// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include #include "habanalabs.h" #include #include #include #include static u32 hl_debug_struct_size[HL_DEBUG_OP_TIMESTAMP + 1] = { [HL_DEBUG_OP_ETR] = sizeof(struct hl_debug_params_etr), [HL_DEBUG_OP_ETF] = sizeof(struct hl_debug_params_etf), [HL_DEBUG_OP_STM] = sizeof(struct hl_debug_params_stm), [HL_DEBUG_OP_FUNNEL] = 0, [HL_DEBUG_OP_BMON] = sizeof(struct hl_debug_params_bmon), [HL_DEBUG_OP_SPMU] = sizeof(struct hl_debug_params_spmu), [HL_DEBUG_OP_TIMESTAMP] = 0 }; static int device_status_info(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_device_status dev_stat = {0}; u32 size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!size) || (!out)) return -EINVAL; dev_stat.status = hl_device_status(hdev); return copy_to_user(out, &dev_stat, min((size_t)size, sizeof(dev_stat))) ? -EFAULT : 0; } static int hw_ip_info(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_hw_ip_info hw_ip = {0}; u32 size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 sram_kmd_size, dram_kmd_size; if ((!size) || (!out)) return -EINVAL; sram_kmd_size = (prop->sram_user_base_address - prop->sram_base_address); dram_kmd_size = (prop->dram_user_base_address - prop->dram_base_address); hw_ip.device_id = hdev->asic_funcs->get_pci_id(hdev); hw_ip.sram_base_address = prop->sram_user_base_address; hw_ip.dram_base_address = prop->dram_user_base_address; hw_ip.tpc_enabled_mask = prop->tpc_enabled_mask; hw_ip.sram_size = prop->sram_size - sram_kmd_size; hw_ip.dram_size = prop->dram_size - dram_kmd_size; if (hw_ip.dram_size > PAGE_SIZE) hw_ip.dram_enabled = 1; hw_ip.num_of_events = prop->num_of_events; memcpy(hw_ip.cpucp_version, prop->cpucp_info.cpucp_version, min(VERSION_MAX_LEN, HL_INFO_VERSION_MAX_LEN)); memcpy(hw_ip.card_name, prop->cpucp_info.card_name, min(CARD_NAME_MAX_LEN, HL_INFO_CARD_NAME_MAX_LEN)); hw_ip.cpld_version = le32_to_cpu(prop->cpucp_info.cpld_version); hw_ip.module_id = le32_to_cpu(prop->cpucp_info.card_location); hw_ip.psoc_pci_pll_nr = prop->psoc_pci_pll_nr; hw_ip.psoc_pci_pll_nf = prop->psoc_pci_pll_nf; hw_ip.psoc_pci_pll_od = prop->psoc_pci_pll_od; hw_ip.psoc_pci_pll_div_factor = prop->psoc_pci_pll_div_factor; return copy_to_user(out, &hw_ip, min((size_t)size, sizeof(hw_ip))) ? -EFAULT : 0; } static int hw_events_info(struct hl_device *hdev, bool aggregate, struct hl_info_args *args) { u32 size, max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; void *arr; if ((!max_size) || (!out)) return -EINVAL; arr = hdev->asic_funcs->get_events_stat(hdev, aggregate, &size); return copy_to_user(out, arr, min(max_size, size)) ? -EFAULT : 0; } static int dram_usage_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; struct hl_info_dram_usage dram_usage = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 dram_kmd_size; if ((!max_size) || (!out)) return -EINVAL; dram_kmd_size = (prop->dram_user_base_address - prop->dram_base_address); dram_usage.dram_free_mem = (prop->dram_size - dram_kmd_size) - atomic64_read(&hdev->dram_used_mem); if (hpriv->ctx) dram_usage.ctx_dram_mem = atomic64_read(&hpriv->ctx->dram_phys_mem); return copy_to_user(out, &dram_usage, min((size_t) max_size, sizeof(dram_usage))) ? -EFAULT : 0; } static int hw_idle(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_hw_idle hw_idle = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; hw_idle.is_idle = hdev->asic_funcs->is_device_idle(hdev, &hw_idle.busy_engines_mask_ext, NULL); return copy_to_user(out, &hw_idle, min((size_t) max_size, sizeof(hw_idle))) ? -EFAULT : 0; } static int debug_coresight(struct hl_device *hdev, struct hl_debug_args *args) { struct hl_debug_params *params; void *input = NULL, *output = NULL; int rc; params = kzalloc(sizeof(*params), GFP_KERNEL); if (!params) return -ENOMEM; params->reg_idx = args->reg_idx; params->enable = args->enable; params->op = args->op; if (args->input_ptr && args->input_size) { input = kzalloc(hl_debug_struct_size[args->op], GFP_KERNEL); if (!input) { rc = -ENOMEM; goto out; } if (copy_from_user(input, u64_to_user_ptr(args->input_ptr), args->input_size)) { rc = -EFAULT; dev_err(hdev->dev, "failed to copy input debug data\n"); goto out; } params->input = input; } if (args->output_ptr && args->output_size) { output = kzalloc(args->output_size, GFP_KERNEL); if (!output) { rc = -ENOMEM; goto out; } params->output = output; params->output_size = args->output_size; } rc = hdev->asic_funcs->debug_coresight(hdev, params); if (rc) { dev_err(hdev->dev, "debug coresight operation failed %d\n", rc); goto out; } if (output && copy_to_user((void __user *) (uintptr_t) args->output_ptr, output, args->output_size)) { dev_err(hdev->dev, "copy to user failed in debug ioctl\n"); rc = -EFAULT; goto out; } out: kfree(params); kfree(output); kfree(input); return rc; } static int device_utilization(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_device_utilization device_util = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; if ((args->period_ms < 100) || (args->period_ms > 1000) || (args->period_ms % 100)) { dev_err(hdev->dev, "period %u must be between 100 - 1000 and must be divisible by 100\n", args->period_ms); return -EINVAL; } device_util.utilization = hl_device_utilization(hdev, args->period_ms); return copy_to_user(out, &device_util, min((size_t) max_size, sizeof(device_util))) ? -EFAULT : 0; } static int get_clk_rate(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_clk_rate clk_rate = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hdev->asic_funcs->get_clk_rate(hdev, &clk_rate.cur_clk_rate_mhz, &clk_rate.max_clk_rate_mhz); if (rc) return rc; return copy_to_user(out, &clk_rate, min((size_t) max_size, sizeof(clk_rate))) ? -EFAULT : 0; } static int get_reset_count(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_reset_count reset_count = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; reset_count.hard_reset_cnt = hdev->hard_reset_cnt; reset_count.soft_reset_cnt = hdev->soft_reset_cnt; return copy_to_user(out, &reset_count, min((size_t) max_size, sizeof(reset_count))) ? -EFAULT : 0; } static int time_sync_info(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_time_sync time_sync = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; time_sync.device_time = hdev->asic_funcs->get_device_time(hdev); time_sync.host_time = ktime_get_raw_ns(); return copy_to_user(out, &time_sync, min((size_t) max_size, sizeof(time_sync))) ? -EFAULT : 0; } static int pci_counters_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; struct hl_info_pci_counters pci_counters = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hl_fw_cpucp_pci_counters_get(hdev, &pci_counters); if (rc) return rc; return copy_to_user(out, &pci_counters, min((size_t) max_size, sizeof(pci_counters))) ? -EFAULT : 0; } static int clk_throttle_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; struct hl_info_clk_throttle clk_throttle = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; clk_throttle.clk_throttling_reason = hdev->clk_throttling_reason; return copy_to_user(out, &clk_throttle, min((size_t) max_size, sizeof(clk_throttle))) ? -EFAULT : 0; } static int cs_counters_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { void __user *out = (void __user *) (uintptr_t) args->return_pointer; struct hl_info_cs_counters cs_counters = {0}; struct hl_device *hdev = hpriv->hdev; struct hl_cs_counters_atomic *cntr; u32 max_size = args->return_size; cntr = &hdev->aggregated_cs_counters; if ((!max_size) || (!out)) return -EINVAL; cs_counters.total_out_of_mem_drop_cnt = atomic64_read(&cntr->out_of_mem_drop_cnt); cs_counters.total_parsing_drop_cnt = atomic64_read(&cntr->parsing_drop_cnt); cs_counters.total_queue_full_drop_cnt = atomic64_read(&cntr->queue_full_drop_cnt); cs_counters.total_device_in_reset_drop_cnt = atomic64_read(&cntr->device_in_reset_drop_cnt); cs_counters.total_max_cs_in_flight_drop_cnt = atomic64_read(&cntr->max_cs_in_flight_drop_cnt); if (hpriv->ctx) { cs_counters.ctx_out_of_mem_drop_cnt = atomic64_read( &hpriv->ctx->cs_counters.out_of_mem_drop_cnt); cs_counters.ctx_parsing_drop_cnt = atomic64_read( &hpriv->ctx->cs_counters.parsing_drop_cnt); cs_counters.ctx_queue_full_drop_cnt = atomic64_read( &hpriv->ctx->cs_counters.queue_full_drop_cnt); cs_counters.ctx_device_in_reset_drop_cnt = atomic64_read( &hpriv->ctx->cs_counters.device_in_reset_drop_cnt); cs_counters.ctx_max_cs_in_flight_drop_cnt = atomic64_read( &hpriv->ctx->cs_counters.max_cs_in_flight_drop_cnt); } return copy_to_user(out, &cs_counters, min((size_t) max_size, sizeof(cs_counters))) ? -EFAULT : 0; } static int sync_manager_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_info_sync_manager sm_info = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; if (args->dcore_id >= HL_MAX_DCORES) return -EINVAL; sm_info.first_available_sync_object = prop->first_available_user_sob[args->dcore_id]; sm_info.first_available_monitor = prop->first_available_user_mon[args->dcore_id]; return copy_to_user(out, &sm_info, min_t(size_t, (size_t) max_size, sizeof(sm_info))) ? -EFAULT : 0; } static int total_energy_consumption_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; struct hl_info_energy total_energy = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hl_fw_cpucp_total_energy_get(hdev, &total_energy.total_energy_consumption); if (rc) return rc; return copy_to_user(out, &total_energy, min((size_t) max_size, sizeof(total_energy))) ? -EFAULT : 0; } static int pll_frequency_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; struct hl_pll_frequency_info freq_info = { {0} }; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hl_fw_cpucp_pll_info_get(hdev, args->pll_index, freq_info.output); if (rc) return rc; return copy_to_user(out, &freq_info, min((size_t) max_size, sizeof(freq_info))) ? -EFAULT : 0; } static int _hl_info_ioctl(struct hl_fpriv *hpriv, void *data, struct device *dev) { enum hl_device_status status; struct hl_info_args *args = data; struct hl_device *hdev = hpriv->hdev; int rc; /* * Information is returned for the following opcodes even if the device * is disabled or in reset. */ switch (args->op) { case HL_INFO_HW_IP_INFO: return hw_ip_info(hdev, args); case HL_INFO_DEVICE_STATUS: return device_status_info(hdev, args); case HL_INFO_RESET_COUNT: return get_reset_count(hdev, args); default: break; } if (!hl_device_operational(hdev, &status)) { dev_warn_ratelimited(dev, "Device is %s. Can't execute INFO IOCTL\n", hdev->status[status]); return -EBUSY; } switch (args->op) { case HL_INFO_HW_EVENTS: rc = hw_events_info(hdev, false, args); break; case HL_INFO_DRAM_USAGE: rc = dram_usage_info(hpriv, args); break; case HL_INFO_HW_IDLE: rc = hw_idle(hdev, args); break; case HL_INFO_DEVICE_UTILIZATION: rc = device_utilization(hdev, args); break; case HL_INFO_HW_EVENTS_AGGREGATE: rc = hw_events_info(hdev, true, args); break; case HL_INFO_CLK_RATE: rc = get_clk_rate(hdev, args); break; case HL_INFO_TIME_SYNC: return time_sync_info(hdev, args); case HL_INFO_CS_COUNTERS: return cs_counters_info(hpriv, args); case HL_INFO_PCI_COUNTERS: return pci_counters_info(hpriv, args); case HL_INFO_CLK_THROTTLE_REASON: return clk_throttle_info(hpriv, args); case HL_INFO_SYNC_MANAGER: return sync_manager_info(hpriv, args); case HL_INFO_TOTAL_ENERGY: return total_energy_consumption_info(hpriv, args); case HL_INFO_PLL_FREQUENCY: return pll_frequency_info(hpriv, args); default: dev_err(dev, "Invalid request %d\n", args->op); rc = -ENOTTY; break; } return rc; } static int hl_info_ioctl(struct hl_fpriv *hpriv, void *data) { return _hl_info_ioctl(hpriv, data, hpriv->hdev->dev); } static int hl_info_ioctl_control(struct hl_fpriv *hpriv, void *data) { return _hl_info_ioctl(hpriv, data, hpriv->hdev->dev_ctrl); } static int hl_debug_ioctl(struct hl_fpriv *hpriv, void *data) { struct hl_debug_args *args = data; struct hl_device *hdev = hpriv->hdev; enum hl_device_status status; int rc = 0; if (!hl_device_operational(hdev, &status)) { dev_warn_ratelimited(hdev->dev, "Device is %s. Can't execute DEBUG IOCTL\n", hdev->status[status]); return -EBUSY; } switch (args->op) { case HL_DEBUG_OP_ETR: case HL_DEBUG_OP_ETF: case HL_DEBUG_OP_STM: case HL_DEBUG_OP_FUNNEL: case HL_DEBUG_OP_BMON: case HL_DEBUG_OP_SPMU: case HL_DEBUG_OP_TIMESTAMP: if (!hdev->in_debug) { dev_err_ratelimited(hdev->dev, "Rejecting debug configuration request because device not in debug mode\n"); return -EFAULT; } args->input_size = min(args->input_size, hl_debug_struct_size[args->op]); rc = debug_coresight(hdev, args); break; case HL_DEBUG_OP_SET_MODE: rc = hl_device_set_debug_mode(hdev, (bool) args->enable); break; default: dev_err(hdev->dev, "Invalid request %d\n", args->op); rc = -ENOTTY; break; } return rc; } #define HL_IOCTL_DEF(ioctl, _func) \ [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func} static const struct hl_ioctl_desc hl_ioctls[] = { HL_IOCTL_DEF(HL_IOCTL_INFO, hl_info_ioctl), HL_IOCTL_DEF(HL_IOCTL_CB, hl_cb_ioctl), HL_IOCTL_DEF(HL_IOCTL_CS, hl_cs_ioctl), HL_IOCTL_DEF(HL_IOCTL_WAIT_CS, hl_cs_wait_ioctl), HL_IOCTL_DEF(HL_IOCTL_MEMORY, hl_mem_ioctl), HL_IOCTL_DEF(HL_IOCTL_DEBUG, hl_debug_ioctl) }; static const struct hl_ioctl_desc hl_ioctls_control[] = { HL_IOCTL_DEF(HL_IOCTL_INFO, hl_info_ioctl_control) }; static long _hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg, const struct hl_ioctl_desc *ioctl, struct device *dev) { struct hl_fpriv *hpriv = filep->private_data; struct hl_device *hdev = hpriv->hdev; unsigned int nr = _IOC_NR(cmd); char stack_kdata[128] = {0}; char *kdata = NULL; unsigned int usize, asize; hl_ioctl_t *func; u32 hl_size; int retcode; if (hdev->hard_reset_pending) { dev_crit_ratelimited(dev, "Device HARD reset pending! Please close FD\n"); return -ENODEV; } /* Do not trust userspace, use our own definition */ func = ioctl->func; if (unlikely(!func)) { dev_dbg(dev, "no function\n"); retcode = -ENOTTY; goto out_err; } hl_size = _IOC_SIZE(ioctl->cmd); usize = asize = _IOC_SIZE(cmd); if (hl_size > asize) asize = hl_size; cmd = ioctl->cmd; if (cmd & (IOC_IN | IOC_OUT)) { if (asize <= sizeof(stack_kdata)) { kdata = stack_kdata; } else { kdata = kzalloc(asize, GFP_KERNEL); if (!kdata) { retcode = -ENOMEM; goto out_err; } } } if (cmd & IOC_IN) { if (copy_from_user(kdata, (void __user *)arg, usize)) { retcode = -EFAULT; goto out_err; } } else if (cmd & IOC_OUT) { memset(kdata, 0, usize); } retcode = func(hpriv, kdata); if ((cmd & IOC_OUT) && copy_to_user((void __user *)arg, kdata, usize)) retcode = -EFAULT; out_err: if (retcode) dev_dbg(dev, "error in ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", task_pid_nr(current), cmd, nr); if (kdata != stack_kdata) kfree(kdata); return retcode; } long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { struct hl_fpriv *hpriv = filep->private_data; struct hl_device *hdev = hpriv->hdev; const struct hl_ioctl_desc *ioctl = NULL; unsigned int nr = _IOC_NR(cmd); if ((nr >= HL_COMMAND_START) && (nr < HL_COMMAND_END)) { ioctl = &hl_ioctls[nr]; } else { dev_err(hdev->dev, "invalid ioctl: pid=%d, nr=0x%02x\n", task_pid_nr(current), nr); return -ENOTTY; } return _hl_ioctl(filep, cmd, arg, ioctl, hdev->dev); } long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg) { struct hl_fpriv *hpriv = filep->private_data; struct hl_device *hdev = hpriv->hdev; const struct hl_ioctl_desc *ioctl = NULL; unsigned int nr = _IOC_NR(cmd); if (nr == _IOC_NR(HL_IOCTL_INFO)) { ioctl = &hl_ioctls_control[nr]; } else { dev_err(hdev->dev_ctrl, "invalid ioctl: pid=%d, nr=0x%02x\n", task_pid_nr(current), nr); return -ENOTTY; } return _hl_ioctl(filep, cmd, arg, ioctl, hdev->dev_ctrl); }