/* * Support PCI/PCIe on PowerNV platforms * * Currently supports only P5IOC2 * * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "powernv.h" #include "pci.h" /* Delay in usec */ #define PCI_RESET_DELAY_US 3000000 #define cfg_dbg(fmt...) do { } while(0) //#define cfg_dbg(fmt...) printk(fmt) #ifdef CONFIG_PCI_MSI static int pnv_msi_check_device(struct pci_dev* pdev, int nvec, int type) { struct pci_controller *hose = pci_bus_to_host(pdev->bus); struct pnv_phb *phb = hose->private_data; return (phb && phb->msi_map) ? 0 : -ENODEV; } static unsigned int pnv_get_one_msi(struct pnv_phb *phb) { unsigned int id; spin_lock(&phb->lock); id = find_next_zero_bit(phb->msi_map, phb->msi_count, phb->msi_next); if (id >= phb->msi_count && phb->msi_next) id = find_next_zero_bit(phb->msi_map, phb->msi_count, 0); if (id >= phb->msi_count) { spin_unlock(&phb->lock); return 0; } __set_bit(id, phb->msi_map); spin_unlock(&phb->lock); return id + phb->msi_base; } static void pnv_put_msi(struct pnv_phb *phb, unsigned int hwirq) { unsigned int id; if (WARN_ON(hwirq < phb->msi_base || hwirq >= (phb->msi_base + phb->msi_count))) return; id = hwirq - phb->msi_base; spin_lock(&phb->lock); __clear_bit(id, phb->msi_map); spin_unlock(&phb->lock); } static int pnv_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type) { struct pci_controller *hose = pci_bus_to_host(pdev->bus); struct pnv_phb *phb = hose->private_data; struct msi_desc *entry; struct msi_msg msg; unsigned int hwirq, virq; int rc; if (WARN_ON(!phb)) return -ENODEV; list_for_each_entry(entry, &pdev->msi_list, list) { if (!entry->msi_attrib.is_64 && !phb->msi32_support) { pr_warn("%s: Supports only 64-bit MSIs\n", pci_name(pdev)); return -ENXIO; } hwirq = pnv_get_one_msi(phb); if (!hwirq) { pr_warn("%s: Failed to find a free MSI\n", pci_name(pdev)); return -ENOSPC; } virq = irq_create_mapping(NULL, hwirq); if (virq == NO_IRQ) { pr_warn("%s: Failed to map MSI to linux irq\n", pci_name(pdev)); pnv_put_msi(phb, hwirq); return -ENOMEM; } rc = phb->msi_setup(phb, pdev, hwirq, entry->msi_attrib.is_64, &msg); if (rc) { pr_warn("%s: Failed to setup MSI\n", pci_name(pdev)); irq_dispose_mapping(virq); pnv_put_msi(phb, hwirq); return rc; } irq_set_msi_desc(virq, entry); write_msi_msg(virq, &msg); } return 0; } static void pnv_teardown_msi_irqs(struct pci_dev *pdev) { struct pci_controller *hose = pci_bus_to_host(pdev->bus); struct pnv_phb *phb = hose->private_data; struct msi_desc *entry; if (WARN_ON(!phb)) return; list_for_each_entry(entry, &pdev->msi_list, list) { if (entry->irq == NO_IRQ) continue; irq_set_msi_desc(entry->irq, NULL); pnv_put_msi(phb, virq_to_hw(entry->irq)); irq_dispose_mapping(entry->irq); } } #endif /* CONFIG_PCI_MSI */ static void pnv_pci_dump_p7ioc_diag_data(struct pnv_phb *phb) { struct OpalIoP7IOCPhbErrorData *data = &phb->diag.p7ioc; int i; pr_info("PHB %d diagnostic data:\n", phb->hose->global_number); pr_info(" brdgCtl = 0x%08x\n", data->brdgCtl); pr_info(" portStatusReg = 0x%08x\n", data->portStatusReg); pr_info(" rootCmplxStatus = 0x%08x\n", data->rootCmplxStatus); pr_info(" busAgentStatus = 0x%08x\n", data->busAgentStatus); pr_info(" deviceStatus = 0x%08x\n", data->deviceStatus); pr_info(" slotStatus = 0x%08x\n", data->slotStatus); pr_info(" linkStatus = 0x%08x\n", data->linkStatus); pr_info(" devCmdStatus = 0x%08x\n", data->devCmdStatus); pr_info(" devSecStatus = 0x%08x\n", data->devSecStatus); pr_info(" rootErrorStatus = 0x%08x\n", data->rootErrorStatus); pr_info(" uncorrErrorStatus = 0x%08x\n", data->uncorrErrorStatus); pr_info(" corrErrorStatus = 0x%08x\n", data->corrErrorStatus); pr_info(" tlpHdr1 = 0x%08x\n", data->tlpHdr1); pr_info(" tlpHdr2 = 0x%08x\n", data->tlpHdr2); pr_info(" tlpHdr3 = 0x%08x\n", data->tlpHdr3); pr_info(" tlpHdr4 = 0x%08x\n", data->tlpHdr4); pr_info(" sourceId = 0x%08x\n", data->sourceId); pr_info(" errorClass = 0x%016llx\n", data->errorClass); pr_info(" correlator = 0x%016llx\n", data->correlator); pr_info(" p7iocPlssr = 0x%016llx\n", data->p7iocPlssr); pr_info(" p7iocCsr = 0x%016llx\n", data->p7iocCsr); pr_info(" lemFir = 0x%016llx\n", data->lemFir); pr_info(" lemErrorMask = 0x%016llx\n", data->lemErrorMask); pr_info(" lemWOF = 0x%016llx\n", data->lemWOF); pr_info(" phbErrorStatus = 0x%016llx\n", data->phbErrorStatus); pr_info(" phbFirstErrorStatus = 0x%016llx\n", data->phbFirstErrorStatus); pr_info(" phbErrorLog0 = 0x%016llx\n", data->phbErrorLog0); pr_info(" phbErrorLog1 = 0x%016llx\n", data->phbErrorLog1); pr_info(" mmioErrorStatus = 0x%016llx\n", data->mmioErrorStatus); pr_info(" mmioFirstErrorStatus = 0x%016llx\n", data->mmioFirstErrorStatus); pr_info(" mmioErrorLog0 = 0x%016llx\n", data->mmioErrorLog0); pr_info(" mmioErrorLog1 = 0x%016llx\n", data->mmioErrorLog1); pr_info(" dma0ErrorStatus = 0x%016llx\n", data->dma0ErrorStatus); pr_info(" dma0FirstErrorStatus = 0x%016llx\n", data->dma0FirstErrorStatus); pr_info(" dma0ErrorLog0 = 0x%016llx\n", data->dma0ErrorLog0); pr_info(" dma0ErrorLog1 = 0x%016llx\n", data->dma0ErrorLog1); pr_info(" dma1ErrorStatus = 0x%016llx\n", data->dma1ErrorStatus); pr_info(" dma1FirstErrorStatus = 0x%016llx\n", data->dma1FirstErrorStatus); pr_info(" dma1ErrorLog0 = 0x%016llx\n", data->dma1ErrorLog0); pr_info(" dma1ErrorLog1 = 0x%016llx\n", data->dma1ErrorLog1); for (i = 0; i < OPAL_P7IOC_NUM_PEST_REGS; i++) { if ((data->pestA[i] >> 63) == 0 && (data->pestB[i] >> 63) == 0) continue; pr_info(" PE[%3d] PESTA = 0x%016llx\n", i, data->pestA[i]); pr_info(" PESTB = 0x%016llx\n", data->pestB[i]); } } static void pnv_pci_dump_phb_diag_data(struct pnv_phb *phb) { switch(phb->model) { case PNV_PHB_MODEL_P7IOC: pnv_pci_dump_p7ioc_diag_data(phb); break; default: pr_warning("PCI %d: Can't decode this PHB diag data\n", phb->hose->global_number); } } static void pnv_pci_handle_eeh_config(struct pnv_phb *phb, u32 pe_no) { unsigned long flags, rc; int has_diag; spin_lock_irqsave(&phb->lock, flags); rc = opal_pci_get_phb_diag_data(phb->opal_id, phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE); has_diag = (rc == OPAL_SUCCESS); rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); if (rc) { pr_warning("PCI %d: Failed to clear EEH freeze state" " for PE#%d, err %ld\n", phb->hose->global_number, pe_no, rc); /* For now, let's only display the diag buffer when we fail to clear * the EEH status. We'll do more sensible things later when we have * proper EEH support. We need to make sure we don't pollute ourselves * with the normal errors generated when probing empty slots */ if (has_diag) pnv_pci_dump_phb_diag_data(phb); else pr_warning("PCI %d: No diag data available\n", phb->hose->global_number); } spin_unlock_irqrestore(&phb->lock, flags); } static void pnv_pci_config_check_eeh(struct pnv_phb *phb, struct pci_bus *bus, u32 bdfn) { s64 rc; u8 fstate; u16 pcierr; u32 pe_no; /* Get PE# if we support IODA */ pe_no = phb->bdfn_to_pe ? phb->bdfn_to_pe(phb, bus, bdfn & 0xff) : 0; /* Read freeze status */ rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, &fstate, &pcierr, NULL); if (rc) { pr_warning("PCI %d: Failed to read EEH status for PE#%d," " err %lld\n", phb->hose->global_number, pe_no, rc); return; } cfg_dbg(" -> EEH check, bdfn=%04x PE%d fstate=%x\n", bdfn, pe_no, fstate); if (fstate != 0) pnv_pci_handle_eeh_config(phb, pe_no); } static int pnv_pci_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct pci_controller *hose = pci_bus_to_host(bus); struct pnv_phb *phb = hose->private_data; u32 bdfn = (((uint64_t)bus->number) << 8) | devfn; s64 rc; if (hose == NULL) return PCIBIOS_DEVICE_NOT_FOUND; switch (size) { case 1: { u8 v8; rc = opal_pci_config_read_byte(phb->opal_id, bdfn, where, &v8); *val = (rc == OPAL_SUCCESS) ? v8 : 0xff; break; } case 2: { u16 v16; rc = opal_pci_config_read_half_word(phb->opal_id, bdfn, where, &v16); *val = (rc == OPAL_SUCCESS) ? v16 : 0xffff; break; } case 4: { u32 v32; rc = opal_pci_config_read_word(phb->opal_id, bdfn, where, &v32); *val = (rc == OPAL_SUCCESS) ? v32 : 0xffffffff; break; } default: return PCIBIOS_FUNC_NOT_SUPPORTED; } cfg_dbg("pnv_pci_read_config bus: %x devfn: %x +%x/%x -> %08x\n", bus->number, devfn, where, size, *val); /* Check if the PHB got frozen due to an error (no response) */ pnv_pci_config_check_eeh(phb, bus, bdfn); return PCIBIOS_SUCCESSFUL; } static int pnv_pci_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct pci_controller *hose = pci_bus_to_host(bus); struct pnv_phb *phb = hose->private_data; u32 bdfn = (((uint64_t)bus->number) << 8) | devfn; if (hose == NULL) return PCIBIOS_DEVICE_NOT_FOUND; cfg_dbg("pnv_pci_write_config bus: %x devfn: %x +%x/%x -> %08x\n", bus->number, devfn, where, size, val); switch (size) { case 1: opal_pci_config_write_byte(phb->opal_id, bdfn, where, val); break; case 2: opal_pci_config_write_half_word(phb->opal_id, bdfn, where, val); break; case 4: opal_pci_config_write_word(phb->opal_id, bdfn, where, val); break; default: return PCIBIOS_FUNC_NOT_SUPPORTED; } /* Check if the PHB got frozen due to an error (no response) */ pnv_pci_config_check_eeh(phb, bus, bdfn); return PCIBIOS_SUCCESSFUL; } struct pci_ops pnv_pci_ops = { .read = pnv_pci_read_config, .write = pnv_pci_write_config, }; static void pnv_tce_invalidate(struct iommu_table *tbl, u64 *startp, u64 *endp) { u64 __iomem *invalidate = (u64 __iomem *)tbl->it_index; unsigned long start, end, inc; start = __pa(startp); end = __pa(endp); /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */ if (tbl->it_busno) { start <<= 12; end <<= 12; inc = 128 << 12; start |= tbl->it_busno; end |= tbl->it_busno; } /* p7ioc-style invalidation, 2 TCEs per write */ else if (tbl->it_type & TCE_PCI_SWINV_PAIR) { start |= (1ull << 63); end |= (1ull << 63); inc = 16; } /* Default (older HW) */ else inc = 128; end |= inc - 1; /* round up end to be different than start */ mb(); /* Ensure above stores are visible */ while (start <= end) { __raw_writeq(start, invalidate); start += inc; } /* The iommu layer will do another mb() for us on build() and * we don't care on free() */ } static int pnv_tce_build(struct iommu_table *tbl, long index, long npages, unsigned long uaddr, enum dma_data_direction direction, struct dma_attrs *attrs) { u64 proto_tce; u64 *tcep, *tces; u64 rpn; proto_tce = TCE_PCI_READ; // Read allowed if (direction != DMA_TO_DEVICE) proto_tce |= TCE_PCI_WRITE; tces = tcep = ((u64 *)tbl->it_base) + index - tbl->it_offset; rpn = __pa(uaddr) >> TCE_SHIFT; while (npages--) *(tcep++) = proto_tce | (rpn++ << TCE_RPN_SHIFT); /* Some implementations won't cache invalid TCEs and thus may not * need that flush. We'll probably turn it_type into a bit mask * of flags if that becomes the case */ if (tbl->it_type & TCE_PCI_SWINV_CREATE) pnv_tce_invalidate(tbl, tces, tcep - 1); return 0; } static void pnv_tce_free(struct iommu_table *tbl, long index, long npages) { u64 *tcep, *tces; tces = tcep = ((u64 *)tbl->it_base) + index - tbl->it_offset; while (npages--) *(tcep++) = 0; if (tbl->it_type & TCE_PCI_SWINV_FREE) pnv_tce_invalidate(tbl, tces, tcep - 1); } void pnv_pci_setup_iommu_table(struct iommu_table *tbl, void *tce_mem, u64 tce_size, u64 dma_offset) { tbl->it_blocksize = 16; tbl->it_base = (unsigned long)tce_mem; tbl->it_offset = dma_offset >> IOMMU_PAGE_SHIFT; tbl->it_index = 0; tbl->it_size = tce_size >> 3; tbl->it_busno = 0; tbl->it_type = TCE_PCI; } static struct iommu_table * __devinit pnv_pci_setup_bml_iommu(struct pci_controller *hose) { struct iommu_table *tbl; const __be64 *basep, *swinvp; const __be32 *sizep; basep = of_get_property(hose->dn, "linux,tce-base", NULL); sizep = of_get_property(hose->dn, "linux,tce-size", NULL); if (basep == NULL || sizep == NULL) { pr_err("PCI: %s has missing tce entries !\n", hose->dn->full_name); return NULL; } tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, hose->node); if (WARN_ON(!tbl)) return NULL; pnv_pci_setup_iommu_table(tbl, __va(be64_to_cpup(basep)), be32_to_cpup(sizep), 0); iommu_init_table(tbl, hose->node); /* Deal with SW invalidated TCEs when needed (BML way) */ swinvp = of_get_property(hose->dn, "linux,tce-sw-invalidate-info", NULL); if (swinvp) { tbl->it_busno = swinvp[1]; tbl->it_index = (unsigned long)ioremap(swinvp[0], 8); tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE; } return tbl; } static void __devinit pnv_pci_dma_fallback_setup(struct pci_controller *hose, struct pci_dev *pdev) { struct device_node *np = pci_bus_to_OF_node(hose->bus); struct pci_dn *pdn; if (np == NULL) return; pdn = PCI_DN(np); if (!pdn->iommu_table) pdn->iommu_table = pnv_pci_setup_bml_iommu(hose); if (!pdn->iommu_table) return; set_iommu_table_base(&pdev->dev, pdn->iommu_table); } static void __devinit pnv_pci_dma_dev_setup(struct pci_dev *pdev) { struct pci_controller *hose = pci_bus_to_host(pdev->bus); struct pnv_phb *phb = hose->private_data; /* If we have no phb structure, try to setup a fallback based on * the device-tree (RTAS PCI for example) */ if (phb && phb->dma_dev_setup) phb->dma_dev_setup(phb, pdev); else pnv_pci_dma_fallback_setup(hose, pdev); } /* Fixup wrong class code in p7ioc root complex */ static void __devinit pnv_p7ioc_rc_quirk(struct pci_dev *dev) { dev->class = PCI_CLASS_BRIDGE_PCI << 8; } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_IBM, 0x3b9, pnv_p7ioc_rc_quirk); static int pnv_pci_probe_mode(struct pci_bus *bus) { struct pci_controller *hose = pci_bus_to_host(bus); const __be64 *tstamp; u64 now, target; /* We hijack this as a way to ensure we have waited long * enough since the reset was lifted on the PCI bus */ if (bus != hose->bus) return PCI_PROBE_NORMAL; tstamp = of_get_property(hose->dn, "reset-clear-timestamp", NULL); if (!tstamp || !*tstamp) return PCI_PROBE_NORMAL; now = mftb() / tb_ticks_per_usec; target = (be64_to_cpup(tstamp) / tb_ticks_per_usec) + PCI_RESET_DELAY_US; pr_devel("pci %04d: Reset target: 0x%llx now: 0x%llx\n", hose->global_number, target, now); if (now < target) msleep((target - now + 999) / 1000); return PCI_PROBE_NORMAL; } void __init pnv_pci_init(void) { struct device_node *np; pci_add_flags(PCI_CAN_SKIP_ISA_ALIGN); /* OPAL absent, try POPAL first then RTAS detection of PHBs */ if (!firmware_has_feature(FW_FEATURE_OPAL)) { #ifdef CONFIG_PPC_POWERNV_RTAS init_pci_config_tokens(); find_and_init_phbs(); #endif /* CONFIG_PPC_POWERNV_RTAS */ } /* OPAL is here, do our normal stuff */ else { int found_ioda = 0; /* Look for IODA IO-Hubs. We don't support mixing IODA * and p5ioc2 due to the need to change some global * probing flags */ for_each_compatible_node(np, NULL, "ibm,ioda-hub") { pnv_pci_init_ioda_hub(np); found_ioda = 1; } /* Look for p5ioc2 IO-Hubs */ if (!found_ioda) for_each_compatible_node(np, NULL, "ibm,p5ioc2") pnv_pci_init_p5ioc2_hub(np); } /* Setup the linkage between OF nodes and PHBs */ pci_devs_phb_init(); /* Configure IOMMU DMA hooks */ ppc_md.pci_dma_dev_setup = pnv_pci_dma_dev_setup; ppc_md.tce_build = pnv_tce_build; ppc_md.tce_free = pnv_tce_free; ppc_md.pci_probe_mode = pnv_pci_probe_mode; set_pci_dma_ops(&dma_iommu_ops); /* Configure MSIs */ #ifdef CONFIG_PCI_MSI ppc_md.msi_check_device = pnv_msi_check_device; ppc_md.setup_msi_irqs = pnv_setup_msi_irqs; ppc_md.teardown_msi_irqs = pnv_teardown_msi_irqs; #endif }