/* * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Authors: Rusty Russell * Christoffer Dall * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "../vfp/vfpinstr.h" #include "trace.h" #include "coproc.h" /****************************************************************************** * Co-processor emulation *****************************************************************************/ /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ static u32 cache_levels; /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ #define CSSELR_MAX 12 /* * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some * of cp15 registers can be viewed either as couple of two u32 registers * or one u64 register. Current u64 register encoding is that least * significant u32 word is followed by most significant u32 word. */ static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu, const struct coproc_reg *r, u64 val) { vcpu_cp15(vcpu, r->reg) = val & 0xffffffff; vcpu_cp15(vcpu, r->reg + 1) = val >> 32; } static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu, const struct coproc_reg *r) { u64 val; val = vcpu_cp15(vcpu, r->reg + 1); val = val << 32; val = val | vcpu_cp15(vcpu, r->reg); return val; } int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run) { kvm_inject_undefined(vcpu); return 1; } int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run) { /* * We can get here, if the host has been built without VFPv3 support, * but the guest attempted a floating point operation. */ kvm_inject_undefined(vcpu); return 1; } int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run) { kvm_inject_undefined(vcpu); return 1; } int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run) { kvm_inject_undefined(vcpu); return 1; } static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) { /* * Compute guest MPIDR. We build a virtual cluster out of the * vcpu_id, but we read the 'U' bit from the underlying * hardware directly. */ vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) | ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) | (vcpu->vcpu_id & 3)); } /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */ static bool access_actlr(struct kvm_vcpu *vcpu, const struct coproc_params *p, const struct coproc_reg *r) { if (p->is_write) return ignore_write(vcpu, p); *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR); return true; } /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */ static bool access_cbar(struct kvm_vcpu *vcpu, const struct coproc_params *p, const struct coproc_reg *r) { if (p->is_write) return write_to_read_only(vcpu, p); return read_zero(vcpu, p); } /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */ static bool access_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_params *p, const struct coproc_reg *r) { if (p->is_write) return ignore_write(vcpu, p); *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR); return true; } static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) { u32 l2ctlr, ncores; asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr)); l2ctlr &= ~(3 << 24); ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1; /* How many cores in the current cluster and the next ones */ ncores -= (vcpu->vcpu_id & ~3); /* Cap it to the maximum number of cores in a single cluster */ ncores = min(ncores, 3U); l2ctlr |= (ncores & 3) << 24; vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr; } static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) { u32 actlr; /* ACTLR contains SMP bit: make sure you create all cpus first! */ asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr)); /* Make the SMP bit consistent with the guest configuration */ if (atomic_read(&vcpu->kvm->online_vcpus) > 1) actlr |= 1U << 6; else actlr &= ~(1U << 6); vcpu_cp15(vcpu, c1_ACTLR) = actlr; } /* * TRM entries: A7:4.3.50, A15:4.3.49 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored). */ static bool access_l2ectlr(struct kvm_vcpu *vcpu, const struct coproc_params *p, const struct coproc_reg *r) { if (p->is_write) return ignore_write(vcpu, p); *vcpu_reg(vcpu, p->Rt1) = 0; return true; } /* * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). */ static bool access_dcsw(struct kvm_vcpu *vcpu, const struct coproc_params *p, const struct coproc_reg *r) { if (!p->is_write) return read_from_write_only(vcpu, p); kvm_set_way_flush(vcpu); return true; } /* * Generic accessor for VM registers. Only called as long as HCR_TVM * is set. If the guest enables the MMU, we stop trapping the VM * sys_regs and leave it in complete control of the caches. * * Used by the cpu-specific code. */ bool access_vm_reg(struct kvm_vcpu *vcpu, const struct coproc_params *p, const struct coproc_reg *r) { bool was_enabled = vcpu_has_cache_enabled(vcpu); BUG_ON(!p->is_write); vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1); if (p->is_64bit) vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2); kvm_toggle_cache(vcpu, was_enabled); return true; } /* * We could trap ID_DFR0 and tell the guest we don't support performance * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was * NAKed, so it will read the PMCR anyway. * * Therefore we tell the guest we have 0 counters. Unfortunately, we * must always support PMCCNTR (the cycle counter): we just RAZ/WI for * all PM registers, which doesn't crash the guest kernel at least. */ static bool pm_fake(struct kvm_vcpu *vcpu, const struct coproc_params *p, const struct coproc_reg *r) { if (p->is_write) return ignore_write(vcpu, p); else return read_zero(vcpu, p); } #define access_pmcr pm_fake #define access_pmcntenset pm_fake #define access_pmcntenclr pm_fake #define access_pmovsr pm_fake #define access_pmselr pm_fake #define access_pmceid0 pm_fake #define access_pmceid1 pm_fake #define access_pmccntr pm_fake #define access_pmxevtyper pm_fake #define access_pmxevcntr pm_fake #define access_pmuserenr pm_fake #define access_pmintenset pm_fake #define access_pmintenclr pm_fake /* Architected CP15 registers. * CRn denotes the primary register number, but is copied to the CRm in the * user space API for 64-bit register access in line with the terminology used * in the ARM ARM. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit * registers preceding 32-bit ones. */ static const struct coproc_reg cp15_regs[] = { /* MPIDR: we use VMPIDR for guest access. */ { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32, NULL, reset_mpidr, c0_MPIDR }, /* CSSELR: swapped by interrupt.S. */ { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32, NULL, reset_unknown, c0_CSSELR }, /* ACTLR: trapped by HCR.TAC bit. */ { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32, access_actlr, reset_actlr, c1_ACTLR }, /* CPACR: swapped by interrupt.S. */ { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32, NULL, reset_val, c1_CPACR, 0x00000000 }, /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */ { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 }, { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32, access_vm_reg, reset_unknown, c2_TTBR0 }, { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32, access_vm_reg, reset_unknown, c2_TTBR1 }, { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32, access_vm_reg, reset_val, c2_TTBCR, 0x00000000 }, { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 }, /* DACR: swapped by interrupt.S. */ { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32, access_vm_reg, reset_unknown, c3_DACR }, /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */ { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32, access_vm_reg, reset_unknown, c5_DFSR }, { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32, access_vm_reg, reset_unknown, c5_IFSR }, { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32, access_vm_reg, reset_unknown, c5_ADFSR }, { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32, access_vm_reg, reset_unknown, c5_AIFSR }, /* DFAR/IFAR: swapped by interrupt.S. */ { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32, access_vm_reg, reset_unknown, c6_DFAR }, { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32, access_vm_reg, reset_unknown, c6_IFAR }, /* PAR swapped by interrupt.S */ { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR }, /* * DC{C,I,CI}SW operations: */ { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw}, { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw}, { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw}, /* * L2CTLR access (guest wants to know #CPUs). */ { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32, access_l2ctlr, reset_l2ctlr, c9_L2CTLR }, { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr}, /* * Dummy performance monitor implementation. */ { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr}, { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset}, { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr}, { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr}, { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr}, { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0}, { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1}, { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr}, { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper}, { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr}, { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr}, { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset}, { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr}, /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */ { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32, access_vm_reg, reset_unknown, c10_PRRR}, { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32, access_vm_reg, reset_unknown, c10_NMRR}, /* AMAIR0/AMAIR1: swapped by interrupt.S. */ { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32, access_vm_reg, reset_unknown, c10_AMAIR0}, { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32, access_vm_reg, reset_unknown, c10_AMAIR1}, /* VBAR: swapped by interrupt.S. */ { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32, NULL, reset_val, c12_VBAR, 0x00000000 }, /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */ { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32, access_vm_reg, reset_val, c13_CID, 0x00000000 }, { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32, NULL, reset_unknown, c13_TID_URW }, { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32, NULL, reset_unknown, c13_TID_URO }, { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32, NULL, reset_unknown, c13_TID_PRIV }, /* CNTKCTL: swapped by interrupt.S. */ { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32, NULL, reset_val, c14_CNTKCTL, 0x00000000 }, /* The Configuration Base Address Register. */ { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar}, }; /* Target specific emulation tables */ static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS]; void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table) { unsigned int i; for (i = 1; i < table->num; i++) BUG_ON(cmp_reg(&table->table[i-1], &table->table[i]) >= 0); target_tables[table->target] = table; } /* Get specific register table for this target. */ static const struct coproc_reg *get_target_table(unsigned target, size_t *num) { struct kvm_coproc_target_table *table; table = target_tables[target]; *num = table->num; return table->table; } static const struct coproc_reg *find_reg(const struct coproc_params *params, const struct coproc_reg table[], unsigned int num) { unsigned int i; for (i = 0; i < num; i++) { const struct coproc_reg *r = &table[i]; if (params->is_64bit != r->is_64) continue; if (params->CRn != r->CRn) continue; if (params->CRm != r->CRm) continue; if (params->Op1 != r->Op1) continue; if (params->Op2 != r->Op2) continue; return r; } return NULL; } static int emulate_cp15(struct kvm_vcpu *vcpu, const struct coproc_params *params) { size_t num; const struct coproc_reg *table, *r; trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn, params->CRm, params->Op2, params->is_write); table = get_target_table(vcpu->arch.target, &num); /* Search target-specific then generic table. */ r = find_reg(params, table, num); if (!r) r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs)); if (likely(r)) { /* If we don't have an accessor, we should never get here! */ BUG_ON(!r->access); if (likely(r->access(vcpu, params, r))) { /* Skip instruction, since it was emulated */ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); return 1; } /* If access function fails, it should complain. */ } else { kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu)); print_cp_instr(params); } kvm_inject_undefined(vcpu); return 1; } /** * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access * @vcpu: The VCPU pointer * @run: The kvm_run struct */ int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run) { struct coproc_params params; params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf; params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf; params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0); params.is_64bit = true; params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf; params.Op2 = 0; params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf; params.CRm = 0; return emulate_cp15(vcpu, ¶ms); } static void reset_coproc_regs(struct kvm_vcpu *vcpu, const struct coproc_reg *table, size_t num) { unsigned long i; for (i = 0; i < num; i++) if (table[i].reset) table[i].reset(vcpu, &table[i]); } /** * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access * @vcpu: The VCPU pointer * @run: The kvm_run struct */ int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run) { struct coproc_params params; params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf; params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf; params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0); params.is_64bit = false; params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf; params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7; params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7; params.Rt2 = 0; return emulate_cp15(vcpu, ¶ms); } /****************************************************************************** * Userspace API *****************************************************************************/ static bool index_to_params(u64 id, struct coproc_params *params) { switch (id & KVM_REG_SIZE_MASK) { case KVM_REG_SIZE_U32: /* Any unused index bits means it's not valid. */ if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_COPROC_MASK | KVM_REG_ARM_32_CRN_MASK | KVM_REG_ARM_CRM_MASK | KVM_REG_ARM_OPC1_MASK | KVM_REG_ARM_32_OPC2_MASK)) return false; params->is_64bit = false; params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK) >> KVM_REG_ARM_32_CRN_SHIFT); params->CRm = ((id & KVM_REG_ARM_CRM_MASK) >> KVM_REG_ARM_CRM_SHIFT); params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK) >> KVM_REG_ARM_OPC1_SHIFT); params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK) >> KVM_REG_ARM_32_OPC2_SHIFT); return true; case KVM_REG_SIZE_U64: /* Any unused index bits means it's not valid. */ if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_COPROC_MASK | KVM_REG_ARM_CRM_MASK | KVM_REG_ARM_OPC1_MASK)) return false; params->is_64bit = true; /* CRm to CRn: see cp15_to_index for details */ params->CRn = ((id & KVM_REG_ARM_CRM_MASK) >> KVM_REG_ARM_CRM_SHIFT); params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK) >> KVM_REG_ARM_OPC1_SHIFT); params->Op2 = 0; params->CRm = 0; return true; default: return false; } } /* Decode an index value, and find the cp15 coproc_reg entry. */ static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu, u64 id) { size_t num; const struct coproc_reg *table, *r; struct coproc_params params; /* We only do cp15 for now. */ if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15) return NULL; if (!index_to_params(id, ¶ms)) return NULL; table = get_target_table(vcpu->arch.target, &num); r = find_reg(¶ms, table, num); if (!r) r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); /* Not saved in the cp15 array? */ if (r && !r->reg) r = NULL; return r; } /* * These are the invariant cp15 registers: we let the guest see the host * versions of these, so they're part of the guest state. * * A future CPU may provide a mechanism to present different values to * the guest, or a future kvm may trap them. */ /* Unfortunately, there's no register-argument for mrc, so generate. */ #define FUNCTION_FOR32(crn, crm, op1, op2, name) \ static void get_##name(struct kvm_vcpu *v, \ const struct coproc_reg *r) \ { \ u32 val; \ \ asm volatile("mrc p15, " __stringify(op1) \ ", %0, c" __stringify(crn) \ ", c" __stringify(crm) \ ", " __stringify(op2) "\n" : "=r" (val)); \ ((struct coproc_reg *)r)->val = val; \ } FUNCTION_FOR32(0, 0, 0, 0, MIDR) FUNCTION_FOR32(0, 0, 0, 1, CTR) FUNCTION_FOR32(0, 0, 0, 2, TCMTR) FUNCTION_FOR32(0, 0, 0, 3, TLBTR) FUNCTION_FOR32(0, 0, 0, 6, REVIDR) FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0) FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1) FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0) FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0) FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0) FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1) FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2) FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3) FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0) FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1) FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2) FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3) FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4) FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5) FUNCTION_FOR32(0, 0, 1, 1, CLIDR) FUNCTION_FOR32(0, 0, 1, 7, AIDR) /* ->val is filled in by kvm_invariant_coproc_table_init() */ static struct coproc_reg invariant_cp15[] = { { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR }, { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR }, { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR }, { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR }, { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR }, { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 }, { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 }, { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 }, { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 }, { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 }, { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 }, { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 }, { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 }, { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 }, { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 }, { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 }, { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 }, { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 }, { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 }, { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR }, { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR }, }; /* * Reads a register value from a userspace address to a kernel * variable. Make sure that register size matches sizeof(*__val). */ static int reg_from_user(void *val, const void __user *uaddr, u64 id) { if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) return -EFAULT; return 0; } /* * Writes a register value to a userspace address from a kernel variable. * Make sure that register size matches sizeof(*__val). */ static int reg_to_user(void __user *uaddr, const void *val, u64 id) { if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) return -EFAULT; return 0; } static int get_invariant_cp15(u64 id, void __user *uaddr) { struct coproc_params params; const struct coproc_reg *r; int ret; if (!index_to_params(id, ¶ms)) return -ENOENT; r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15)); if (!r) return -ENOENT; ret = -ENOENT; if (KVM_REG_SIZE(id) == 4) { u32 val = r->val; ret = reg_to_user(uaddr, &val, id); } else if (KVM_REG_SIZE(id) == 8) { ret = reg_to_user(uaddr, &r->val, id); } return ret; } static int set_invariant_cp15(u64 id, void __user *uaddr) { struct coproc_params params; const struct coproc_reg *r; int err; u64 val; if (!index_to_params(id, ¶ms)) return -ENOENT; r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15)); if (!r) return -ENOENT; err = -ENOENT; if (KVM_REG_SIZE(id) == 4) { u32 val32; err = reg_from_user(&val32, uaddr, id); if (!err) val = val32; } else if (KVM_REG_SIZE(id) == 8) { err = reg_from_user(&val, uaddr, id); } if (err) return err; /* This is what we mean by invariant: you can't change it. */ if (r->val != val) return -EINVAL; return 0; } static bool is_valid_cache(u32 val) { u32 level, ctype; if (val >= CSSELR_MAX) return false; /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ level = (val >> 1); ctype = (cache_levels >> (level * 3)) & 7; switch (ctype) { case 0: /* No cache */ return false; case 1: /* Instruction cache only */ return (val & 1); case 2: /* Data cache only */ case 4: /* Unified cache */ return !(val & 1); case 3: /* Separate instruction and data caches */ return true; default: /* Reserved: we can't know instruction or data. */ return false; } } /* Which cache CCSIDR represents depends on CSSELR value. */ static u32 get_ccsidr(u32 csselr) { u32 ccsidr; /* Make sure noone else changes CSSELR during this! */ local_irq_disable(); /* Put value into CSSELR */ asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr)); isb(); /* Read result out of CCSIDR */ asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr)); local_irq_enable(); return ccsidr; } static int demux_c15_get(u64 id, void __user *uaddr) { u32 val; u32 __user *uval = uaddr; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { case KVM_REG_ARM_DEMUX_ID_CCSIDR: if (KVM_REG_SIZE(id) != 4) return -ENOENT; val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) >> KVM_REG_ARM_DEMUX_VAL_SHIFT; if (!is_valid_cache(val)) return -ENOENT; return put_user(get_ccsidr(val), uval); default: return -ENOENT; } } static int demux_c15_set(u64 id, void __user *uaddr) { u32 val, newval; u32 __user *uval = uaddr; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { case KVM_REG_ARM_DEMUX_ID_CCSIDR: if (KVM_REG_SIZE(id) != 4) return -ENOENT; val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) >> KVM_REG_ARM_DEMUX_VAL_SHIFT; if (!is_valid_cache(val)) return -ENOENT; if (get_user(newval, uval)) return -EFAULT; /* This is also invariant: you can't change it. */ if (newval != get_ccsidr(val)) return -EINVAL; return 0; default: return -ENOENT; } } #ifdef CONFIG_VFPv3 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC, KVM_REG_ARM_VFP_FPSCR, KVM_REG_ARM_VFP_FPINST, KVM_REG_ARM_VFP_FPINST2, KVM_REG_ARM_VFP_MVFR0, KVM_REG_ARM_VFP_MVFR1, KVM_REG_ARM_VFP_FPSID }; static unsigned int num_fp_regs(void) { if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2) return 32; else return 16; } static unsigned int num_vfp_regs(void) { /* Normal FP regs + control regs. */ return num_fp_regs() + ARRAY_SIZE(vfp_sysregs); } static int copy_vfp_regids(u64 __user *uindices) { unsigned int i; const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP; const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; for (i = 0; i < num_fp_regs(); i++) { if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i, uindices)) return -EFAULT; uindices++; } for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) { if (put_user(u32reg | vfp_sysregs[i], uindices)) return -EFAULT; uindices++; } return num_vfp_regs(); } static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) { u32 vfpid = (id & KVM_REG_ARM_VFP_MASK); u32 val; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; if (vfpid < num_fp_regs()) { if (KVM_REG_SIZE(id) != 8) return -ENOENT; return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid], id); } /* FP control registers are all 32 bit. */ if (KVM_REG_SIZE(id) != 4) return -ENOENT; switch (vfpid) { case KVM_REG_ARM_VFP_FPEXC: return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id); case KVM_REG_ARM_VFP_FPSCR: return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id); case KVM_REG_ARM_VFP_FPINST: return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id); case KVM_REG_ARM_VFP_FPINST2: return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id); case KVM_REG_ARM_VFP_MVFR0: val = fmrx(MVFR0); return reg_to_user(uaddr, &val, id); case KVM_REG_ARM_VFP_MVFR1: val = fmrx(MVFR1); return reg_to_user(uaddr, &val, id); case KVM_REG_ARM_VFP_FPSID: val = fmrx(FPSID); return reg_to_user(uaddr, &val, id); default: return -ENOENT; } } static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr) { u32 vfpid = (id & KVM_REG_ARM_VFP_MASK); u32 val; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; if (vfpid < num_fp_regs()) { if (KVM_REG_SIZE(id) != 8) return -ENOENT; return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid], uaddr, id); } /* FP control registers are all 32 bit. */ if (KVM_REG_SIZE(id) != 4) return -ENOENT; switch (vfpid) { case KVM_REG_ARM_VFP_FPEXC: return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id); case KVM_REG_ARM_VFP_FPSCR: return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id); case KVM_REG_ARM_VFP_FPINST: return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id); case KVM_REG_ARM_VFP_FPINST2: return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id); /* These are invariant. */ case KVM_REG_ARM_VFP_MVFR0: if (reg_from_user(&val, uaddr, id)) return -EFAULT; if (val != fmrx(MVFR0)) return -EINVAL; return 0; case KVM_REG_ARM_VFP_MVFR1: if (reg_from_user(&val, uaddr, id)) return -EFAULT; if (val != fmrx(MVFR1)) return -EINVAL; return 0; case KVM_REG_ARM_VFP_FPSID: if (reg_from_user(&val, uaddr, id)) return -EFAULT; if (val != fmrx(FPSID)) return -EINVAL; return 0; default: return -ENOENT; } } #else /* !CONFIG_VFPv3 */ static unsigned int num_vfp_regs(void) { return 0; } static int copy_vfp_regids(u64 __user *uindices) { return 0; } static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) { return -ENOENT; } static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr) { return -ENOENT; } #endif /* !CONFIG_VFPv3 */ int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { const struct coproc_reg *r; void __user *uaddr = (void __user *)(long)reg->addr; int ret; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_get(reg->id, uaddr); if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP) return vfp_get_reg(vcpu, reg->id, uaddr); r = index_to_coproc_reg(vcpu, reg->id); if (!r) return get_invariant_cp15(reg->id, uaddr); ret = -ENOENT; if (KVM_REG_SIZE(reg->id) == 8) { u64 val; val = vcpu_cp15_reg64_get(vcpu, r); ret = reg_to_user(uaddr, &val, reg->id); } else if (KVM_REG_SIZE(reg->id) == 4) { ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id); } return ret; } int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { const struct coproc_reg *r; void __user *uaddr = (void __user *)(long)reg->addr; int ret; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_set(reg->id, uaddr); if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP) return vfp_set_reg(vcpu, reg->id, uaddr); r = index_to_coproc_reg(vcpu, reg->id); if (!r) return set_invariant_cp15(reg->id, uaddr); ret = -ENOENT; if (KVM_REG_SIZE(reg->id) == 8) { u64 val; ret = reg_from_user(&val, uaddr, reg->id); if (!ret) vcpu_cp15_reg64_set(vcpu, r, val); } else if (KVM_REG_SIZE(reg->id) == 4) { ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id); } return ret; } static unsigned int num_demux_regs(void) { unsigned int i, count = 0; for (i = 0; i < CSSELR_MAX; i++) if (is_valid_cache(i)) count++; return count; } static int write_demux_regids(u64 __user *uindices) { u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; unsigned int i; val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; for (i = 0; i < CSSELR_MAX; i++) { if (!is_valid_cache(i)) continue; if (put_user(val | i, uindices)) return -EFAULT; uindices++; } return 0; } static u64 cp15_to_index(const struct coproc_reg *reg) { u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT); if (reg->is_64) { val |= KVM_REG_SIZE_U64; val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT); /* * CRn always denotes the primary coproc. reg. nr. for the * in-kernel representation, but the user space API uses the * CRm for the encoding, because it is modelled after the * MRRC/MCRR instructions: see the ARM ARM rev. c page * B3-1445 */ val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT); } else { val |= KVM_REG_SIZE_U32; val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT); val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT); val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT); val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT); } return val; } static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind) { if (!*uind) return true; if (put_user(cp15_to_index(reg), *uind)) return false; (*uind)++; return true; } /* Assumed ordered tables, see kvm_coproc_table_init. */ static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind) { const struct coproc_reg *i1, *i2, *end1, *end2; unsigned int total = 0; size_t num; /* We check for duplicates here, to allow arch-specific overrides. */ i1 = get_target_table(vcpu->arch.target, &num); end1 = i1 + num; i2 = cp15_regs; end2 = cp15_regs + ARRAY_SIZE(cp15_regs); BUG_ON(i1 == end1 || i2 == end2); /* Walk carefully, as both tables may refer to the same register. */ while (i1 || i2) { int cmp = cmp_reg(i1, i2); /* target-specific overrides generic entry. */ if (cmp <= 0) { /* Ignore registers we trap but don't save. */ if (i1->reg) { if (!copy_reg_to_user(i1, &uind)) return -EFAULT; total++; } } else { /* Ignore registers we trap but don't save. */ if (i2->reg) { if (!copy_reg_to_user(i2, &uind)) return -EFAULT; total++; } } if (cmp <= 0 && ++i1 == end1) i1 = NULL; if (cmp >= 0 && ++i2 == end2) i2 = NULL; } return total; } unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu) { return ARRAY_SIZE(invariant_cp15) + num_demux_regs() + num_vfp_regs() + walk_cp15(vcpu, (u64 __user *)NULL); } int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { unsigned int i; int err; /* Then give them all the invariant registers' indices. */ for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) { if (put_user(cp15_to_index(&invariant_cp15[i]), uindices)) return -EFAULT; uindices++; } err = walk_cp15(vcpu, uindices); if (err < 0) return err; uindices += err; err = copy_vfp_regids(uindices); if (err < 0) return err; uindices += err; return write_demux_regids(uindices); } void kvm_coproc_table_init(void) { unsigned int i; /* Make sure tables are unique and in order. */ for (i = 1; i < ARRAY_SIZE(cp15_regs); i++) BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0); /* We abuse the reset function to overwrite the table itself. */ for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) invariant_cp15[i].reset(NULL, &invariant_cp15[i]); /* * CLIDR format is awkward, so clean it up. See ARM B4.1.20: * * If software reads the Cache Type fields from Ctype1 * upwards, once it has seen a value of 0b000, no caches * exist at further-out levels of the hierarchy. So, for * example, if Ctype3 is the first Cache Type field with a * value of 0b000, the values of Ctype4 to Ctype7 must be * ignored. */ asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels)); for (i = 0; i < 7; i++) if (((cache_levels >> (i*3)) & 7) == 0) break; /* Clear all higher bits. */ cache_levels &= (1 << (i*3))-1; } /** * kvm_reset_coprocs - sets cp15 registers to reset value * @vcpu: The VCPU pointer * * This function finds the right table above and sets the registers on the * virtual CPU struct to their architecturally defined reset values. */ void kvm_reset_coprocs(struct kvm_vcpu *vcpu) { size_t num; const struct coproc_reg *table; /* Catch someone adding a register without putting in reset entry. */ memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15)); /* Generic chip reset first (so target could override). */ reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs)); table = get_target_table(vcpu->arch.target, &num); reset_coproc_regs(vcpu, table, num); for (num = 1; num < NR_CP15_REGS; num++) if (vcpu_cp15(vcpu, num) == 0x42424242) panic("Didn't reset vcpu_cp15(vcpu, %zi)", num); }