp2_shift hubp_shift = { HUBP_MASK_SH_LIST_DCN21(__SHIFT) }; static const struct dcn_hubp2_mask hubp_mask = { HUBP_MASK_SH_LIST_DCN21(_MASK) }; static const struct dcn_hubbub_registers hubbub_reg = { HUBBUB_REG_LIST_DCN21() }; static const struct dcn_hubbub_shift hubbub_shift = { HUBBUB_MASK_SH_LIST_DCN21(__SHIFT) }; static const struct dcn_hubbub_mask hubbub_mask = { HUBBUB_MASK_SH_LIST_DCN21(_MASK) }; #define vmid_regs(id)\ [id] = {\ DCN20_VMID_REG_LIST(id)\ } static const struct dcn_vmid_registers vmid_regs[] = { vmid_regs(0), vmid_regs(1), vmid_regs(2), vmid_regs(3), vmid_regs(4), vmid_regs(5), vmid_regs(6), vmid_regs(7), vmid_regs(8), vmid_regs(9), vmid_regs(10), vmid_regs(11), vmid_regs(12), vmid_regs(13), vmid_regs(14), vmid_regs(15) }; static const struct dcn20_vmid_shift vmid_shifts = { DCN20_VMID_MASK_SH_LIST(__SHIFT) }; static const struct dcn20_vmid_mask vmid_masks = { DCN20_VMID_MASK_SH_LIST(_MASK) }; #define dsc_regsDCN20(id)\ [id] = {\ DSC_REG_LIST_DCN20(id)\ } static const struct dcn20_dsc_registers dsc_regs[] = { dsc_regsDCN20(0), dsc_regsDCN20(1), dsc_regsDCN20(2), dsc_regsDCN20(3), dsc_regsDCN20(4), dsc_regsDCN20(5) }; static const struct dcn20_dsc_shift dsc_shift = { DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) }; static const struct dcn20_dsc_mask dsc_mask = { DSC_REG_LIST_SH_MASK_DCN20(_MASK) }; #define ipp_regs(id)\ [id] = {\ IPP_REG_LIST_DCN20(id),\ } static const struct dcn10_ipp_registers ipp_regs[] = { ipp_regs(0), ipp_regs(1), ipp_regs(2), ipp_regs(3), }; static const struct dcn10_ipp_shift ipp_shift = { IPP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn10_ipp_mask ipp_mask = { IPP_MASK_SH_LIST_DCN20(_MASK), }; #define opp_regs(id)\ [id] = {\ OPP_REG_LIST_DCN20(id),\ } #define aux_engine_regs(id)\ [id] = {\ AUX_COMMON_REG_LIST0(id), \ .AUXN_IMPCAL = 0, \ .AUXP_IMPCAL = 0, \ .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ } static const struct dce110_aux_registers aux_engine_regs[] = { aux_engine_regs(0), aux_engine_regs(1), aux_engine_regs(2), aux_engine_regs(3), aux_engine_regs(4), }; #define tf_regs(id)\ [id] = {\ TF_REG_LIST_DCN20(id),\ TF_REG_LIST_DCN20_COMMON_APPEND(id),\ } static const struct dcn2_dpp_registers tf_regs[] = { tf_regs(0), tf_regs(1), tf_regs(2), tf_regs(3), }; static const struct dcn2_dpp_shift tf_shift = { TF_REG_LIST_SH_MASK_DCN20(__SHIFT), TF_DEBUG_REG_LIST_SH_DCN20 }; static const struct dcn2_dpp_mask tf_mask = { TF_REG_LIST_SH_MASK_DCN20(_MASK), TF_DEBUG_REG_LIST_MASK_DCN20 }; #define stream_enc_regs(id)\ [id] = {\ SE_DCN2_REG_LIST(id)\ } static const struct dcn10_stream_enc_registers stream_enc_regs[] = { stream_enc_regs(0), stream_enc_regs(1), stream_enc_regs(2), stream_enc_regs(3), stream_enc_regs(4), }; static const struct dce110_aux_registers_shift aux_shift = { DCN_AUX_MASK_SH_LIST(__SHIFT) }; static const struct dce110_aux_registers_mask aux_mask = { DCN_AUX_MASK_SH_LIST(_MASK) }; static const struct dcn10_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn10_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCN20(_MASK) }; static void dcn21_pp_smu_destroy(struct pp_smu_funcs **pp_smu); static int dcn21_populate_dml_pipes_from_context( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, bool fast_validate); static struct input_pixel_processor *dcn21_ipp_create( struct dc_context *ctx, uint32_t inst) { struct dcn10_ipp *ipp = kzalloc(sizeof(struct dcn10_ipp), GFP_KERNEL); if (!ipp) { BREAK_TO_DEBUGGER(); return NULL; } dcn20_ipp_construct(ipp, ctx, inst, &ipp_regs[inst], &ipp_shift, &ipp_mask); return &ipp->base; } static struct dpp *dcn21_dpp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_dpp *dpp = kzalloc(sizeof(struct dcn20_dpp), GFP_KERNEL); if (!dpp) return NULL; if (dpp2_construct(dpp, ctx, inst, &tf_regs[inst], &tf_shift, &tf_mask)) return &dpp->base; BREAK_TO_DEBUGGER(); kfree(dpp); return NULL; } static struct dce_aux *dcn21_aux_engine_create( struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); if (!aux_engine) return NULL; dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst], &aux_mask, &aux_shift, ctx->dc->caps.extended_aux_timeout_support); return &aux_engine->base; } #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } static const struct dce_i2c_registers i2c_hw_regs[] = { i2c_inst_regs(1), i2c_inst_regs(2), i2c_inst_regs(3), i2c_inst_regs(4), i2c_inst_regs(5), }; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCN2(_MASK) }; struct dce_i2c_hw *dcn21_i2c_hw_create( struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); if (!dce_i2c_hw) return NULL; dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } static const struct resource_caps res_cap_rn = { .num_timing_generator = 4, .num_opp = 4, .num_video_plane = 4, .num_audio = 4, // 4 audio endpoints. 4 audio streams .num_stream_encoder = 5, .num_pll = 5, // maybe 3 because the last two used for USB-c .num_dwb = 1, .num_ddc = 5, .num_vmid = 16, .num_dsc = 3, }; #ifdef DIAGS_BUILD static const struct resource_caps res_cap_rn_FPGA_4pipe = { .num_timing_generator = 4, .num_opp = 4, .num_video_plane = 4, .num_audio = 7, .num_stream_encoder = 4, .num_pll = 4, .num_dwb = 1, .num_ddc = 4, .num_dsc = 0, }; static const struct resource_caps res_cap_rn_FPGA_2pipe_dsc = { .num_timing_generator = 2, .num_opp = 2, .num_video_plane = 2, .num_audio = 7, .num_stream_encoder = 2, .num_pll = 4, .num_dwb = 1, .num_ddc = 4, .num_dsc = 2, }; #endif static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCN_UNIVERSAL, .blends_with_above = true, .blends_with_below = true, .per_pixel_alpha = true, .pixel_format_support = { .argb8888 = true, .nv12 = true, .fp16 = true, .p010 = true }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 16000, .fp16 = 16000 }, .max_downscale_factor = { .argb8888 = 250, .nv12 = 250, .fp16 = 250 }, 64, 64 }; static const struct dc_debug_options debug_defaults_drv = { .disable_dmcu = false, .force_abm_enable = false, .timing_trace = false, .clock_trace = true, .disable_pplib_clock_request = true, .min_disp_clk_khz = 100000, .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP, .force_single_disp_pipe_split = false, .disable_dcc = DCC_ENABLE, .vsr_support = true, .performance_trace = false, .max_downscale_src_width = 4096, .disable_pplib_wm_range = false, .scl_reset_length10 = true, .sanity_checks = true, .disable_48mhz_pwrdwn = false, .usbc_combo_phy_reset_wa = true }; static const struct dc_debug_options debug_defaults_diags = { .disable_dmcu = false, .force_abm_enable = false, .timing_trace = true, .clock_trace = true, .disable_dpp_power_gate = true, .disable_hubp_power_gate = true, .disable_clock_gate = true, .disable_pplib_clock_request = true, .disable_pplib_wm_range = true, .disable_stutter = true, .disable_48mhz_pwrdwn = true, .disable_psr = true, .enable_tri_buf = true }; enum dcn20_clk_src_array_id { DCN20_CLK_SRC_PLL0, DCN20_CLK_SRC_PLL1, DCN20_CLK_SRC_PLL2, DCN20_CLK_SRC_PLL3, DCN20_CLK_SRC_PLL4, DCN20_CLK_SRC_TOTAL_DCN21 }; static void dcn21_resource_destruct(struct dcn21_resource_pool *pool) { unsigned int i; for (i = 0; i < pool->base.stream_enc_count; i++) { if (pool->base.stream_enc[i] != NULL) { kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); pool->base.stream_enc[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dsc; i++) { if (pool->base.dscs[i] != NULL) dcn20_dsc_destroy(&pool->base.dscs[i]); } if (pool->base.mpc != NULL) { kfree(TO_DCN20_MPC(pool->base.mpc)); pool->base.mpc = NULL; } if (pool->base.hubbub != NULL) { kfree(pool->base.hubbub); pool->base.hubbub = NULL; } for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.dpps[i] != NULL) dcn20_dpp_destroy(&pool->base.dpps[i]); if (pool->base.ipps[i] != NULL) pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); if (pool->base.hubps[i] != NULL) { kfree(TO_DCN20_HUBP(pool->base.hubps[i])); pool->base.hubps[i] = NULL; } if (pool->base.irqs != NULL) { dal_irq_service_destroy(&pool->base.irqs); } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { if (pool->base.engines[i] != NULL) dce110_engine_destroy(&pool->base.engines[i]); if (pool->base.hw_i2cs[i] != NULL) { kfree(pool->base.hw_i2cs[i]); pool->base.hw_i2cs[i] = NULL; } if (pool->base.sw_i2cs[i] != NULL) { kfree(pool->base.sw_i2cs[i]); pool->base.sw_i2cs[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_opp; i++) { if (pool->base.opps[i] != NULL) pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { if (pool->base.timing_generators[i] != NULL) { kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); pool->base.timing_generators[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dwb; i++) { if (pool->base.dwbc[i] != NULL) { kfree(TO_DCN20_DWBC(pool->base.dwbc[i])); pool->base.dwbc[i] = NULL; } if (pool->base.mcif_wb[i] != NULL) { kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i])); pool->base.mcif_wb[i] = NULL; } } for (i = 0; i < pool->base.audio_count; i++) { if (pool->base.audios[i]) dce_aud_destroy(&pool->base.audios[i]); } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] != NULL) { dcn20_clock_source_destroy(&pool->base.clock_sources[i]); pool->base.clock_sources[i] = NULL; } } if (pool->base.dp_clock_source != NULL) { dcn20_clock_source_destroy(&pool->base.dp_clock_source); pool->base.dp_clock_source = NULL; } if (pool->base.abm != NULL) { if (pool->base.abm->ctx->dc->config.disable_dmcu) dmub_abm_destroy(&pool->base.abm); else dce_abm_destroy(&pool->base.abm); } if (pool->base.dmcu != NULL) dce_dmcu_destroy(&pool->base.dmcu); if (pool->base.psr != NULL) dmub_psr_destroy(&pool->base.psr); if (pool->base.dccg != NULL) dcn_dccg_destroy(&pool->base.dccg); if (pool->base.pp_smu != NULL) dcn21_pp_smu_destroy(&pool->base.pp_smu); } static void calculate_wm_set_for_vlevel( int vlevel, struct wm_range_table_entry *table_entry, struct dcn_watermarks *wm_set, struct display_mode_lib *dml, display_e2e_pipe_params_st *pipes, int pipe_cnt) { double dram_clock_change_latency_cached = dml->soc.dram_clock_change_latency_us; ASSERT(vlevel < dml->soc.num_states); /* only pipe 0 is read for voltage and dcf/soc clocks */ pipes[0].clks_cfg.voltage = vlevel; pipes[0].clks_cfg.dcfclk_mhz = dml->soc.clock_limits[vlevel].dcfclk_mhz; pipes[0].clks_cfg.socclk_mhz = dml->soc.clock_limits[vlevel].socclk_mhz; dml->soc.dram_clock_change_latency_us = table_entry->pstate_latency_us; dml->soc.sr_exit_time_us = table_entry->sr_exit_time_us; dml->soc.sr_enter_plus_exit_time_us = table_entry->sr_enter_plus_exit_time_us; wm_set->urgent_ns = get_wm_urgent(dml, pipes, pipe_cnt) * 1000; wm_set->cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(dml, pipes, pipe_cnt) * 1000; wm_set->cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(dml, pipes, pipe_cnt) * 1000; wm_set->cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(dml, pipes, pipe_cnt) * 1000; wm_set->pte_meta_urgent_ns = get_wm_memory_trip(dml, pipes, pipe_cnt) * 1000; wm_set->frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(dml, pipes, pipe_cnt) * 1000; wm_set->frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(dml, pipes, pipe_cnt) * 1000; wm_set->urgent_latency_ns = get_urgent_latency(dml, pipes, pipe_cnt) * 1000; dml->soc.dram_clock_change_latency_us = dram_clock_change_latency_cached; } static void patch_bounding_box(struct dc *dc, struct _vcs_dpi_soc_bounding_box_st *bb) { int i; if (dc->bb_overrides.sr_exit_time_ns) { for (i = 0; i < WM_SET_COUNT; i++) { dc->clk_mgr->bw_params->wm_table.entries[i].sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; } } if (dc->bb_overrides.sr_enter_plus_exit_time_ns) { for (i = 0; i < WM_SET_COUNT; i++) { dc->clk_mgr->bw_params->wm_table.entries[i].sr_enter_plus_exit_time_us = dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; } } if (dc->bb_overrides.urgent_latency_ns) { bb->urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; } if (dc->bb_overrides.dram_clock_change_latency_ns) { for (i = 0; i < WM_SET_COUNT; i++) { dc->clk_mgr->bw_params->wm_table.entries[i].pstate_latency_us = dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; } } } void dcn21_calculate_wm( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *out_pipe_cnt, int *pipe_split_from, int vlevel_req, bool fast_validate) { int pipe_cnt, i, pipe_idx; int vlevel, vlevel_max; struct wm_range_table_entry *table_entry; struct clk_bw_params *bw_params = dc->clk_mgr->bw_params; ASSERT(bw_params); patch_bounding_box(dc, &context->bw_ctx.dml.soc); for (i = 0, pipe_idx = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; pipes[pipe_cnt].clks_cfg.refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0; pipes[pipe_cnt].clks_cfg.dispclk_mhz = context->bw_ctx.dml.vba.RequiredDISPCLK[vlevel_req][context->bw_ctx.dml.vba.maxMpcComb]; if (pipe_split_from[i] < 0) { pipes[pipe_cnt].clks_cfg.dppclk_mhz = context->bw_ctx.dml.vba.RequiredDPPCLK[vlevel_req][context->bw_ctx.dml.vba.maxMpcComb][pipe_idx]; if (context->bw_ctx.dml.vba.BlendingAndTiming[pipe_idx] == pipe_idx) pipes[pipe_cnt].pipe.dest.odm_combine = context->bw_ctx.dml.vba.ODMCombineEnablePerState[vlevel_req][pipe_idx]; else pipes[pipe_cnt].pipe.dest.odm_combine = 0; pipe_idx++; } else { pipes[pipe_cnt].clks_cfg.dppclk_mhz = context->bw_ctx.dml.vba.RequiredDPPCLK[vlevel_req][context->bw_ctx.dml.vba.maxMpcComb][pipe_split_from[i]]; if (context->bw_ctx.dml.vba.BlendingAndTiming[pipe_split_from[i]] == pipe_split_from[i]) pipes[pipe_cnt].pipe.dest.odm_combine = context->bw_ctx.dml.vba.ODMCombineEnablePerState[vlevel_req][pipe_split_from[i]]; else pipes[pipe_cnt].pipe.dest.odm_combine = 0; } pipe_cnt++; } if (pipe_cnt != pipe_idx) { if (dc->res_pool->funcs->populate_dml_pipes) pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); else pipe_cnt = dcn21_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); } *out_pipe_cnt = pipe_cnt; vlevel_max = bw_params->clk_table.num_entries - 1; /* WM Set D */ table_entry = &bw_params->wm_table.entries[WM_D]; if (table_entry->wm_type == WM_TYPE_RETRAINING) vlevel = 0; else vlevel = vlevel_max; calculate_wm_set_for_vlevel(vlevel, table_entry, &context->bw_ctx.bw.dcn.watermarks.d, &context->bw_ctx.dml, pipes, pipe_cnt); /* WM Set C */ table_entry = &bw_params->wm_table.entries[WM_C]; vlevel = MIN(MAX(vlevel_req, 3), vlevel_max); calculate_wm_set_for_vlevel(vlevel, table_entry, &context->bw_ctx.bw.dcn.watermarks.c, &context->bw_ctx.dml, pipes, pipe_cnt); /* WM Set B */ table_entry = &bw_params->wm_table.entries[WM_B]; vlevel = MIN(MAX(vlevel_req, 2), vlevel_max); calculate_wm_set_for_vlevel(vlevel, table_entry, &context->bw_ctx.bw.dcn.watermarks.b, &context->bw_ctx.dml, pipes, pipe_cnt); /* WM Set A */ table_entry = &bw_params->wm_table.entries[WM_A]; vlevel = MIN(vlevel_req, vlevel_max); calculate_wm_set_for_vlevel(vlevel, table_entry, &context->bw_ctx.bw.dcn.watermarks.a, &context->bw_ctx.dml, pipes, pipe_cnt); } static bool dcn21_fast_validate_bw( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *pipe_cnt_out, int *pipe_split_from, int *vlevel_out, bool fast_validate) { bool out = false; int split[MAX_PIPES] = { 0 }; int pipe_cnt, i, pipe_idx, vlevel; ASSERT(pipes); if (!pipes) return false; dcn20_merge_pipes_for_validate(dc, context); pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); *pipe_cnt_out = pipe_cnt; if (!pipe_cnt) { out = true; goto validate_out; } /* * DML favors voltage over p-state, but we're more interested in * supporting p-state over voltage. We can't support p-state in * prefetch mode > 0 so try capping the prefetch mode to start. */ context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = dm_allow_self_refresh_and_mclk_switch; vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); if (vlevel > context->bw_ctx.dml.soc.num_states) { /* * If mode is unsupported or there's still no p-state support then * fall back to favoring voltage. * * We don't actually support prefetch mode 2, so require that we * at least support prefetch mode 1. */ context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = dm_allow_self_refresh; vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); if (vlevel > context->bw_ctx.dml.soc.num_states) goto validate_fail; } vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL); for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; struct vba_vars_st *vba = &context->bw_ctx.dml.vba; if (!pipe->stream) continue; /* We only support full screen mpo with ODM */ if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled && pipe->plane_state && mpo_pipe && memcmp(&mpo_pipe->plane_res.scl_data.recout, &pipe->plane_res.scl_data.recout, sizeof(struct rect)) != 0) { ASSERT(mpo_pipe->plane_state != pipe->plane_state); goto validate_fail; } pipe_idx++; } /*initialize pipe_just_split_from to invalid idx*/ for (i = 0; i < MAX_PIPES; i++) pipe_split_from[i] = -1; for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; if (!pipe->stream || pipe_split_from[i] >= 0) continue; pipe_idx++; if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); ASSERT(hsplit_pipe); if (!dcn20_split_stream_for_odm( dc, &context->res_ctx, pipe, hsplit_pipe)) goto validate_fail; pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; dcn20_build_mapped_resource(dc, context, pipe->stream); } if (!pipe->plane_state) continue; /* Skip 2nd half of already split pipe */ if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state) continue; if (split[i] == 2) { if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) { /* pipe not split previously needs split */ hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); ASSERT(hsplit_pipe); if (!hsplit_pipe) { context->bw_ctx.dml.vba.RequiredDPPCLK[vlevel][context->bw_ctx.dml.vba.maxMpcComb][pipe_idx] *= 2; continue; } if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { if (!dcn20_split_stream_for_odm( dc, &context->res_ctx, pipe, hsplit_pipe)) goto validate_fail; dcn20_build_mapped_resource(dc, context, pipe->stream); } else { dcn20_split_stream_for_mpc( &context->res_ctx, dc->res_pool, pipe, hsplit_pipe); resource_build_scaling_params(pipe); resource_build_scaling_params(hsplit_pipe); } pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; } } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) { /* merge should already have been done */ ASSERT(0); } } /* Actual dsc count per stream dsc validation*/ if (!dcn20_validate_dsc(dc, context)) { context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; goto validate_fail; } *vlevel_out = vlevel; out = true; goto validate_out; validate_fail: out = false; validate_out: return out; } static noinline bool dcn21_validate_bandwidth_fp(struct dc *dc, struct dc_state *context, bool fast_validate) { bool out = false; BW_VAL_TRACE_SETUP(); int vlevel = 0; int pipe_split_from[MAX_PIPES]; int pipe_cnt = 0; display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_ATOMIC); DC_LOGGER_INIT(dc->ctx->logger); BW_VAL_TRACE_COUNT(); /*Unsafe due to current pipe merge and split logic*/ ASSERT(context != dc->current_state); out = dcn21_fast_validate_bw(dc, context, pipes, &pipe_cnt, pipe_split_from, &vlevel, fast_validate); if (pipe_cnt == 0) goto validate_out; if (!out) goto validate_fail; BW_VAL_TRACE_END_VOLTAGE_LEVEL(); if (fast_validate) { BW_VAL_TRACE_SKIP(fast); goto validate_out; } dcn21_calculate_wm(dc, context, pipes, &pipe_cnt, pipe_split_from, vlevel, fast_validate); dcn20_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); BW_VAL_TRACE_END_WATERMARKS(); goto validate_out; validate_fail: DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); BW_VAL_TRACE_SKIP(fail); out = false; validate_out: kfree(pipes); BW_VAL_TRACE_FINISH(); return out; } /* * Some of the functions further below use the FPU, so we need to wrap this * with DC_FP_START()/DC_FP_END(). Use the same approach as for * dcn20_validate_bandwidth in dcn20_resource.c. */ bool dcn21_validate_bandwidth(struct dc *dc, struct dc_state *context, bool fast_validate) { bool voltage_supported; DC_FP_START(); voltage_supported = dcn21_validate_bandwidth_fp(dc, context, fast_validate); DC_FP_END(); return voltage_supported; } static void dcn21_destroy_resource_pool(struct resource_pool **pool) { struct dcn21_resource_pool *dcn21_pool = TO_DCN21_RES_POOL(*pool); dcn21_resource_destruct(dcn21_pool); kfree(dcn21_pool); *pool = NULL; } static struct clock_source *dcn21_clock_source_create( struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); if (!clk_src) return NULL; if (dcn20_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } BREAK_TO_DEBUGGER(); return NULL; } static struct hubp *dcn21_hubp_create( struct dc_context *ctx, uint32_t inst) { struct dcn21_hubp *hubp21 = kzalloc(sizeof(struct dcn21_hubp), GFP_KERNEL); if (!hubp21) return NULL; if (hubp21_construct(hubp21, ctx, inst, &hubp_regs[inst], &hubp_shift, &hubp_mask)) return &hubp21->base; BREAK_TO_DEBUGGER(); kfree(hubp21); return NULL; } static struct hubbub *dcn21_hubbub_create(struct dc_context *ctx) { int i; struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub), GFP_KERNEL); if (!hubbub) return NULL; hubbub21_construct(hubbub, ctx, &hubbub_reg, &hubbub_shift, &hubbub_mask); for (i = 0; i < res_cap_rn.num_vmid; i++) { struct dcn20_vmid *vmid = &hubbub->vmid[i]; vmid->ctx = ctx; vmid->regs = &vmid_regs[i]; vmid->shifts = &vmid_shifts; vmid->masks = &vmid_masks; } hubbub->num_vmid = res_cap_rn.num_vmid; return &hubbub->base; } struct output_pixel_processor *dcn21_opp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_opp *opp = kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); if (!opp) { BREAK_TO_DEBUGGER(); return NULL; } dcn20_opp_construct(opp, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp->base; } struct timing_generator *dcn21_timing_generator_create( struct dc_context *ctx, uint32_t instance) { struct optc *tgn10 = kzalloc(sizeof(struct optc), GFP_KERNEL); if (!tgn10) return NULL; tgn10->base.inst = instance; tgn10->base.ctx = ctx; tgn10->tg_regs = &tg_regs[instance]; tgn10->tg_shift = &tg_shift; tgn10->tg_mask = &tg_mask; dcn20_timing_generator_init(tgn10); return &tgn10->base; } struct mpc *dcn21_mpc_create(struct dc_context *ctx) { struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc), GFP_KERNEL); if (!mpc20) return NULL; dcn20_mpc_construct(mpc20, ctx, &mpc_regs, &mpc_shift, &mpc_mask, 6); return &mpc20->base; } static void read_dce_straps( struct dc_context *ctx, struct resource_straps *straps) { generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); } struct display_stream_compressor *dcn21_dsc_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_dsc *dsc = kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); if (!dsc) { BREAK_TO_DEBUGGER(); return NULL; } dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); return &dsc->base; } static struct _vcs_dpi_voltage_scaling_st construct_low_pstate_lvl(struct clk_limit_table *clk_table, unsigned int high_voltage_lvl) { struct _vcs_dpi_voltage_scaling_st low_pstate_lvl; int i; low_pstate_lvl.state = 1; low_pstate_lvl.dcfclk_mhz = clk_table->entries[0].dcfclk_mhz; low_pstate_lvl.fabricclk_mhz = clk_table->entries[0].fclk_mhz; low_pstate_lvl.socclk_mhz = clk_table->entries[0].socclk_mhz; low_pstate_lvl.dram_speed_mts = clk_table->entries[0].memclk_mhz * 2; low_pstate_lvl.dispclk_mhz = dcn2_1_soc.clock_limits[high_voltage_lvl].dispclk_mhz; low_pstate_lvl.dppclk_mhz = dcn2_1_soc.clock_limits[high_voltage_lvl].dppclk_mhz; low_pstate_lvl.dram_bw_per_chan_gbps = dcn2_1_soc.clock_limits[high_voltage_lvl].dram_bw_per_chan_gbps; low_pstate_lvl.dscclk_mhz = dcn2_1_soc.clock_limits[high_voltage_lvl].dscclk_mhz; low_pstate_lvl.dtbclk_mhz = dcn2_1_soc.clock_limits[high_voltage_lvl].dtbclk_mhz; low_pstate_lvl.phyclk_d18_mhz = dcn2_1_soc.clock_limits[high_voltage_lvl].phyclk_d18_mhz; low_pstate_lvl.phyclk_mhz = dcn2_1_soc.clock_limits[high_voltage_lvl].phyclk_mhz; for (i = clk_table->num_entries; i > 1; i--) clk_table->entries[i] = clk_table->entries[i-1]; clk_table->entries[1] = clk_table->entries[0]; clk_table->num_entries++; return low_pstate_lvl; } static void update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) { struct dcn21_resource_pool *pool = TO_DCN21_RES_POOL(dc->res_pool); struct clk_limit_table *clk_table = &bw_params->clk_table; struct _vcs_dpi_voltage_scaling_st clock_limits[DC__VOLTAGE_STATES]; unsigned int i, closest_clk_lvl = 0, k = 0; int j; dcn2_1_ip.max_num_otg = pool->base.res_cap->num_timing_generator; dcn2_1_ip.max_num_dpp = pool->base.pipe_count; dcn2_1_soc.num_chans = bw_params->num_channels; ASSERT(clk_table->num_entries); for (i = 0; i < clk_table->num_entries; i++) { /* loop backwards*/ for (closest_clk_lvl = 0, j = dcn2_1_soc.num_states - 1; j >= 0; j--) { if ((unsigned int) dcn2_1_soc.clock_limits[j].dcfclk_mhz <= clk_table->entries[i].dcfclk_mhz) { closest_clk_lvl = j; break; } } /* clk_table[1] is reserved for min DF PState. skip here to fill in later. */ if (i == 1) k++; clock_limits[k].state = k; clock_limits[k].dcfclk_mhz = clk_table->entries[i].dcfclk_mhz; clock_limits[k].fabricclk_mhz = clk_table->entries[i].fclk_mhz; clock_limits[k].socclk_mhz = clk_table->entries[i].socclk_mhz; clock_limits[k].dram_speed_mts = clk_table->entries[i].memclk_mhz * 2; clock_limits[k].dispclk_mhz = dcn2_1_soc.clock_limits[closest_clk_lvl].dispclk_mhz; clock_limits[k].dppclk_mhz = dcn2_1_soc.clock_limits[closest_clk_lvl].dppclk_mhz; clock_limits[k].dram_bw_per_chan_gbps = dcn2_1_soc.clock_limits[closest_clk_lvl].dram_bw_per_chan_gbps; clock_limits[k].dscclk_mhz = dcn2_1_soc.clock_limits[closest_clk_lvl].dscclk_mhz; clock_limits[k].dtbclk_mhz = dcn2_1_soc.clock_limits[closest_clk_lvl].dtbclk_mhz; clock_limits[k].phyclk_d18_mhz = dcn2_1_soc.clock_limits[closest_clk_lvl].phyclk_d18_mhz; clock_limits[k].phyclk_mhz = dcn2_1_soc.clock_limits[closest_clk_lvl].phyclk_mhz; k++; } for (i = 0; i < clk_table->num_entries + 1; i++) dcn2_1_soc.clock_limits[i] = clock_limits[i]; if (clk_table->num_entries) { dcn2_1_soc.num_states = clk_table->num_entries + 1; /* duplicate last level */ dcn2_1_soc.clock_limits[dcn2_1_soc.num_states] = dcn2_1_soc.clock_limits[dcn2_1_soc.num_states - 1]; dcn2_1_soc.clock_limits[dcn2_1_soc.num_states].state = dcn2_1_soc.num_states; /* fill in min DF PState */ dcn2_1_soc.clock_limits[1] = construct_low_pstate_lvl(clk_table, closest_clk_lvl); } dml_init_instance(&dc->dml, &dcn2_1_soc, &dcn2_1_ip, DML_PROJECT_DCN21); } static struct pp_smu_funcs *dcn21_pp_smu_create(struct dc_context *ctx) { struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_KERNEL); if (!pp_smu) return pp_smu; dm_pp_get_funcs(ctx, pp_smu); if (pp_smu->ctx.ver != PP_SMU_VER_RN) pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs)); return pp_smu; } static void dcn21_pp_smu_destroy(struct pp_smu_funcs **pp_smu) { if (pp_smu && *pp_smu) { kfree(*pp_smu); *pp_smu = NULL; } } static struct audio *dcn21_create_audio( struct dc_context *ctx, unsigned int inst) { return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } static struct dc_cap_funcs cap_funcs = { .get_dcc_compression_cap = dcn20_get_dcc_compression_cap }; struct stream_encoder *dcn21_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dcn10_stream_encoder *enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); if (!enc1) return NULL; dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc1->base; } static const struct dce_hwseq_registers hwseq_reg = { HWSEQ_DCN21_REG_LIST() }; static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCN21_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCN21_MASK_SH_LIST(_MASK) }; static struct dce_hwseq *dcn21_hwseq_create( struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = &hwseq_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; hws->wa.DEGVIDCN21 = true; hws->wa.disallow_self_refresh_during_multi_plane_transition = true; } return hws; } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = dcn21_create_audio, .create_stream_encoder = dcn21_stream_encoder_create, .create_hwseq = dcn21_hwseq_create, }; static const struct resource_create_funcs res_create_maximus_funcs = { .read_dce_straps = NULL, .create_audio = NULL, .create_stream_encoder = NULL, .create_hwseq = dcn21_hwseq_create, }; static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 600000, .hdmi_ycbcr420_supported = true, .dp_ycbcr420_supported = true, .fec_supported = true, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_HBR3_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true, .flags.bits.IS_TPS4_CAPABLE = true }; #define link_regs(id, phyid)\ [id] = {\ LE_DCN2_REG_LIST(id), \ UNIPHY_DCN2_REG_LIST(phyid), \ DPCS_DCN21_REG_LIST(id), \ SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ } static const struct dcn10_link_enc_registers link_enc_regs[] = { link_regs(0, A), link_regs(1, B), link_regs(2, C), link_regs(3, D), link_regs(4, E), }; static const struct dce_panel_cntl_registers panel_cntl_regs[] = { { DCN_PANEL_CNTL_REG_LIST() } }; static const struct dce_panel_cntl_shift panel_cntl_shift = { DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) }; static const struct dce_panel_cntl_mask panel_cntl_mask = { DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) }; #define aux_regs(id)\ [id] = {\ DCN2_AUX_REG_LIST(id)\ } static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { aux_regs(0), aux_regs(1), aux_regs(2), aux_regs(3), aux_regs(4) }; #define hpd_regs(id)\ [id] = {\ HPD_REG_LIST(id)\ } static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { hpd_regs(0), hpd_regs(1), hpd_regs(2), hpd_regs(3), hpd_regs(4) }; static const struct dcn10_link_enc_shift le_shift = { LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\ DPCS_DCN21_MASK_SH_LIST(__SHIFT) }; static const struct dcn10_link_enc_mask le_mask = { LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\ DPCS_DCN21_MASK_SH_LIST(_MASK) }; static int map_transmitter_id_to_phy_instance( enum transmitter transmitter) { switch (transmitter) { case TRANSMITTER_UNIPHY_A: return 0; break; case TRANSMITTER_UNIPHY_B: return 1; break; case TRANSMITTER_UNIPHY_C: return 2; break; case TRANSMITTER_UNIPHY_D: return 3; break; case TRANSMITTER_UNIPHY_E: return 4; break; default: ASSERT(0); return 0; } } static struct link_encoder *dcn21_link_encoder_create( const struct encoder_init_data *enc_init_data) { struct dcn21_link_encoder *enc21 = kzalloc(sizeof(struct dcn21_link_encoder), GFP_KERNEL); int link_regs_id; if (!enc21) return NULL; link_regs_id = map_transmitter_id_to_phy_instance(enc_init_data->transmitter); dcn21_link_encoder_construct(enc21, enc_init_data, &link_enc_feature, &link_enc_regs[link_regs_id], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source], &le_shift, &le_mask); return &enc21->enc10.base; } static struct panel_cntl *dcn21_panel_cntl_create(const struct panel_cntl_init_data *init_data) { struct dce_panel_cntl *panel_cntl = kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); if (!panel_cntl) return NULL; dce_panel_cntl_construct(panel_cntl, init_data, &panel_cntl_regs[init_data->inst], &panel_cntl_shift, &panel_cntl_mask); return &panel_cntl->base; } #define CTX ctx #define REG(reg_name) \ (DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name) static uint32_t read_pipe_fuses(struct dc_context *ctx) { uint32_t value = REG_READ(CC_DC_PIPE_DIS); /* RV1 support max 4 pipes */ value = value & 0xf; return value; } static int dcn21_populate_dml_pipes_from_context( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, bool fast_validate) { uint32_t pipe_cnt = dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); int i; for (i = 0; i < pipe_cnt; i++) { pipes[i].pipe.src.hostvm = dc->res_pool->hubbub->riommu_active; pipes[i].pipe.src.gpuvm = 1; } return pipe_cnt; } enum dc_status dcn21_patch_unknown_plane_state(struct dc_plane_state *plane_state) { enum dc_status result = DC_OK; if (plane_state->ctx->dc->debug.disable_dcc == DCC_ENABLE) { plane_state->dcc.enable = 1; /* align to our worst case block width */ plane_state->dcc.meta_pitch = ((plane_state->src_rect.width + 1023) / 1024) * 1024; } result = dcn20_patch_unknown_plane_state(plane_state); return result; } static const struct resource_funcs dcn21_res_pool_funcs = { .destroy = dcn21_destroy_resource_pool, .link_enc_create = dcn21_link_encoder_create, .panel_cntl_create = dcn21_panel_cntl_create, .validate_bandwidth = dcn21_validate_bandwidth, .populate_dml_pipes = dcn21_populate_dml_pipes_from_context, .add_stream_to_ctx = dcn20_add_stream_to_ctx, .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context, .patch_unknown_plane_state = dcn21_patch_unknown_plane_state, .set_mcif_arb_params = dcn20_set_mcif_arb_params, .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, .update_bw_bounding_box = update_bw_bounding_box }; static bool dcn21_resource_construct( uint8_t num_virtual_links, struct dc *dc, struct dcn21_resource_pool *pool) { int i, j; struct dc_context *ctx = dc->ctx; struct irq_service_init_data init_data; uint32_t pipe_fuses = read_pipe_fuses(ctx); uint32_t num_pipes; ctx->dc_bios->regs = &bios_regs; pool->base.res_cap = &res_cap_rn; #ifdef DIAGS_BUILD if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) //pool->base.res_cap = &res_cap_nv10_FPGA_2pipe_dsc; pool->base.res_cap = &res_cap_rn_FPGA_4pipe; #endif pool->base.funcs = &dcn21_res_pool_funcs; /************************************************* * Resource + asic cap harcoding * *************************************************/ pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; /* max pipe num for ASIC before check pipe fuses */ pool->base.pipe_count = pool->base.res_cap->num_timing_generator; dc->caps.max_downscale_ratio = 200; dc->caps.i2c_speed_in_khz = 100; dc->caps.i2c_speed_in_khz_hdcp = 5; /*1.4 w/a applied by default*/ dc->caps.max_cursor_size = 256; dc->caps.min_horizontal_blanking_period = 80; dc->caps.dmdata_alloc_size = 2048; dc->caps.max_slave_planes = 1; dc->caps.post_blend_color_processing = true; dc->caps.force_dp_tps4_for_cp2520 = true; dc->caps.extended_aux_timeout_support = true; dc->caps.dmcub_support = true; dc->caps.is_apu = true; /* Color pipeline capabilities */ dc->caps.color.dpp.dcn_arch = 1; dc->caps.color.dpp.input_lut_shared = 0; dc->caps.color.dpp.icsc = 1; dc->caps.color.dpp.dgam_ram = 1; dc->caps.color.dpp.dgam_rom_caps.srgb = 1; dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0; dc->caps.color.dpp.dgam_rom_caps.pq = 0; dc->caps.color.dpp.dgam_rom_caps.hlg = 0; dc->caps.color.dpp.post_csc = 0; dc->caps.color.dpp.gamma_corr = 0; dc->caps.color.dpp.dgam_rom_for_yuv = 1; dc->caps.color.dpp.hw_3d_lut = 1; dc->caps.color.dpp.ogam_ram = 1; // no OGAM ROM on DCN2 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.dpp.ogam_rom_caps.pq = 0; dc->caps.color.dpp.ogam_rom_caps.hlg = 0; dc->caps.color.dpp.ocsc = 0; dc->caps.color.mpc.gamut_remap = 0; dc->caps.color.mpc.num_3dluts = 0; dc->caps.color.mpc.shared_3d_lut = 0; dc->caps.color.mpc.ogam_ram = 1; dc->caps.color.mpc.ogam_rom_caps.srgb = 0; dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.mpc.ogam_rom_caps.pq = 0; dc->caps.color.mpc.ogam_rom_caps.hlg = 0; dc->caps.color.mpc.ocsc = 1; if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) dc->debug = debug_defaults_drv; else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { pool->base.pipe_count = 4; dc->debug = debug_defaults_diags; } else dc->debug = debug_defaults_diags; // Init the vm_helper if (dc->vm_helper) vm_helper_init(dc->vm_helper, 16); /************************************************* * Create resources * *************************************************/ pool->base.clock_sources[DCN20_CLK_SRC_PLL0] = dcn21_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL0, &clk_src_regs[0], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL1] = dcn21_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL1, &clk_src_regs[1], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL2] = dcn21_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL2, &clk_src_regs[2], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL3] = dcn21_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL3, &clk_src_regs[3], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL4] = dcn21_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL4, &clk_src_regs[4], false); pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL_DCN21; /* todo: not reuse phy_pll registers */ pool->base.dp_clock_source = dcn21_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true); for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } } pool->base.dccg = dccg21_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); if (pool->base.dccg == NULL) { dm_error("DC: failed to create dccg!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } if (!dc->config.disable_dmcu) { pool->base.dmcu = dcn21_dmcu_create(ctx, &dmcu_regs, &dmcu_shift, &dmcu_mask); if (pool->base.dmcu == NULL) { dm_error("DC: failed to create dmcu!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } dc->debug.dmub_command_table = false; } if (dc->config.disable_dmcu) { pool->base.psr = dmub_psr_create(ctx); if (pool->base.psr == NULL) { dm_error("DC: failed to create psr obj!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } } if (dc->config.disable_dmcu) pool->base.abm = dmub_abm_create(ctx, &abm_regs, &abm_shift, &abm_mask); else pool->base.abm = dce_abm_create(ctx, &abm_regs, &abm_shift, &abm_mask); pool->base.pp_smu = dcn21_pp_smu_create(ctx); num_pipes = dcn2_1_ip.max_num_dpp; for (i = 0; i < dcn2_1_ip.max_num_dpp; i++) if (pipe_fuses & 1 << i) num_pipes--; dcn2_1_ip.max_num_dpp = num_pipes; dcn2_1_ip.max_num_otg = num_pipes; dml_init_instance(&dc->dml, &dcn2_1_soc, &dcn2_1_ip, DML_PROJECT_DCN21); init_data.ctx = dc->ctx; pool->base.irqs = dal_irq_service_dcn21_create(&init_data); if (!pool->base.irqs) goto create_fail; j = 0; /* mem input -> ipp -> dpp -> opp -> TG */ for (i = 0; i < pool->base.pipe_count; i++) { /* if pipe is disabled, skip instance of HW pipe, * i.e, skip ASIC register instance */ if ((pipe_fuses & (1 << i)) != 0) continue; pool->base.hubps[j] = dcn21_hubp_create(ctx, i); if (pool->base.hubps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create memory input!\n"); goto create_fail; } pool->base.ipps[j] = dcn21_ipp_create(ctx, i); if (pool->base.ipps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create input pixel processor!\n"); goto create_fail; } pool->base.dpps[j] = dcn21_dpp_create(ctx, i); if (pool->base.dpps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create dpps!\n"); goto create_fail; } pool->base.opps[j] = dcn21_opp_create(ctx, i); if (pool->base.opps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create output pixel processor!\n"); goto create_fail; } pool->base.timing_generators[j] = dcn21_timing_generator_create( ctx, i); if (pool->base.timing_generators[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto create_fail; } j++; } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { pool->base.engines[i] = dcn21_aux_engine_create(ctx, i); if (pool->base.engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create aux engine!!\n"); goto create_fail; } pool->base.hw_i2cs[i] = dcn21_i2c_hw_create(ctx, i); if (pool->base.hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create hw i2c!!\n"); goto create_fail; } pool->base.sw_i2cs[i] = NULL; } pool->base.timing_generator_count = j; pool->base.pipe_count = j; pool->base.mpcc_count = j; pool->base.mpc = dcn21_mpc_create(ctx); if (pool->base.mpc == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mpc!\n"); goto create_fail; } pool->base.hubbub = dcn21_hubbub_create(ctx); if (pool->base.hubbub == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create hubbub!\n"); goto create_fail; } for (i = 0; i < pool->base.res_cap->num_dsc; i++) { pool->base.dscs[i] = dcn21_dsc_create(ctx, i); if (pool->base.dscs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create display stream compressor %d!\n", i); goto create_fail; } } if (!dcn20_dwbc_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create dwbc!\n"); goto create_fail; } if (!dcn20_mmhubbub_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mcif_wb!\n"); goto create_fail; } if (!resource_construct(num_virtual_links, dc, &pool->base, (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? &res_create_funcs : &res_create_maximus_funcs))) goto create_fail; dcn21_hw_sequencer_construct(dc); dc->caps.max_planes = pool->base.pipe_count; for (i = 0; i < dc->caps.max_planes; ++i) dc->caps.planes[i] = plane_cap; dc->cap_funcs = cap_funcs; return true; create_fail: dcn21_resource_destruct(pool); return false; } struct resource_pool *dcn21_create_resource_pool( const struct dc_init_data *init_data, struct dc *dc) { struct dcn21_resource_pool *pool = kzalloc(sizeof(struct dcn21_resource_pool), GFP_KERNEL); if (!pool) return NULL; if (dcn21_resource_construct(init_data->num_virtual_links, dc, pool)) return &pool->base; BREAK_TO_DEBUGGER(); kfree(pool); return NULL; }