/* * Performance events x86 architecture header * * Copyright (C) 2008 Thomas Gleixner * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar * Copyright (C) 2009 Jaswinder Singh Rajput * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra * Copyright (C) 2009 Intel Corporation, * Copyright (C) 2009 Google, Inc., Stephane Eranian * * For licencing details see kernel-base/COPYING */ #include #include /* To enable MSR tracing please use the generic trace points. */ /* * | NHM/WSM | SNB | * register ------------------------------- * | HT | no HT | HT | no HT | *----------------------------------------- * offcore | core | core | cpu | core | * lbr_sel | core | core | cpu | core | * ld_lat | cpu | core | cpu | core | *----------------------------------------- * * Given that there is a small number of shared regs, * we can pre-allocate their slot in the per-cpu * per-core reg tables. */ enum extra_reg_type { EXTRA_REG_NONE = -1, /* not used */ EXTRA_REG_RSP_0 = 0, /* offcore_response_0 */ EXTRA_REG_RSP_1 = 1, /* offcore_response_1 */ EXTRA_REG_LBR = 2, /* lbr_select */ EXTRA_REG_LDLAT = 3, /* ld_lat_threshold */ EXTRA_REG_FE = 4, /* fe_* */ EXTRA_REG_MAX /* number of entries needed */ }; struct event_constraint { union { unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; u64 idxmsk64; }; u64 code; u64 cmask; int weight; int overlap; int flags; unsigned int size; }; static inline bool constraint_match(struct event_constraint *c, u64 ecode) { return ((ecode & c->cmask) - c->code) <= (u64)c->size; } /* * struct hw_perf_event.flags flags */ #define PERF_X86_EVENT_PEBS_LDLAT 0x0001 /* ld+ldlat data address sampling */ #define PERF_X86_EVENT_PEBS_ST 0x0002 /* st data address sampling */ #define PERF_X86_EVENT_PEBS_ST_HSW 0x0004 /* haswell style datala, store */ #define PERF_X86_EVENT_PEBS_LD_HSW 0x0008 /* haswell style datala, load */ #define PERF_X86_EVENT_PEBS_NA_HSW 0x0010 /* haswell style datala, unknown */ #define PERF_X86_EVENT_EXCL 0x0020 /* HT exclusivity on counter */ #define PERF_X86_EVENT_DYNAMIC 0x0040 /* dynamic alloc'd constraint */ #define PERF_X86_EVENT_RDPMC_ALLOWED 0x0080 /* grant rdpmc permission */ #define PERF_X86_EVENT_EXCL_ACCT 0x0100 /* accounted EXCL event */ #define PERF_X86_EVENT_AUTO_RELOAD 0x0200 /* use PEBS auto-reload */ #define PERF_X86_EVENT_LARGE_PEBS 0x0400 /* use large PEBS */ #define PERF_X86_EVENT_PEBS_VIA_PT 0x0800 /* use PT buffer for PEBS */ #define PERF_X86_EVENT_PAIR 0x1000 /* Large Increment per Cycle */ #define PERF_X86_EVENT_LBR_SELECT 0x2000 /* Save/Restore MSR_LBR_SELECT */ #define PERF_X86_EVENT_TOPDOWN 0x4000 /* Count Topdown slots/metrics events */ #define PERF_X86_EVENT_PEBS_STLAT 0x8000 /* st+stlat data address sampling */ static inline bool is_topdown_count(struct perf_event *event) { return event->hw.flags & PERF_X86_EVENT_TOPDOWN; } static inline bool is_metric_event(struct perf_event *event) { u64 config = event->attr.config; return ((config & ARCH_PERFMON_EVENTSEL_EVENT) == 0) && ((config & INTEL_ARCH_EVENT_MASK) >= INTEL_TD_METRIC_RETIRING) && ((config & INTEL_ARCH_EVENT_MASK) <= INTEL_TD_METRIC_MAX); } static inline bool is_slots_event(struct perf_event *event) { return (event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_TD_SLOTS; } static inline bool is_topdown_event(struct perf_event *event) { return is_metric_event(event) || is_slots_event(event); } struct amd_nb { int nb_id; /* NorthBridge id */ int refcnt; /* reference count */ struct perf_event *owners[X86_PMC_IDX_MAX]; struct event_constraint event_constraints[X86_PMC_IDX_MAX]; }; #define PEBS_COUNTER_MASK ((1ULL << MAX_PEBS_EVENTS) - 1) #define PEBS_PMI_AFTER_EACH_RECORD BIT_ULL(60) #define PEBS_OUTPUT_OFFSET 61 #define PEBS_OUTPUT_MASK (3ull << PEBS_OUTPUT_OFFSET) #define PEBS_OUTPUT_PT (1ull << PEBS_OUTPUT_OFFSET) #define PEBS_VIA_PT_MASK (PEBS_OUTPUT_PT | PEBS_PMI_AFTER_EACH_RECORD) /* * Flags PEBS can handle without an PMI. * * TID can only be handled by flushing at context switch. * REGS_USER can be handled for events limited to ring 3. * */ #define LARGE_PEBS_FLAGS \ (PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR | \ PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | \ PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER | \ PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR | \ PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER | \ PERF_SAMPLE_PERIOD | PERF_SAMPLE_CODE_PAGE_SIZE) #define PEBS_GP_REGS \ ((1ULL << PERF_REG_X86_AX) | \ (1ULL << PERF_REG_X86_BX) | \ (1ULL << PERF_REG_X86_CX) | \ (1ULL << PERF_REG_X86_DX) | \ (1ULL << PERF_REG_X86_DI) | \ (1ULL << PERF_REG_X86_SI) | \ (1ULL << PERF_REG_X86_SP) | \ (1ULL << PERF_REG_X86_BP) | \ (1ULL << PERF_REG_X86_IP) | \ (1ULL << PERF_REG_X86_FLAGS) | \ (1ULL << PERF_REG_X86_R8) | \ (1ULL << PERF_REG_X86_R9) | \ (1ULL << PERF_REG_X86_R10) | \ (1ULL << PERF_REG_X86_R11) | \ (1ULL << PERF_REG_X86_R12) | \ (1ULL << PERF_REG_X86_R13) | \ (1ULL << PERF_REG_X86_R14) | \ (1ULL << PERF_REG_X86_R15)) /* * Per register state. */ struct er_account { raw_spinlock_t lock; /* per-core: protect structure */ u64 config; /* extra MSR config */ u64 reg; /* extra MSR number */ atomic_t ref; /* reference count */ }; /* * Per core/cpu state * * Used to coordinate shared registers between HT threads or * among events on a single PMU. */ struct intel_shared_regs { struct er_account regs[EXTRA_REG_MAX]; int refcnt; /* per-core: #HT threads */ unsigned core_id; /* per-core: core id */ }; enum intel_excl_state_type { INTEL_EXCL_UNUSED = 0, /* counter is unused */ INTEL_EXCL_SHARED = 1, /* counter can be used by both threads */ INTEL_EXCL_EXCLUSIVE = 2, /* counter can be used by one thread only */ }; struct intel_excl_states { enum intel_excl_state_type state[X86_PMC_IDX_MAX]; bool sched_started; /* true if scheduling has started */ }; struct intel_excl_cntrs { raw_spinlock_t lock; struct intel_excl_states states[2]; union { u16 has_exclusive[2]; u32 exclusive_present; }; int refcnt; /* per-core: #HT threads */ unsigned core_id; /* per-core: core id */ }; struct x86_perf_task_context; #define MAX_LBR_ENTRIES 32 enum { LBR_FORMAT_32 = 0x00, LBR_FORMAT_LIP = 0x01, LBR_FORMAT_EIP = 0x02, LBR_FORMAT_EIP_FLAGS = 0x03, LBR_FORMAT_EIP_FLAGS2 = 0x04, LBR_FORMAT_INFO = 0x05, LBR_FORMAT_TIME = 0x06, LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME, }; enum { X86_PERF_KFREE_SHARED = 0, X86_PERF_KFREE_EXCL = 1, X86_PERF_KFREE_MAX }; struct cpu_hw_events { /* * Generic x86 PMC bits */ struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */ unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; int enabled; int n_events; /* the # of events in the below arrays */ int n_added; /* the # last events in the below arrays; they've never been enabled yet */ int n_txn; /* the # last events in the below arrays; added in the current transaction */ int n_txn_pair; int n_txn_metric; int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */ u64 tags[X86_PMC_IDX_MAX]; struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */ struct event_constraint *event_constraint[X86_PMC_IDX_MAX]; int n_excl; /* the number of exclusive events */ unsigned int txn_flags; int is_fake; /* * Intel DebugStore bits */ struct debug_store *ds; void *ds_pebs_vaddr; void *ds_bts_vaddr; u64 pebs_enabled; int n_pebs; int n_large_pebs; int n_pebs_via_pt; int pebs_output; /* Current super set of events hardware configuration */ u64 pebs_data_cfg; u64 active_pebs_data_cfg; int pebs_record_size; /* * Intel LBR bits */ int lbr_users; int lbr_pebs_users; struct perf_branch_stack lbr_stack; struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES]; union { struct er_account *lbr_sel; struct er_account *lbr_ctl; }; u64 br_sel; void *last_task_ctx; int last_log_id; int lbr_select; void *lbr_xsave; /* * Intel host/guest exclude bits */ u64 intel_ctrl_guest_mask; u64 intel_ctrl_host_mask; struct perf_guest_switch_msr guest_switch_msrs[X86_PMC_IDX_MAX]; /* * Intel checkpoint mask */ u64 intel_cp_status; /* * manage shared (per-core, per-cpu) registers * used on Intel NHM/WSM/SNB */ struct intel_shared_regs *shared_regs; /* * manage exclusive counter access between hyperthread */ struct event_constraint *constraint_list; /* in enable order */ struct intel_excl_cntrs *excl_cntrs; int excl_thread_id; /* 0 or 1 */ /* * SKL TSX_FORCE_ABORT shadow */ u64 tfa_shadow; /* * Perf Metrics */ /* number of accepted metrics events */ int n_metric; /* * AMD specific bits */ struct amd_nb *amd_nb; /* Inverted mask of bits to clear in the perf_ctr ctrl registers */ u64 perf_ctr_virt_mask; int n_pair; /* Large increment events */ void *kfree_on_online[X86_PERF_KFREE_MAX]; }; #define __EVENT_CONSTRAINT_RANGE(c, e, n, m, w, o, f) { \ { .idxmsk64 = (n) }, \ .code = (c), \ .size = (e) - (c), \ .cmask = (m), \ .weight = (w), \ .overlap = (o), \ .flags = f, \ } #define __EVENT_CONSTRAINT(c, n, m, w, o, f) \ __EVENT_CONSTRAINT_RANGE(c, c, n, m, w, o, f) #define EVENT_CONSTRAINT(c, n, m) \ __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 0, 0) /* * The constraint_match() function only works for 'simple' event codes * and not for extended (AMD64_EVENTSEL_EVENT) events codes. */ #define EVENT_CONSTRAINT_RANGE(c, e, n, m) \ __EVENT_CONSTRAINT_RANGE(c, e, n, m, HWEIGHT(n), 0, 0) #define INTEL_EXCLEVT_CONSTRAINT(c, n) \ __EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT, HWEIGHT(n),\ 0, PERF_X86_EVENT_EXCL) /* * The overlap flag marks event constraints with overlapping counter * masks. This is the case if the counter mask of such an event is not * a subset of any other counter mask of a constraint with an equal or * higher weight, e.g.: * * c_overlaps = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0); * c_another1 = EVENT_CONSTRAINT(0, 0x07, 0); * c_another2 = EVENT_CONSTRAINT(0, 0x38, 0); * * The event scheduler may not select the correct counter in the first * cycle because it needs to know which subsequent events will be * scheduled. It may fail to schedule the events then. So we set the * overlap flag for such constraints to give the scheduler a hint which * events to select for counter rescheduling. * * Care must be taken as the rescheduling algorithm is O(n!) which * will increase scheduling cycles for an over-committed system * dramatically. The number of such EVENT_CONSTRAINT_OVERLAP() macros * and its counter masks must be kept at a minimum. */ #define EVENT_CONSTRAINT_OVERLAP(c, n, m) \ __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 1, 0) /* * Constraint on the Event code. */ #define INTEL_EVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT) /* * Constraint on a range of Event codes */ #define INTEL_EVENT_CONSTRAINT_RANGE(c, e, n) \ EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT) /* * Constraint on the Event code + UMask + fixed-mask * * filter mask to validate fixed counter events. * the following filters disqualify for fixed counters: * - inv * - edge * - cnt-mask * - in_tx * - in_tx_checkpointed * The other filters are supported by fixed counters. * The any-thread option is supported starting with v3. */ #define FIXED_EVENT_FLAGS (X86_RAW_EVENT_MASK|HSW_IN_TX|HSW_IN_TX_CHECKPOINTED) #define FIXED_EVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, (1ULL << (32+n)), FIXED_EVENT_FLAGS) /* * The special metric counters do not actually exist. They are calculated from * the combination of the FxCtr3 + MSR_PERF_METRICS. * * The special metric counters are mapped to a dummy offset for the scheduler. * The sharing between multiple users of the same metric without multiplexing * is not allowed, even though the hardware supports that in principle. */ #define METRIC_EVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, (1ULL << (INTEL_PMC_IDX_METRIC_BASE + n)), \ INTEL_ARCH_EVENT_MASK) /* * Constraint on the Event code + UMask */ #define INTEL_UEVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK) /* Constraint on specific umask bit only + event */ #define INTEL_UBIT_EVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|(c)) /* Like UEVENT_CONSTRAINT, but match flags too */ #define INTEL_FLAGS_UEVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS) #define INTEL_EXCLUEVT_CONSTRAINT(c, n) \ __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK, \ HWEIGHT(n), 0, PERF_X86_EVENT_EXCL) #define INTEL_PLD_CONSTRAINT(c, n) \ __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LDLAT) #define INTEL_PSD_CONSTRAINT(c, n) \ __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_STLAT) #define INTEL_PST_CONSTRAINT(c, n) \ __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST) /* Event constraint, but match on all event flags too. */ #define INTEL_FLAGS_EVENT_CONSTRAINT(c, n) \ EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS) #define INTEL_FLAGS_EVENT_CONSTRAINT_RANGE(c, e, n) \ EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS) /* Check only flags, but allow all event/umask */ #define INTEL_ALL_EVENT_CONSTRAINT(code, n) \ EVENT_CONSTRAINT(code, n, X86_ALL_EVENT_FLAGS) /* Check flags and event code, and set the HSW store flag */ #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_ST(code, n) \ __EVENT_CONSTRAINT(code, n, \ ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW) /* Check flags and event code, and set the HSW load flag */ #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(code, n) \ __EVENT_CONSTRAINT(code, n, \ ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(code, end, n) \ __EVENT_CONSTRAINT_RANGE(code, end, n, \ ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(code, n) \ __EVENT_CONSTRAINT(code, n, \ ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, \ PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL) /* Check flags and event code/umask, and set the HSW store flag */ #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(code, n) \ __EVENT_CONSTRAINT(code, n, \ INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW) #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(code, n) \ __EVENT_CONSTRAINT(code, n, \ INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, \ PERF_X86_EVENT_PEBS_ST_HSW|PERF_X86_EVENT_EXCL) /* Check flags and event code/umask, and set the HSW load flag */ #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(code, n) \ __EVENT_CONSTRAINT(code, n, \ INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(code, n) \ __EVENT_CONSTRAINT(code, n, \ INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, \ PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL) /* Check flags and event code/umask, and set the HSW N/A flag */ #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(code, n) \ __EVENT_CONSTRAINT(code, n, \ INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_NA_HSW) /* * We define the end marker as having a weight of -1 * to enable blacklisting of events using a counter bitmask * of zero and thus a weight of zero. * The end marker has a weight that cannot possibly be * obtained from counting the bits in the bitmask. */ #define EVENT_CONSTRAINT_END { .weight = -1 } /* * Check for end marker with weight == -1 */ #define for_each_event_constraint(e, c) \ for ((e) = (c); (e)->weight != -1; (e)++) /* * Extra registers for specific events. * * Some events need large masks and require external MSRs. * Those extra MSRs end up being shared for all events on * a PMU and sometimes between PMU of sibling HT threads. * In either case, the kernel needs to handle conflicting * accesses to those extra, shared, regs. The data structure * to manage those registers is stored in cpu_hw_event. */ struct extra_reg { unsigned int event; unsigned int msr; u64 config_mask; u64 valid_mask; int idx; /* per_xxx->regs[] reg index */ bool extra_msr_access; }; #define EVENT_EXTRA_REG(e, ms, m, vm, i) { \ .event = (e), \ .msr = (ms), \ .config_mask = (m), \ .valid_mask = (vm), \ .idx = EXTRA_REG_##i, \ .extra_msr_access = true, \ } #define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx) \ EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx) #define INTEL_UEVENT_EXTRA_REG(event, msr, vm, idx) \ EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT | \ ARCH_PERFMON_EVENTSEL_UMASK, vm, idx) #define INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(c) \ INTEL_UEVENT_EXTRA_REG(c, \ MSR_PEBS_LD_LAT_THRESHOLD, \ 0xffff, \ LDLAT) #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0) union perf_capabilities { struct { u64 lbr_format:6; u64 pebs_trap:1; u64 pebs_arch_reg:1; u64 pebs_format:4; u64 smm_freeze:1; /* * PMU supports separate counter range for writing * values > 32bit. */ u64 full_width_write:1; u64 pebs_baseline:1; u64 perf_metrics:1; u64 pebs_output_pt_available:1; u64 anythread_deprecated:1; }; u64 capabilities; }; struct x86_pmu_quirk { struct x86_pmu_quirk *next; void (*func)(void); }; union x86_pmu_config { struct { u64 event:8, umask:8, usr:1, os:1, edge:1, pc:1, interrupt:1, __reserved1:1, en:1, inv:1, cmask:8, event2:4, __reserved2:4, go:1, ho:1; } bits; u64 value; }; #define X86_CONFIG(args...) ((union x86_pmu_config){.bits = {args}}).value enum { x86_lbr_exclusive_lbr, x86_lbr_exclusive_bts, x86_lbr_exclusive_pt, x86_lbr_exclusive_max, }; /* * struct x86_pmu - generic x86 pmu */ struct x86_pmu { /* * Generic x86 PMC bits */ const char *name; int version; int (*handle_irq)(struct pt_regs *); void (*disable_all)(void); void (*enable_all)(int added); void (*enable)(struct perf_event *); void (*disable)(struct perf_event *); void (*add)(struct perf_event *); void (*del)(struct perf_event *); void (*read)(struct perf_event *event); int (*hw_config)(struct perf_event *event); int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign); unsigned eventsel; unsigned perfctr; int (*addr_offset)(int index, bool eventsel); int (*rdpmc_index)(int index); u64 (*event_map)(int); int max_events; int num_counters; int num_counters_fixed; int cntval_bits; u64 cntval_mask; union { unsigned long events_maskl; unsigned long events_mask[BITS_TO_LONGS(ARCH_PERFMON_EVENTS_COUNT)]; }; int events_mask_len; int apic; u64 max_period; struct event_constraint * (*get_event_constraints)(struct cpu_hw_events *cpuc, int idx, struct perf_event *event); void (*put_event_constraints)(struct cpu_hw_events *cpuc, struct perf_event *event); void (*start_scheduling)(struct cpu_hw_events *cpuc); void (*commit_scheduling)(struct cpu_hw_events *cpuc, int idx, int cntr); void (*stop_scheduling)(struct cpu_hw_events *cpuc); struct event_constraint *event_constraints; struct x86_pmu_quirk *quirks; int perfctr_second_write; u64 (*limit_period)(struct perf_event *event, u64 l); /* PMI handler bits */ unsigned int late_ack :1, enabled_ack :1; /* * sysfs attrs */ int attr_rdpmc_broken; int attr_rdpmc; struct attribute **format_attrs; ssize_t (*events_sysfs_show)(char *page, u64 config); const struct attribute_group **attr_update; unsigned long attr_freeze_on_smi; /* * CPU Hotplug hooks */ int (*cpu_prepare)(int cpu); void (*cpu_starting)(int cpu); void (*cpu_dying)(int cpu); void (*cpu_dead)(int cpu); void (*check_microcode)(void); void (*sched_task)(struct perf_event_context *ctx, bool sched_in); /* * Intel Arch Perfmon v2+ */ u64 intel_ctrl; union perf_capabilities intel_cap; /* * Intel DebugStore bits */ unsigned int bts :1, bts_active :1, pebs :1, pebs_active :1, pebs_broken :1, pebs_prec_dist :1, pebs_no_tlb :1, pebs_no_isolation :1, pebs_block :1; int pebs_record_size; int pebs_buffer_size; int max_pebs_events; void (*drain_pebs)(struct pt_regs *regs, struct perf_sample_data *data); struct event_constraint *pebs_constraints; void (*pebs_aliases)(struct perf_event *event); unsigned long large_pebs_flags; u64 rtm_abort_event; /* * Intel LBR */ unsigned int lbr_tos, lbr_from, lbr_to, lbr_info, lbr_nr; /* LBR base regs and size */ union { u64 lbr_sel_mask; /* LBR_SELECT valid bits */ u64 lbr_ctl_mask; /* LBR_CTL valid bits */ }; union { const int *lbr_sel_map; /* lbr_select mappings */ int *lbr_ctl_map; /* LBR_CTL mappings */ }; bool lbr_double_abort; /* duplicated lbr aborts */ bool lbr_pt_coexist; /* (LBR|BTS) may coexist with PT */ /* * Intel Architectural LBR CPUID Enumeration */ unsigned int lbr_depth_mask:8; unsigned int lbr_deep_c_reset:1; unsigned int lbr_lip:1; unsigned int lbr_cpl:1; unsigned int lbr_filter:1; unsigned int lbr_call_stack:1; unsigned int lbr_mispred:1; unsigned int lbr_timed_lbr:1; unsigned int lbr_br_type:1; void (*lbr_reset)(void); void (*lbr_read)(struct cpu_hw_events *cpuc); void (*lbr_save)(void *ctx); void (*lbr_restore)(void *ctx); /* * Intel PT/LBR/BTS are exclusive */ atomic_t lbr_exclusive[x86_lbr_exclusive_max]; /* * Intel perf metrics */ int num_topdown_events; u64 (*update_topdown_event)(struct perf_event *event); int (*set_topdown_event_period)(struct perf_event *event); /* * perf task context (i.e. struct perf_event_context::task_ctx_data) * switch helper to bridge calls from perf/core to perf/x86. * See struct pmu::swap_task_ctx() usage for examples; */ void (*swap_task_ctx)(struct perf_event_context *prev, struct perf_event_context *next); /* * AMD bits */ unsigned int amd_nb_constraints : 1; u64 perf_ctr_pair_en; /* * Extra registers for events */ struct extra_reg *extra_regs; unsigned int flags; /* * Intel host/guest support (KVM) */ struct perf_guest_switch_msr *(*guest_get_msrs)(int *nr); /* * Check period value for PERF_EVENT_IOC_PERIOD ioctl. */ int (*check_period) (struct perf_event *event, u64 period); int (*aux_output_match) (struct perf_event *event); }; struct x86_perf_task_context_opt { int lbr_callstack_users; int lbr_stack_state; int log_id; }; struct x86_perf_task_context { u64 lbr_sel; int tos; int valid_lbrs; struct x86_perf_task_context_opt opt; struct lbr_entry lbr[MAX_LBR_ENTRIES]; }; struct x86_perf_task_context_arch_lbr { struct x86_perf_task_context_opt opt; struct lbr_entry entries[]; }; /* * Add padding to guarantee the 64-byte alignment of the state buffer. * * The structure is dynamically allocated. The size of the LBR state may vary * based on the number of LBR registers. * * Do not put anything after the LBR state. */ struct x86_perf_task_context_arch_lbr_xsave { struct x86_perf_task_context_opt opt; union { struct xregs_state xsave; struct { struct fxregs_state i387; struct xstate_header header; struct arch_lbr_state lbr; } __attribute__ ((packed, aligned (XSAVE_ALIGNMENT))); }; }; #define x86_add_quirk(func_) \ do { \ static struct x86_pmu_quirk __quirk __initdata = { \ .func = func_, \ }; \ __quirk.next = x86_pmu.quirks; \ x86_pmu.quirks = &__quirk; \ } while (0) /* * x86_pmu flags */ #define PMU_FL_NO_HT_SHARING 0x1 /* no hyper-threading resource sharing */ #define PMU_FL_HAS_RSP_1 0x2 /* has 2 equivalent offcore_rsp regs */ #define PMU_FL_EXCL_CNTRS 0x4 /* has exclusive counter requirements */ #define PMU_FL_EXCL_ENABLED 0x8 /* exclusive counter active */ #define PMU_FL_PEBS_ALL 0x10 /* all events are valid PEBS events */ #define PMU_FL_TFA 0x20 /* deal with TSX force abort */ #define PMU_FL_PAIR 0x40 /* merge counters for large incr. events */ #define PMU_FL_INSTR_LATENCY 0x80 /* Support Instruction Latency in PEBS Memory Info Record */ #define PMU_FL_MEM_LOADS_AUX 0x100 /* Require an auxiliary event for the complete memory info */ #define EVENT_VAR(_id) event_attr_##_id #define EVENT_PTR(_id) &event_attr_##_id.attr.attr #define EVENT_ATTR(_name, _id) \ static struct perf_pmu_events_attr EVENT_VAR(_id) = { \ .attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \ .id = PERF_COUNT_HW_##_id, \ .event_str = NULL, \ }; #define EVENT_ATTR_STR(_name, v, str) \ static struct perf_pmu_events_attr event_attr_##v = { \ .attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \ .id = 0, \ .event_str = str, \ }; #define EVENT_ATTR_STR_HT(_name, v, noht, ht) \ static struct perf_pmu_events_ht_attr event_attr_##v = { \ .attr = __ATTR(_name, 0444, events_ht_sysfs_show, NULL),\ .id = 0, \ .event_str_noht = noht, \ .event_str_ht = ht, \ } struct pmu *x86_get_pmu(void); extern struct x86_pmu x86_pmu __read_mostly; static __always_inline struct x86_perf_task_context_opt *task_context_opt(void *ctx) { if (static_cpu_has(X86_FEATURE_ARCH_LBR)) return &((struct x86_perf_task_context_arch_lbr *)ctx)->opt; return &((struct x86_perf_task_context *)ctx)->opt; } static inline bool x86_pmu_has_lbr_callstack(void) { return x86_pmu.lbr_sel_map && x86_pmu.lbr_sel_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] > 0; } DECLARE_PER_CPU(struct cpu_hw_events, cpu_hw_events); int x86_perf_event_set_period(struct perf_event *event); /* * Generalized hw caching related hw_event table, filled * in on a per model basis. A value of 0 means * 'not supported', -1 means 'hw_event makes no sense on * this CPU', any other value means the raw hw_event * ID. */ #define C(x) PERF_COUNT_HW_CACHE_##x extern u64 __read_mostly hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]; extern u64 __read_mostly hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]; u64 x86_perf_event_update(struct perf_event *event); static inline unsigned int x86_pmu_config_addr(int index) { return x86_pmu.eventsel + (x86_pmu.addr_offset ? x86_pmu.addr_offset(index, true) : index); } static inline unsigned int x86_pmu_event_addr(int index) { return x86_pmu.perfctr + (x86_pmu.addr_offset ? x86_pmu.addr_offset(index, false) : index); } static inline int x86_pmu_rdpmc_index(int index) { return x86_pmu.rdpmc_index ? x86_pmu.rdpmc_index(index) : index; } int x86_add_exclusive(unsigned int what); void x86_del_exclusive(unsigned int what); int x86_reserve_hardware(void); void x86_release_hardware(void); int x86_pmu_max_precise(void); void hw_perf_lbr_event_destroy(struct perf_event *event); int x86_setup_perfctr(struct perf_event *event); int x86_pmu_hw_config(struct perf_event *event); void x86_pmu_disable_all(void); static inline bool is_counter_pair(struct hw_perf_event *hwc) { return hwc->flags & PERF_X86_EVENT_PAIR; } static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, u64 enable_mask) { u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask); if (hwc->extra_reg.reg) wrmsrl(hwc->extra_reg.reg, hwc->extra_reg.config); /* * Add enabled Merge event on next counter * if large increment event being enabled on this counter */ if (is_counter_pair(hwc)) wrmsrl(x86_pmu_config_addr(hwc->idx + 1), x86_pmu.perf_ctr_pair_en); wrmsrl(hwc->config_base, (hwc->config | enable_mask) & ~disable_mask); } void x86_pmu_enable_all(int added); int perf_assign_events(struct event_constraint **constraints, int n, int wmin, int wmax, int gpmax, int *assign); int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign); void x86_pmu_stop(struct perf_event *event, int flags); static inline void x86_pmu_disable_event(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; wrmsrl(hwc->config_base, hwc->config); if (is_counter_pair(hwc)) wrmsrl(x86_pmu_config_addr(hwc->idx + 1), 0); } void x86_pmu_enable_event(struct perf_event *event); int x86_pmu_handle_irq(struct pt_regs *regs); extern struct event_constraint emptyconstraint; extern struct event_constraint unconstrained; static inline bool kernel_ip(unsigned long ip) { #ifdef CONFIG_X86_32 return ip > PAGE_OFFSET; #else return (long)ip < 0; #endif } /* * Not all PMUs provide the right context information to place the reported IP * into full context. Specifically segment registers are typically not * supplied. * * Assuming the address is a linear address (it is for IBS), we fake the CS and * vm86 mode using the known zero-based code segment and 'fix up' the registers * to reflect this. * * Intel PEBS/LBR appear to typically provide the effective address, nothing * much we can do about that but pray and treat it like a linear address. */ static inline void set_linear_ip(struct pt_regs *regs, unsigned long ip) { regs->cs = kernel_ip(ip) ? __KERNEL_CS : __USER_CS; if (regs->flags & X86_VM_MASK) regs->flags ^= (PERF_EFLAGS_VM | X86_VM_MASK); regs->ip = ip; } ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event); ssize_t intel_event_sysfs_show(char *page, u64 config); ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page); ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, char *page); #ifdef CONFIG_CPU_SUP_AMD int amd_pmu_init(void); #else /* CONFIG_CPU_SUP_AMD */ static inline int amd_pmu_init(void) { return 0; } #endif /* CONFIG_CPU_SUP_AMD */ static inline int is_pebs_pt(struct perf_event *event) { return !!(event->hw.flags & PERF_X86_EVENT_PEBS_VIA_PT); } #ifdef CONFIG_CPU_SUP_INTEL static inline bool intel_pmu_has_bts_period(struct perf_event *event, u64 period) { struct hw_perf_event *hwc = &event->hw; unsigned int hw_event, bts_event; if (event->attr.freq) return false; hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); return hw_event == bts_event && period == 1; } static inline bool intel_pmu_has_bts(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; return intel_pmu_has_bts_period(event, hwc->sample_period); } int intel_pmu_save_and_restart(struct perf_event *event); struct event_constraint * x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event); extern int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu); extern void intel_cpuc_finish(struct cpu_hw_events *cpuc); int intel_pmu_init(void); void init_debug_store_on_cpu(int cpu); void fini_debug_store_on_cpu(int cpu); void release_ds_buffers(void); void reserve_ds_buffers(void); void release_lbr_buffers(void); extern struct event_constraint bts_constraint; extern struct event_constraint vlbr_constraint; void intel_pmu_enable_bts(u64 config); void intel_pmu_disable_bts(void); int intel_pmu_drain_bts_buffer(void); extern struct event_constraint intel_core2_pebs_event_constraints[]; extern struct event_constraint intel_atom_pebs_event_constraints[]; extern struct event_constraint intel_slm_pebs_event_constraints[]; extern struct event_constraint intel_glm_pebs_event_constraints[]; extern struct event_constraint intel_glp_pebs_event_constraints[]; extern struct event_constraint intel_nehalem_pebs_event_constraints[]; extern struct event_constraint intel_westmere_pebs_event_constraints[]; extern struct event_constraint intel_snb_pebs_event_constraints[]; extern struct event_constraint intel_ivb_pebs_event_constraints[]; extern struct event_constraint intel_hsw_pebs_event_constraints[]; extern struct event_constraint intel_bdw_pebs_event_constraints[]; extern struct event_constraint intel_skl_pebs_event_constraints[]; extern struct event_constraint intel_icl_pebs_event_constraints[]; extern struct event_constraint intel_spr_pebs_event_constraints[]; struct event_constraint *intel_pebs_constraints(struct perf_event *event); void intel_pmu_pebs_add(struct perf_event *event); void intel_pmu_pebs_del(struct perf_event *event); void intel_pmu_pebs_enable(struct perf_event *event); void intel_pmu_pebs_disable(struct perf_event *event); void intel_pmu_pebs_enable_all(void); void intel_pmu_pebs_disable_all(void); void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in); void intel_pmu_auto_reload_read(struct perf_event *event); void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr); void intel_ds_init(void); void intel_pmu_lbr_swap_task_ctx(struct perf_event_context *prev, struct perf_event_context *next); void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in); u64 lbr_from_signext_quirk_wr(u64 val); void intel_pmu_lbr_reset(void); void intel_pmu_lbr_reset_32(void); void intel_pmu_lbr_reset_64(void); void intel_pmu_lbr_add(struct perf_event *event); void intel_pmu_lbr_del(struct perf_event *event); void intel_pmu_lbr_enable_all(bool pmi); void intel_pmu_lbr_disable_all(void); void intel_pmu_lbr_read(void); void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc); void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc); void intel_pmu_lbr_save(void *ctx); void intel_pmu_lbr_restore(void *ctx); void intel_pmu_lbr_init_core(void); void intel_pmu_lbr_init_nhm(void); void intel_pmu_lbr_init_atom(void); void intel_pmu_lbr_init_slm(void); void intel_pmu_lbr_init_snb(void); void intel_pmu_lbr_init_hsw(void); void intel_pmu_lbr_init_skl(void); void intel_pmu_lbr_init_knl(void); void intel_pmu_arch_lbr_init(void); void intel_pmu_pebs_data_source_nhm(void); void intel_pmu_pebs_data_source_skl(bool pmem); int intel_pmu_setup_lbr_filter(struct perf_event *event); void intel_pt_interrupt(void); int intel_bts_interrupt(void); void intel_bts_enable_local(void); void intel_bts_disable_local(void); int p4_pmu_init(void); int p6_pmu_init(void); int knc_pmu_init(void); static inline int is_ht_workaround_enabled(void) { return !!(x86_pmu.flags & PMU_FL_EXCL_ENABLED); } #else /* CONFIG_CPU_SUP_INTEL */ static inline void reserve_ds_buffers(void) { } static inline void release_ds_buffers(void) { } static inline void release_lbr_buffers(void) { } static inline int intel_pmu_init(void) { return 0; } static inline int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu) { return 0; } static inline void intel_cpuc_finish(struct cpu_hw_events *cpuc) { } static inline int is_ht_workaround_enabled(void) { return 0; } #endif /* CONFIG_CPU_SUP_INTEL */ #if ((defined CONFIG_CPU_SUP_CENTAUR) || (defined CONFIG_CPU_SUP_ZHAOXIN)) int zhaoxin_pmu_init(void); #else static inline int zhaoxin_pmu_init(void) { return 0; } #endif /*CONFIG_CPU_SUP_CENTAUR or CONFIG_CPU_SUP_ZHAOXIN*/