/* * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo * * Parts came from builtin-{top,stat,record}.c, see those files for further * copyright notes. * * Released under the GPL v2. (and only v2, not any later version) */ #include #include #include "asm/bug.h" #include "debugfs.h" #include "event-parse.h" #include "evsel.h" #include "evlist.h" #include "util.h" #include "cpumap.h" #include "thread_map.h" #include "target.h" #include #include #include "perf_regs.h" #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) static int __perf_evsel__sample_size(u64 sample_type) { u64 mask = sample_type & PERF_SAMPLE_MASK; int size = 0; int i; for (i = 0; i < 64; i++) { if (mask & (1ULL << i)) size++; } size *= sizeof(u64); return size; } void hists__init(struct hists *hists) { memset(hists, 0, sizeof(*hists)); hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; hists->entries_in = &hists->entries_in_array[0]; hists->entries_collapsed = RB_ROOT; hists->entries = RB_ROOT; pthread_mutex_init(&hists->lock, NULL); } void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, enum perf_event_sample_format bit) { if (!(evsel->attr.sample_type & bit)) { evsel->attr.sample_type |= bit; evsel->sample_size += sizeof(u64); } } void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, enum perf_event_sample_format bit) { if (evsel->attr.sample_type & bit) { evsel->attr.sample_type &= ~bit; evsel->sample_size -= sizeof(u64); } } void perf_evsel__set_sample_id(struct perf_evsel *evsel) { perf_evsel__set_sample_bit(evsel, ID); evsel->attr.read_format |= PERF_FORMAT_ID; } void perf_evsel__init(struct perf_evsel *evsel, struct perf_event_attr *attr, int idx) { evsel->idx = idx; evsel->attr = *attr; evsel->leader = evsel; INIT_LIST_HEAD(&evsel->node); hists__init(&evsel->hists); evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); } struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx) { struct perf_evsel *evsel = zalloc(sizeof(*evsel)); if (evsel != NULL) perf_evsel__init(evsel, attr, idx); return evsel; } struct event_format *event_format__new(const char *sys, const char *name) { int fd, n; char *filename; void *bf = NULL, *nbf; size_t size = 0, alloc_size = 0; struct event_format *format = NULL; if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0) goto out; fd = open(filename, O_RDONLY); if (fd < 0) goto out_free_filename; do { if (size == alloc_size) { alloc_size += BUFSIZ; nbf = realloc(bf, alloc_size); if (nbf == NULL) goto out_free_bf; bf = nbf; } n = read(fd, bf + size, BUFSIZ); if (n < 0) goto out_free_bf; size += n; } while (n > 0); pevent_parse_format(&format, bf, size, sys); out_free_bf: free(bf); close(fd); out_free_filename: free(filename); out: return format; } struct perf_evsel *perf_evsel__newtp(const char *sys, const char *name, int idx) { struct perf_evsel *evsel = zalloc(sizeof(*evsel)); if (evsel != NULL) { struct perf_event_attr attr = { .type = PERF_TYPE_TRACEPOINT, .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), }; if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) goto out_free; evsel->tp_format = event_format__new(sys, name); if (evsel->tp_format == NULL) goto out_free; event_attr_init(&attr); attr.config = evsel->tp_format->id; attr.sample_period = 1; perf_evsel__init(evsel, &attr, idx); } return evsel; out_free: free(evsel->name); free(evsel); return NULL; } const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { "cycles", "instructions", "cache-references", "cache-misses", "branches", "branch-misses", "bus-cycles", "stalled-cycles-frontend", "stalled-cycles-backend", "ref-cycles", }; static const char *__perf_evsel__hw_name(u64 config) { if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) return perf_evsel__hw_names[config]; return "unknown-hardware"; } static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) { int colon = 0, r = 0; struct perf_event_attr *attr = &evsel->attr; bool exclude_guest_default = false; #define MOD_PRINT(context, mod) do { \ if (!attr->exclude_##context) { \ if (!colon) colon = ++r; \ r += scnprintf(bf + r, size - r, "%c", mod); \ } } while(0) if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { MOD_PRINT(kernel, 'k'); MOD_PRINT(user, 'u'); MOD_PRINT(hv, 'h'); exclude_guest_default = true; } if (attr->precise_ip) { if (!colon) colon = ++r; r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); exclude_guest_default = true; } if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { MOD_PRINT(host, 'H'); MOD_PRINT(guest, 'G'); } #undef MOD_PRINT if (colon) bf[colon - 1] = ':'; return r; } static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) { int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); } const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { "cpu-clock", "task-clock", "page-faults", "context-switches", "cpu-migrations", "minor-faults", "major-faults", "alignment-faults", "emulation-faults", }; static const char *__perf_evsel__sw_name(u64 config) { if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) return perf_evsel__sw_names[config]; return "unknown-software"; } static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) { int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); } static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) { int r; r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); if (type & HW_BREAKPOINT_R) r += scnprintf(bf + r, size - r, "r"); if (type & HW_BREAKPOINT_W) r += scnprintf(bf + r, size - r, "w"); if (type & HW_BREAKPOINT_X) r += scnprintf(bf + r, size - r, "x"); return r; } static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) { struct perf_event_attr *attr = &evsel->attr; int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); } const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] [PERF_EVSEL__MAX_ALIASES] = { { "L1-dcache", "l1-d", "l1d", "L1-data", }, { "L1-icache", "l1-i", "l1i", "L1-instruction", }, { "LLC", "L2", }, { "dTLB", "d-tlb", "Data-TLB", }, { "iTLB", "i-tlb", "Instruction-TLB", }, { "branch", "branches", "bpu", "btb", "bpc", }, { "node", }, }; const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] [PERF_EVSEL__MAX_ALIASES] = { { "load", "loads", "read", }, { "store", "stores", "write", }, { "prefetch", "prefetches", "speculative-read", "speculative-load", }, }; const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] [PERF_EVSEL__MAX_ALIASES] = { { "refs", "Reference", "ops", "access", }, { "misses", "miss", }, }; #define C(x) PERF_COUNT_HW_CACHE_##x #define CACHE_READ (1 << C(OP_READ)) #define CACHE_WRITE (1 << C(OP_WRITE)) #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) #define COP(x) (1 << x) /* * cache operartion stat * L1I : Read and prefetch only * ITLB and BPU : Read-only */ static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), [C(ITLB)] = (CACHE_READ), [C(BPU)] = (CACHE_READ), [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), }; bool perf_evsel__is_cache_op_valid(u8 type, u8 op) { if (perf_evsel__hw_cache_stat[type] & COP(op)) return true; /* valid */ else return false; /* invalid */ } int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, char *bf, size_t size) { if (result) { return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], perf_evsel__hw_cache_op[op][0], perf_evsel__hw_cache_result[result][0]); } return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], perf_evsel__hw_cache_op[op][1]); } static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) { u8 op, result, type = (config >> 0) & 0xff; const char *err = "unknown-ext-hardware-cache-type"; if (type > PERF_COUNT_HW_CACHE_MAX) goto out_err; op = (config >> 8) & 0xff; err = "unknown-ext-hardware-cache-op"; if (op > PERF_COUNT_HW_CACHE_OP_MAX) goto out_err; result = (config >> 16) & 0xff; err = "unknown-ext-hardware-cache-result"; if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) goto out_err; err = "invalid-cache"; if (!perf_evsel__is_cache_op_valid(type, op)) goto out_err; return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); out_err: return scnprintf(bf, size, "%s", err); } static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) { int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); } static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) { int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); } const char *perf_evsel__name(struct perf_evsel *evsel) { char bf[128]; if (evsel->name) return evsel->name; switch (evsel->attr.type) { case PERF_TYPE_RAW: perf_evsel__raw_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_HARDWARE: perf_evsel__hw_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_HW_CACHE: perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_SOFTWARE: perf_evsel__sw_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_TRACEPOINT: scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); break; case PERF_TYPE_BREAKPOINT: perf_evsel__bp_name(evsel, bf, sizeof(bf)); break; default: scnprintf(bf, sizeof(bf), "unknown attr type: %d", evsel->attr.type); break; } evsel->name = strdup(bf); return evsel->name ?: "unknown"; } /* * The enable_on_exec/disabled value strategy: * * 1) For any type of traced program: * - all independent events and group leaders are disabled * - all group members are enabled * * Group members are ruled by group leaders. They need to * be enabled, because the group scheduling relies on that. * * 2) For traced programs executed by perf: * - all independent events and group leaders have * enable_on_exec set * - we don't specifically enable or disable any event during * the record command * * Independent events and group leaders are initially disabled * and get enabled by exec. Group members are ruled by group * leaders as stated in 1). * * 3) For traced programs attached by perf (pid/tid): * - we specifically enable or disable all events during * the record command * * When attaching events to already running traced we * enable/disable events specifically, as there's no * initial traced exec call. */ void perf_evsel__config(struct perf_evsel *evsel, struct perf_record_opts *opts) { struct perf_event_attr *attr = &evsel->attr; int track = !evsel->idx; /* only the first counter needs these */ attr->sample_id_all = opts->sample_id_all_missing ? 0 : 1; attr->inherit = !opts->no_inherit; perf_evsel__set_sample_bit(evsel, IP); perf_evsel__set_sample_bit(evsel, TID); /* * We default some events to a 1 default interval. But keep * it a weak assumption overridable by the user. */ if (!attr->sample_period || (opts->user_freq != UINT_MAX && opts->user_interval != ULLONG_MAX)) { if (opts->freq) { perf_evsel__set_sample_bit(evsel, PERIOD); attr->freq = 1; attr->sample_freq = opts->freq; } else { attr->sample_period = opts->default_interval; } } if (opts->no_samples) attr->sample_freq = 0; if (opts->inherit_stat) attr->inherit_stat = 1; if (opts->sample_address) { perf_evsel__set_sample_bit(evsel, ADDR); attr->mmap_data = track; } if (opts->call_graph) { perf_evsel__set_sample_bit(evsel, CALLCHAIN); if (opts->call_graph == CALLCHAIN_DWARF) { perf_evsel__set_sample_bit(evsel, REGS_USER); perf_evsel__set_sample_bit(evsel, STACK_USER); attr->sample_regs_user = PERF_REGS_MASK; attr->sample_stack_user = opts->stack_dump_size; attr->exclude_callchain_user = 1; } } if (perf_target__has_cpu(&opts->target)) perf_evsel__set_sample_bit(evsel, CPU); if (opts->period) perf_evsel__set_sample_bit(evsel, PERIOD); if (!opts->sample_id_all_missing && (opts->sample_time || !opts->no_inherit || perf_target__has_cpu(&opts->target))) perf_evsel__set_sample_bit(evsel, TIME); if (opts->raw_samples) { perf_evsel__set_sample_bit(evsel, TIME); perf_evsel__set_sample_bit(evsel, RAW); perf_evsel__set_sample_bit(evsel, CPU); } if (opts->no_delay) { attr->watermark = 0; attr->wakeup_events = 1; } if (opts->branch_stack) { perf_evsel__set_sample_bit(evsel, BRANCH_STACK); attr->branch_sample_type = opts->branch_stack; } attr->mmap = track; attr->comm = track; /* * XXX see the function comment above * * Disabling only independent events or group leaders, * keeping group members enabled. */ if (perf_evsel__is_group_leader(evsel)) attr->disabled = 1; /* * Setting enable_on_exec for independent events and * group leaders for traced executed by perf. */ if (perf_target__none(&opts->target) && perf_evsel__is_group_leader(evsel)) attr->enable_on_exec = 1; } int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) { int cpu, thread; evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); if (evsel->fd) { for (cpu = 0; cpu < ncpus; cpu++) { for (thread = 0; thread < nthreads; thread++) { FD(evsel, cpu, thread) = -1; } } } return evsel->fd != NULL ? 0 : -ENOMEM; } int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads, const char *filter) { int cpu, thread; for (cpu = 0; cpu < ncpus; cpu++) { for (thread = 0; thread < nthreads; thread++) { int fd = FD(evsel, cpu, thread), err = ioctl(fd, PERF_EVENT_IOC_SET_FILTER, filter); if (err) return err; } } return 0; } int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) { evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); if (evsel->sample_id == NULL) return -ENOMEM; evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); if (evsel->id == NULL) { xyarray__delete(evsel->sample_id); evsel->sample_id = NULL; return -ENOMEM; } return 0; } int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus) { evsel->counts = zalloc((sizeof(*evsel->counts) + (ncpus * sizeof(struct perf_counts_values)))); return evsel->counts != NULL ? 0 : -ENOMEM; } void perf_evsel__free_fd(struct perf_evsel *evsel) { xyarray__delete(evsel->fd); evsel->fd = NULL; } void perf_evsel__free_id(struct perf_evsel *evsel) { xyarray__delete(evsel->sample_id); evsel->sample_id = NULL; free(evsel->id); evsel->id = NULL; } void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) { int cpu, thread; for (cpu = 0; cpu < ncpus; cpu++) for (thread = 0; thread < nthreads; ++thread) { close(FD(evsel, cpu, thread)); FD(evsel, cpu, thread) = -1; } } void perf_evsel__exit(struct perf_evsel *evsel) { assert(list_empty(&evsel->node)); xyarray__delete(evsel->fd); xyarray__delete(evsel->sample_id); free(evsel->id); } void perf_evsel__delete(struct perf_evsel *evsel) { perf_evsel__exit(evsel); close_cgroup(evsel->cgrp); free(evsel->group_name); if (evsel->tp_format) pevent_free_format(evsel->tp_format); free(evsel->name); free(evsel); } int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, int cpu, int thread, bool scale) { struct perf_counts_values count; size_t nv = scale ? 3 : 1; if (FD(evsel, cpu, thread) < 0) return -EINVAL; if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0) return -ENOMEM; if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) return -errno; if (scale) { if (count.run == 0) count.val = 0; else if (count.run < count.ena) count.val = (u64)((double)count.val * count.ena / count.run + 0.5); } else count.ena = count.run = 0; evsel->counts->cpu[cpu] = count; return 0; } int __perf_evsel__read(struct perf_evsel *evsel, int ncpus, int nthreads, bool scale) { size_t nv = scale ? 3 : 1; int cpu, thread; struct perf_counts_values *aggr = &evsel->counts->aggr, count; aggr->val = aggr->ena = aggr->run = 0; for (cpu = 0; cpu < ncpus; cpu++) { for (thread = 0; thread < nthreads; thread++) { if (FD(evsel, cpu, thread) < 0) continue; if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) return -errno; aggr->val += count.val; if (scale) { aggr->ena += count.ena; aggr->run += count.run; } } } evsel->counts->scaled = 0; if (scale) { if (aggr->run == 0) { evsel->counts->scaled = -1; aggr->val = 0; return 0; } if (aggr->run < aggr->ena) { evsel->counts->scaled = 1; aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5); } } else aggr->ena = aggr->run = 0; return 0; } static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) { struct perf_evsel *leader = evsel->leader; int fd; if (perf_evsel__is_group_leader(evsel)) return -1; /* * Leader must be already processed/open, * if not it's a bug. */ BUG_ON(!leader->fd); fd = FD(leader, cpu, thread); BUG_ON(fd == -1); return fd; } static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, struct thread_map *threads) { int cpu, thread; unsigned long flags = 0; int pid = -1, err; if (evsel->fd == NULL && perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0) return -ENOMEM; if (evsel->cgrp) { flags = PERF_FLAG_PID_CGROUP; pid = evsel->cgrp->fd; } for (cpu = 0; cpu < cpus->nr; cpu++) { for (thread = 0; thread < threads->nr; thread++) { int group_fd; if (!evsel->cgrp) pid = threads->map[thread]; group_fd = get_group_fd(evsel, cpu, thread); FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], group_fd, flags); if (FD(evsel, cpu, thread) < 0) { err = -errno; goto out_close; } } } return 0; out_close: do { while (--thread >= 0) { close(FD(evsel, cpu, thread)); FD(evsel, cpu, thread) = -1; } thread = threads->nr; } while (--cpu >= 0); return err; } void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) { if (evsel->fd == NULL) return; perf_evsel__close_fd(evsel, ncpus, nthreads); perf_evsel__free_fd(evsel); evsel->fd = NULL; } static struct { struct cpu_map map; int cpus[1]; } empty_cpu_map = { .map.nr = 1, .cpus = { -1, }, }; static struct { struct thread_map map; int threads[1]; } empty_thread_map = { .map.nr = 1, .threads = { -1, }, }; int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, struct thread_map *threads) { if (cpus == NULL) { /* Work around old compiler warnings about strict aliasing */ cpus = &empty_cpu_map.map; } if (threads == NULL) threads = &empty_thread_map.map; return __perf_evsel__open(evsel, cpus, threads); } int perf_evsel__open_per_cpu(struct perf_evsel *evsel, struct cpu_map *cpus) { return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); } int perf_evsel__open_per_thread(struct perf_evsel *evsel, struct thread_map *threads) { return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); } static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, const union perf_event *event, struct perf_sample *sample) { u64 type = evsel->attr.sample_type; const u64 *array = event->sample.array; bool swapped = evsel->needs_swap; union u64_swap u; array += ((event->header.size - sizeof(event->header)) / sizeof(u64)) - 1; if (type & PERF_SAMPLE_CPU) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); } sample->cpu = u.val32[0]; array--; } if (type & PERF_SAMPLE_STREAM_ID) { sample->stream_id = *array; array--; } if (type & PERF_SAMPLE_ID) { sample->id = *array; array--; } if (type & PERF_SAMPLE_TIME) { sample->time = *array; array--; } if (type & PERF_SAMPLE_TID) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); } sample->pid = u.val32[0]; sample->tid = u.val32[1]; } return 0; } static bool sample_overlap(const union perf_event *event, const void *offset, u64 size) { const void *base = event; if (offset + size > base + event->header.size) return true; return false; } int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, struct perf_sample *data) { u64 type = evsel->attr.sample_type; u64 regs_user = evsel->attr.sample_regs_user; bool swapped = evsel->needs_swap; const u64 *array; /* * used for cross-endian analysis. See git commit 65014ab3 * for why this goofiness is needed. */ union u64_swap u; memset(data, 0, sizeof(*data)); data->cpu = data->pid = data->tid = -1; data->stream_id = data->id = data->time = -1ULL; data->period = 1; if (event->header.type != PERF_RECORD_SAMPLE) { if (!evsel->attr.sample_id_all) return 0; return perf_evsel__parse_id_sample(evsel, event, data); } array = event->sample.array; if (evsel->sample_size + sizeof(event->header) > event->header.size) return -EFAULT; if (type & PERF_SAMPLE_IP) { data->ip = event->ip.ip; array++; } if (type & PERF_SAMPLE_TID) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); } data->pid = u.val32[0]; data->tid = u.val32[1]; array++; } if (type & PERF_SAMPLE_TIME) { data->time = *array; array++; } data->addr = 0; if (type & PERF_SAMPLE_ADDR) { data->addr = *array; array++; } data->id = -1ULL; if (type & PERF_SAMPLE_ID) { data->id = *array; array++; } if (type & PERF_SAMPLE_STREAM_ID) { data->stream_id = *array; array++; } if (type & PERF_SAMPLE_CPU) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); } data->cpu = u.val32[0]; array++; } if (type & PERF_SAMPLE_PERIOD) { data->period = *array; array++; } if (type & PERF_SAMPLE_READ) { fprintf(stderr, "PERF_SAMPLE_READ is unsupported for now\n"); return -1; } if (type & PERF_SAMPLE_CALLCHAIN) { if (sample_overlap(event, array, sizeof(data->callchain->nr))) return -EFAULT; data->callchain = (struct ip_callchain *)array; if (sample_overlap(event, array, data->callchain->nr)) return -EFAULT; array += 1 + data->callchain->nr; } if (type & PERF_SAMPLE_RAW) { const u64 *pdata; u.val64 = *array; if (WARN_ONCE(swapped, "Endianness of raw data not corrected!\n")) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); } if (sample_overlap(event, array, sizeof(u32))) return -EFAULT; data->raw_size = u.val32[0]; pdata = (void *) array + sizeof(u32); if (sample_overlap(event, pdata, data->raw_size)) return -EFAULT; data->raw_data = (void *) pdata; array = (void *)array + data->raw_size + sizeof(u32); } if (type & PERF_SAMPLE_BRANCH_STACK) { u64 sz; data->branch_stack = (struct branch_stack *)array; array++; /* nr */ sz = data->branch_stack->nr * sizeof(struct branch_entry); sz /= sizeof(u64); array += sz; } if (type & PERF_SAMPLE_REGS_USER) { /* First u64 tells us if we have any regs in sample. */ u64 avail = *array++; if (avail) { data->user_regs.regs = (u64 *)array; array += hweight_long(regs_user); } } if (type & PERF_SAMPLE_STACK_USER) { u64 size = *array++; data->user_stack.offset = ((char *)(array - 1) - (char *) event); if (!size) { data->user_stack.size = 0; } else { data->user_stack.data = (char *)array; array += size / sizeof(*array); data->user_stack.size = *array; } } return 0; } int perf_event__synthesize_sample(union perf_event *event, u64 type, const struct perf_sample *sample, bool swapped) { u64 *array; /* * used for cross-endian analysis. See git commit 65014ab3 * for why this goofiness is needed. */ union u64_swap u; array = event->sample.array; if (type & PERF_SAMPLE_IP) { event->ip.ip = sample->ip; array++; } if (type & PERF_SAMPLE_TID) { u.val32[0] = sample->pid; u.val32[1] = sample->tid; if (swapped) { /* * Inverse of what is done in perf_evsel__parse_sample */ u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); u.val64 = bswap_64(u.val64); } *array = u.val64; array++; } if (type & PERF_SAMPLE_TIME) { *array = sample->time; array++; } if (type & PERF_SAMPLE_ADDR) { *array = sample->addr; array++; } if (type & PERF_SAMPLE_ID) { *array = sample->id; array++; } if (type & PERF_SAMPLE_STREAM_ID) { *array = sample->stream_id; array++; } if (type & PERF_SAMPLE_CPU) { u.val32[0] = sample->cpu; if (swapped) { /* * Inverse of what is done in perf_evsel__parse_sample */ u.val32[0] = bswap_32(u.val32[0]); u.val64 = bswap_64(u.val64); } *array = u.val64; array++; } if (type & PERF_SAMPLE_PERIOD) { *array = sample->period; array++; } return 0; } struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) { return pevent_find_field(evsel->tp_format, name); } void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, const char *name) { struct format_field *field = perf_evsel__field(evsel, name); int offset; if (!field) return NULL; offset = field->offset; if (field->flags & FIELD_IS_DYNAMIC) { offset = *(int *)(sample->raw_data + field->offset); offset &= 0xffff; } return sample->raw_data + offset; } u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, const char *name) { struct format_field *field = perf_evsel__field(evsel, name); void *ptr; u64 value; if (!field) return 0; ptr = sample->raw_data + field->offset; switch (field->size) { case 1: return *(u8 *)ptr; case 2: value = *(u16 *)ptr; break; case 4: value = *(u32 *)ptr; break; case 8: value = *(u64 *)ptr; break; default: return 0; } if (!evsel->needs_swap) return value; switch (field->size) { case 2: return bswap_16(value); case 4: return bswap_32(value); case 8: return bswap_64(value); default: return 0; } return 0; }