// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) /* * Copyright (C) 2017-2022 Jason A. Donenfeld . All Rights Reserved. * Copyright Matt Mackall , 2003, 2004, 2005 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All * rights reserved. */ /* * Exported interfaces ---- output * =============================== * * There are four exported interfaces; two for use within the kernel, * and two for use from userspace. * * Exported interfaces ---- userspace output * ----------------------------------------- * * The userspace interfaces are two character devices /dev/random and * /dev/urandom. /dev/random is suitable for use when very high * quality randomness is desired (for example, for key generation or * one-time pads), as it will only return a maximum of the number of * bits of randomness (as estimated by the random number generator) * contained in the entropy pool. * * The /dev/urandom device does not have this limit, and will return * as many bytes as are requested. As more and more random bytes are * requested without giving time for the entropy pool to recharge, * this will result in random numbers that are merely cryptographically * strong. For many applications, however, this is acceptable. * * Exported interfaces ---- kernel output * -------------------------------------- * * The primary kernel interfaces are: * * void get_random_bytes(void *buf, size_t nbytes); * u32 get_random_u32() * u64 get_random_u64() * unsigned int get_random_int() * unsigned long get_random_long() * * These interfaces will return the requested number of random bytes * into the given buffer or as a return value. This is equivalent to a * read from /dev/urandom. The get_random_{u32,u64,int,long}() family * of functions may be higher performance for one-off random integers, * because they do a bit of buffering. * * prandom_u32() * ------------- * * For even weaker applications, see the pseudorandom generator * prandom_u32(), prandom_max(), and prandom_bytes(). If the random * numbers aren't security-critical at all, these are *far* cheaper. * Useful for self-tests, random error simulation, randomized backoffs, * and any other application where you trust that nobody is trying to * maliciously mess with you by guessing the "random" numbers. * * Exported interfaces ---- input * ============================== * * The current exported interfaces for gathering environmental noise * from the devices are: * * void add_device_randomness(const void *buf, size_t size); * void add_input_randomness(unsigned int type, unsigned int code, * unsigned int value); * void add_interrupt_randomness(int irq); * void add_disk_randomness(struct gendisk *disk); * void add_hwgenerator_randomness(const void *buffer, size_t count, * size_t entropy); * void add_bootloader_randomness(const void *buf, size_t size); * * add_device_randomness() is for adding data to the random pool that * is likely to differ between two devices (or possibly even per boot). * This would be things like MAC addresses or serial numbers, or the * read-out of the RTC. This does *not* add any actual entropy to the * pool, but it initializes the pool to different values for devices * that might otherwise be identical and have very little entropy * available to them (particularly common in the embedded world). * * add_input_randomness() uses the input layer interrupt timing, as well as * the event type information from the hardware. * * add_interrupt_randomness() uses the interrupt timing as random * inputs to the entropy pool. Using the cycle counters and the irq source * as inputs, it feeds the randomness roughly once a second. * * add_disk_randomness() uses what amounts to the seek time of block * layer request events, on a per-disk_devt basis, as input to the * entropy pool. Note that high-speed solid state drives with very low * seek times do not make for good sources of entropy, as their seek * times are usually fairly consistent. * * All of these routines try to estimate how many bits of randomness a * particular randomness source. They do this by keeping track of the * first and second order deltas of the event timings. * * add_hwgenerator_randomness() is for true hardware RNGs, and will credit * entropy as specified by the caller. If the entropy pool is full it will * block until more entropy is needed. * * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or * add_device_randomness(), depending on whether or not the configuration * option CONFIG_RANDOM_TRUST_BOOTLOADER is set. * * Ensuring unpredictability at system startup * ============================================ * * When any operating system starts up, it will go through a sequence * of actions that are fairly predictable by an adversary, especially * if the start-up does not involve interaction with a human operator. * This reduces the actual number of bits of unpredictability in the * entropy pool below the value in entropy_count. In order to * counteract this effect, it helps to carry information in the * entropy pool across shut-downs and start-ups. To do this, put the * following lines an appropriate script which is run during the boot * sequence: * * echo "Initializing random number generator..." * random_seed=/var/run/random-seed * # Carry a random seed from start-up to start-up * # Load and then save the whole entropy pool * if [ -f $random_seed ]; then * cat $random_seed >/dev/urandom * else * touch $random_seed * fi * chmod 600 $random_seed * dd if=/dev/urandom of=$random_seed count=1 bs=512 * * and the following lines in an appropriate script which is run as * the system is shutdown: * * # Carry a random seed from shut-down to start-up * # Save the whole entropy pool * echo "Saving random seed..." * random_seed=/var/run/random-seed * touch $random_seed * chmod 600 $random_seed * dd if=/dev/urandom of=$random_seed count=1 bs=512 * * For example, on most modern systems using the System V init * scripts, such code fragments would be found in * /etc/rc.d/init.d/random. On older Linux systems, the correct script * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. * * Effectively, these commands cause the contents of the entropy pool * to be saved at shut-down time and reloaded into the entropy pool at * start-up. (The 'dd' in the addition to the bootup script is to * make sure that /etc/random-seed is different for every start-up, * even if the system crashes without executing rc.0.) Even with * complete knowledge of the start-up activities, predicting the state * of the entropy pool requires knowledge of the previous history of * the system. * * Configuring the /dev/random driver under Linux * ============================================== * * The /dev/random driver under Linux uses minor numbers 8 and 9 of * the /dev/mem major number (#1). So if your system does not have * /dev/random and /dev/urandom created already, they can be created * by using the commands: * * mknod /dev/random c 1 8 * mknod /dev/urandom c 1 9 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include enum { POOL_BITS = BLAKE2S_HASH_SIZE * 8, POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */ }; /* * Static global variables */ static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); static struct fasync_struct *fasync; static DEFINE_SPINLOCK(random_ready_list_lock); static LIST_HEAD(random_ready_list); /* * crng_init = 0 --> Uninitialized * 1 --> Initialized * 2 --> Initialized from input_pool * * crng_init is protected by primary_crng->lock, and only increases * its value (from 0->1->2). */ static int crng_init = 0; #define crng_ready() (likely(crng_init > 1)) static int crng_init_cnt = 0; static void process_random_ready_list(void); static void _get_random_bytes(void *buf, size_t nbytes); static struct ratelimit_state unseeded_warning = RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); static struct ratelimit_state urandom_warning = RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); static int ratelimit_disable __read_mostly; module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); /********************************************************************** * * OS independent entropy store. Here are the functions which handle * storing entropy in an entropy pool. * **********************************************************************/ static struct { struct blake2s_state hash; spinlock_t lock; unsigned int entropy_count; } input_pool = { .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, .hash.outlen = BLAKE2S_HASH_SIZE, .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), }; static void extract_entropy(void *buf, size_t nbytes); static bool drain_entropy(void *buf, size_t nbytes); static void crng_reseed(void); /* * This function adds bytes into the entropy "pool". It does not * update the entropy estimate. The caller should call * credit_entropy_bits if this is appropriate. */ static void _mix_pool_bytes(const void *in, size_t nbytes) { blake2s_update(&input_pool.hash, in, nbytes); } static void mix_pool_bytes(const void *in, size_t nbytes) { unsigned long flags; spin_lock_irqsave(&input_pool.lock, flags); _mix_pool_bytes(in, nbytes); spin_unlock_irqrestore(&input_pool.lock, flags); } struct fast_pool { union { u32 pool32[4]; u64 pool64[2]; }; unsigned long last; u16 reg_idx; u8 count; }; /* * This is a fast mixing routine used by the interrupt randomness * collector. It's hardcoded for an 128 bit pool and assumes that any * locks that might be needed are taken by the caller. */ static void fast_mix(u32 pool[4]) { u32 a = pool[0], b = pool[1]; u32 c = pool[2], d = pool[3]; a += b; c += d; b = rol32(b, 6); d = rol32(d, 27); d ^= a; b ^= c; a += b; c += d; b = rol32(b, 16); d = rol32(d, 14); d ^= a; b ^= c; a += b; c += d; b = rol32(b, 6); d = rol32(d, 27); d ^= a; b ^= c; a += b; c += d; b = rol32(b, 16); d = rol32(d, 14); d ^= a; b ^= c; pool[0] = a; pool[1] = b; pool[2] = c; pool[3] = d; } static void process_random_ready_list(void) { unsigned long flags; struct random_ready_callback *rdy, *tmp; spin_lock_irqsave(&random_ready_list_lock, flags); list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { struct module *owner = rdy->owner; list_del_init(&rdy->list); rdy->func(rdy); module_put(owner); } spin_unlock_irqrestore(&random_ready_list_lock, flags); } static void credit_entropy_bits(size_t nbits) { unsigned int entropy_count, orig, add; if (!nbits) return; add = min_t(size_t, nbits, POOL_BITS); do { orig = READ_ONCE(input_pool.entropy_count); entropy_count = min_t(unsigned int, POOL_BITS, orig + add); } while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig); if (crng_init < 2 && entropy_count >= POOL_MIN_BITS) crng_reseed(); } /********************************************************************* * * CRNG using CHACHA20 * *********************************************************************/ enum { CRNG_RESEED_INTERVAL = 300 * HZ, CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE }; static struct { u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); unsigned long birth; unsigned long generation; spinlock_t lock; } base_crng = { .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) }; struct crng { u8 key[CHACHA_KEY_SIZE]; unsigned long generation; local_lock_t lock; }; static DEFINE_PER_CPU(struct crng, crngs) = { .generation = ULONG_MAX, .lock = INIT_LOCAL_LOCK(crngs.lock), }; static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); /* * crng_fast_load() can be called by code in the interrupt service * path. So we can't afford to dilly-dally. Returns the number of * bytes processed from cp. */ static size_t crng_fast_load(const void *cp, size_t len) { unsigned long flags; const u8 *src = (const u8 *)cp; size_t ret = 0; if (!spin_trylock_irqsave(&base_crng.lock, flags)) return 0; if (crng_init != 0) { spin_unlock_irqrestore(&base_crng.lock, flags); return 0; } while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { base_crng.key[crng_init_cnt % sizeof(base_crng.key)] ^= *src; src++; crng_init_cnt++; len--; ret++; } if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { ++base_crng.generation; crng_init = 1; } spin_unlock_irqrestore(&base_crng.lock, flags); if (crng_init == 1) pr_notice("fast init done\n"); return ret; } /* * crng_slow_load() is called by add_device_randomness, which has two * attributes. (1) We can't trust the buffer passed to it is * guaranteed to be unpredictable (so it might not have any entropy at * all), and (2) it doesn't have the performance constraints of * crng_fast_load(). * * So, we simply hash the contents in with the current key. Finally, * we do *not* advance crng_init_cnt since buffer we may get may be * something like a fixed DMI table (for example), which might very * well be unique to the machine, but is otherwise unvarying. */ static void crng_slow_load(const void *cp, size_t len) { unsigned long flags; struct blake2s_state hash; blake2s_init(&hash, sizeof(base_crng.key)); if (!spin_trylock_irqsave(&base_crng.lock, flags)) return; if (crng_init != 0) { spin_unlock_irqrestore(&base_crng.lock, flags); return; } blake2s_update(&hash, base_crng.key, sizeof(base_crng.key)); blake2s_update(&hash, cp, len); blake2s_final(&hash, base_crng.key); spin_unlock_irqrestore(&base_crng.lock, flags); } static void crng_reseed(void) { unsigned long flags; unsigned long next_gen; u8 key[CHACHA_KEY_SIZE]; bool finalize_init = false; /* Only reseed if we can, to prevent brute forcing a small amount of new bits. */ if (!drain_entropy(key, sizeof(key))) return; /* * We copy the new key into the base_crng, overwriting the old one, * and update the generation counter. We avoid hitting ULONG_MAX, * because the per-cpu crngs are initialized to ULONG_MAX, so this * forces new CPUs that come online to always initialize. */ spin_lock_irqsave(&base_crng.lock, flags); memcpy(base_crng.key, key, sizeof(base_crng.key)); next_gen = base_crng.generation + 1; if (next_gen == ULONG_MAX) ++next_gen; WRITE_ONCE(base_crng.generation, next_gen); WRITE_ONCE(base_crng.birth, jiffies); if (crng_init < 2) { crng_init = 2; finalize_init = true; } spin_unlock_irqrestore(&base_crng.lock, flags); memzero_explicit(key, sizeof(key)); if (finalize_init) { process_random_ready_list(); wake_up_interruptible(&crng_init_wait); kill_fasync(&fasync, SIGIO, POLL_IN); pr_notice("crng init done\n"); if (unseeded_warning.missed) { pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n", unseeded_warning.missed); unseeded_warning.missed = 0; } if (urandom_warning.missed) { pr_notice("%d urandom warning(s) missed due to ratelimiting\n", urandom_warning.missed); urandom_warning.missed = 0; } } } /* * The general form here is based on a "fast key erasure RNG" from * . It generates a ChaCha * block using the provided key, and then immediately overwites that * key with half the block. It returns the resultant ChaCha state to the * user, along with the second half of the block containing 32 bytes of * random data that may be used; random_data_len may not be greater than * 32. */ static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], u32 chacha_state[CHACHA_STATE_WORDS], u8 *random_data, size_t random_data_len) { u8 first_block[CHACHA_BLOCK_SIZE]; BUG_ON(random_data_len > 32); chacha_init_consts(chacha_state); memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); memset(&chacha_state[12], 0, sizeof(u32) * 4); chacha20_block(chacha_state, first_block); memcpy(key, first_block, CHACHA_KEY_SIZE); memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); memzero_explicit(first_block, sizeof(first_block)); } /* * This function returns a ChaCha state that you may use for generating * random data. It also returns up to 32 bytes on its own of random data * that may be used; random_data_len may not be greater than 32. */ static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], u8 *random_data, size_t random_data_len) { unsigned long flags; struct crng *crng; BUG_ON(random_data_len > 32); /* * For the fast path, we check whether we're ready, unlocked first, and * then re-check once locked later. In the case where we're really not * ready, we do fast key erasure with the base_crng directly, because * this is what crng_{fast,slow}_load mutate during early init. */ if (unlikely(!crng_ready())) { bool ready; spin_lock_irqsave(&base_crng.lock, flags); ready = crng_ready(); if (!ready) crng_fast_key_erasure(base_crng.key, chacha_state, random_data, random_data_len); spin_unlock_irqrestore(&base_crng.lock, flags); if (!ready) return; } /* * If the base_crng is more than 5 minutes old, we reseed, which * in turn bumps the generation counter that we check below. */ if (unlikely(time_after(jiffies, READ_ONCE(base_crng.birth) + CRNG_RESEED_INTERVAL))) crng_reseed(); local_lock_irqsave(&crngs.lock, flags); crng = raw_cpu_ptr(&crngs); /* * If our per-cpu crng is older than the base_crng, then it means * somebody reseeded the base_crng. In that case, we do fast key * erasure on the base_crng, and use its output as the new key * for our per-cpu crng. This brings us up to date with base_crng. */ if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { spin_lock(&base_crng.lock); crng_fast_key_erasure(base_crng.key, chacha_state, crng->key, sizeof(crng->key)); crng->generation = base_crng.generation; spin_unlock(&base_crng.lock); } /* * Finally, when we've made it this far, our per-cpu crng has an up * to date key, and we can do fast key erasure with it to produce * some random data and a ChaCha state for the caller. All other * branches of this function are "unlikely", so most of the time we * should wind up here immediately. */ crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); local_unlock_irqrestore(&crngs.lock, flags); } static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes) { bool large_request = nbytes > 256; ssize_t ret = 0; size_t len; u32 chacha_state[CHACHA_STATE_WORDS]; u8 output[CHACHA_BLOCK_SIZE]; if (!nbytes) return 0; len = min_t(size_t, 32, nbytes); crng_make_state(chacha_state, output, len); if (copy_to_user(buf, output, len)) return -EFAULT; nbytes -= len; buf += len; ret += len; while (nbytes) { if (large_request && need_resched()) { if (signal_pending(current)) break; schedule(); } chacha20_block(chacha_state, output); if (unlikely(chacha_state[12] == 0)) ++chacha_state[13]; len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE); if (copy_to_user(buf, output, len)) { ret = -EFAULT; break; } nbytes -= len; buf += len; ret += len; } memzero_explicit(chacha_state, sizeof(chacha_state)); memzero_explicit(output, sizeof(output)); return ret; } /********************************************************************* * * Entropy input management * *********************************************************************/ /* There is one of these per entropy source */ struct timer_rand_state { cycles_t last_time; long last_delta, last_delta2; }; #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; /* * Add device- or boot-specific data to the input pool to help * initialize it. * * None of this adds any entropy; it is meant to avoid the problem of * the entropy pool having similar initial state across largely * identical devices. */ void add_device_randomness(const void *buf, size_t size) { unsigned long time = random_get_entropy() ^ jiffies; unsigned long flags; if (!crng_ready() && size) crng_slow_load(buf, size); spin_lock_irqsave(&input_pool.lock, flags); _mix_pool_bytes(buf, size); _mix_pool_bytes(&time, sizeof(time)); spin_unlock_irqrestore(&input_pool.lock, flags); } EXPORT_SYMBOL(add_device_randomness); static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; /* * This function adds entropy to the entropy "pool" by using timing * delays. It uses the timer_rand_state structure to make an estimate * of how many bits of entropy this call has added to the pool. * * The number "num" is also added to the pool - it should somehow describe * the type of event which just happened. This is currently 0-255 for * keyboard scan codes, and 256 upwards for interrupts. * */ static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) { struct { long jiffies; unsigned int cycles; unsigned int num; } sample; long delta, delta2, delta3; sample.jiffies = jiffies; sample.cycles = random_get_entropy(); sample.num = num; mix_pool_bytes(&sample, sizeof(sample)); /* * Calculate number of bits of randomness we probably added. * We take into account the first, second and third-order deltas * in order to make our estimate. */ delta = sample.jiffies - READ_ONCE(state->last_time); WRITE_ONCE(state->last_time, sample.jiffies); delta2 = delta - READ_ONCE(state->last_delta); WRITE_ONCE(state->last_delta, delta); delta3 = delta2 - READ_ONCE(state->last_delta2); WRITE_ONCE(state->last_delta2, delta2); if (delta < 0) delta = -delta; if (delta2 < 0) delta2 = -delta2; if (delta3 < 0) delta3 = -delta3; if (delta > delta2) delta = delta2; if (delta > delta3) delta = delta3; /* * delta is now minimum absolute delta. * Round down by 1 bit on general principles, * and limit entropy estimate to 12 bits. */ credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11)); } void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) { static unsigned char last_value; /* ignore autorepeat and the like */ if (value == last_value) return; last_value = value; add_timer_randomness(&input_timer_state, (type << 4) ^ code ^ (code >> 4) ^ value); } EXPORT_SYMBOL_GPL(add_input_randomness); static DEFINE_PER_CPU(struct fast_pool, irq_randomness); static u32 get_reg(struct fast_pool *f, struct pt_regs *regs) { u32 *ptr = (u32 *)regs; unsigned int idx; if (regs == NULL) return 0; idx = READ_ONCE(f->reg_idx); if (idx >= sizeof(struct pt_regs) / sizeof(u32)) idx = 0; ptr += idx++; WRITE_ONCE(f->reg_idx, idx); return *ptr; } void add_interrupt_randomness(int irq) { struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); struct pt_regs *regs = get_irq_regs(); unsigned long now = jiffies; cycles_t cycles = random_get_entropy(); if (cycles == 0) cycles = get_reg(fast_pool, regs); if (sizeof(cycles) == 8) fast_pool->pool64[0] ^= cycles ^ rol64(now, 32) ^ irq; else { fast_pool->pool32[0] ^= cycles ^ irq; fast_pool->pool32[1] ^= now; } if (sizeof(unsigned long) == 8) fast_pool->pool64[1] ^= regs ? instruction_pointer(regs) : _RET_IP_; else { fast_pool->pool32[2] ^= regs ? instruction_pointer(regs) : _RET_IP_; fast_pool->pool32[3] ^= get_reg(fast_pool, regs); } fast_mix(fast_pool->pool32); ++fast_pool->count; if (unlikely(crng_init == 0)) { if (fast_pool->count >= 64 && crng_fast_load(fast_pool->pool32, sizeof(fast_pool->pool32)) > 0) { fast_pool->count = 0; fast_pool->last = now; if (spin_trylock(&input_pool.lock)) { _mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32)); spin_unlock(&input_pool.lock); } } return; } if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ)) return; if (!spin_trylock(&input_pool.lock)) return; fast_pool->last = now; _mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32)); spin_unlock(&input_pool.lock); fast_pool->count = 0; /* award one bit for the contents of the fast pool */ credit_entropy_bits(1); } EXPORT_SYMBOL_GPL(add_interrupt_randomness); #ifdef CONFIG_BLOCK void add_disk_randomness(struct gendisk *disk) { if (!disk || !disk->random) return; /* first major is 1, so we get >= 0x200 here */ add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); } EXPORT_SYMBOL_GPL(add_disk_randomness); #endif /********************************************************************* * * Entropy extraction routines * *********************************************************************/ /* * This is an HKDF-like construction for using the hashed collected entropy * as a PRF key, that's then expanded block-by-block. */ static void extract_entropy(void *buf, size_t nbytes) { unsigned long flags; u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; struct { unsigned long rdseed[32 / sizeof(long)]; size_t counter; } block; size_t i; for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) { if (!arch_get_random_seed_long(&block.rdseed[i]) && !arch_get_random_long(&block.rdseed[i])) block.rdseed[i] = random_get_entropy(); } spin_lock_irqsave(&input_pool.lock, flags); /* seed = HASHPRF(last_key, entropy_input) */ blake2s_final(&input_pool.hash, seed); /* next_key = HASHPRF(seed, RDSEED || 0) */ block.counter = 0; blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); spin_unlock_irqrestore(&input_pool.lock, flags); memzero_explicit(next_key, sizeof(next_key)); while (nbytes) { i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE); /* output = HASHPRF(seed, RDSEED || ++counter) */ ++block.counter; blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); nbytes -= i; buf += i; } memzero_explicit(seed, sizeof(seed)); memzero_explicit(&block, sizeof(block)); } /* * First we make sure we have POOL_MIN_BITS of entropy in the pool, and then we * set the entropy count to zero (but don't actually touch any data). Only then * can we extract a new key with extract_entropy(). */ static bool drain_entropy(void *buf, size_t nbytes) { unsigned int entropy_count; do { entropy_count = READ_ONCE(input_pool.entropy_count); if (entropy_count < POOL_MIN_BITS) return false; } while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count); extract_entropy(buf, nbytes); wake_up_interruptible(&random_write_wait); kill_fasync(&fasync, SIGIO, POLL_OUT); return true; } #define warn_unseeded_randomness(previous) \ _warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous)) static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous) { #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM const bool print_once = false; #else static bool print_once __read_mostly; #endif if (print_once || crng_ready() || (previous && (caller == READ_ONCE(*previous)))) return; WRITE_ONCE(*previous, caller); #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM print_once = true; #endif if (__ratelimit(&unseeded_warning)) printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", func_name, caller, crng_init); } /* * This function is the exported kernel interface. It returns some * number of good random numbers, suitable for key generation, seeding * TCP sequence numbers, etc. It does not rely on the hardware random * number generator. For random bytes direct from the hardware RNG * (when available), use get_random_bytes_arch(). In order to ensure * that the randomness provided by this function is okay, the function * wait_for_random_bytes() should be called and return 0 at least once * at any point prior. */ static void _get_random_bytes(void *buf, size_t nbytes) { u32 chacha_state[CHACHA_STATE_WORDS]; u8 tmp[CHACHA_BLOCK_SIZE]; size_t len; if (!nbytes) return; len = min_t(size_t, 32, nbytes); crng_make_state(chacha_state, buf, len); nbytes -= len; buf += len; while (nbytes) { if (nbytes < CHACHA_BLOCK_SIZE) { chacha20_block(chacha_state, tmp); memcpy(buf, tmp, nbytes); memzero_explicit(tmp, sizeof(tmp)); break; } chacha20_block(chacha_state, buf); if (unlikely(chacha_state[12] == 0)) ++chacha_state[13]; nbytes -= CHACHA_BLOCK_SIZE; buf += CHACHA_BLOCK_SIZE; } memzero_explicit(chacha_state, sizeof(chacha_state)); } void get_random_bytes(void *buf, size_t nbytes) { static void *previous; warn_unseeded_randomness(&previous); _get_random_bytes(buf, nbytes); } EXPORT_SYMBOL(get_random_bytes); /* * Each time the timer fires, we expect that we got an unpredictable * jump in the cycle counter. Even if the timer is running on another * CPU, the timer activity will be touching the stack of the CPU that is * generating entropy.. * * Note that we don't re-arm the timer in the timer itself - we are * happy to be scheduled away, since that just makes the load more * complex, but we do not want the timer to keep ticking unless the * entropy loop is running. * * So the re-arming always happens in the entropy loop itself. */ static void entropy_timer(struct timer_list *t) { credit_entropy_bits(1); } /* * If we have an actual cycle counter, see if we can * generate enough entropy with timing noise */ static void try_to_generate_entropy(void) { struct { unsigned long now; struct timer_list timer; } stack; stack.now = random_get_entropy(); /* Slow counter - or none. Don't even bother */ if (stack.now == random_get_entropy()) return; timer_setup_on_stack(&stack.timer, entropy_timer, 0); while (!crng_ready()) { if (!timer_pending(&stack.timer)) mod_timer(&stack.timer, jiffies + 1); mix_pool_bytes(&stack.now, sizeof(stack.now)); schedule(); stack.now = random_get_entropy(); } del_timer_sync(&stack.timer); destroy_timer_on_stack(&stack.timer); mix_pool_bytes(&stack.now, sizeof(stack.now)); } /* * Wait for the urandom pool to be seeded and thus guaranteed to supply * cryptographically secure random numbers. This applies to: the /dev/urandom * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} * family of functions. Using any of these functions without first calling * this function forfeits the guarantee of security. * * Returns: 0 if the urandom pool has been seeded. * -ERESTARTSYS if the function was interrupted by a signal. */ int wait_for_random_bytes(void) { if (likely(crng_ready())) return 0; do { int ret; ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); if (ret) return ret > 0 ? 0 : ret; try_to_generate_entropy(); } while (!crng_ready()); return 0; } EXPORT_SYMBOL(wait_for_random_bytes); /* * Returns whether or not the urandom pool has been seeded and thus guaranteed * to supply cryptographically secure random numbers. This applies to: the * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, * ,u64,int,long} family of functions. * * Returns: true if the urandom pool has been seeded. * false if the urandom pool has not been seeded. */ bool rng_is_initialized(void) { return crng_ready(); } EXPORT_SYMBOL(rng_is_initialized); /* * Add a callback function that will be invoked when the nonblocking * pool is initialised. * * returns: 0 if callback is successfully added * -EALREADY if pool is already initialised (callback not called) * -ENOENT if module for callback is not alive */ int add_random_ready_callback(struct random_ready_callback *rdy) { struct module *owner; unsigned long flags; int err = -EALREADY; if (crng_ready()) return err; owner = rdy->owner; if (!try_module_get(owner)) return -ENOENT; spin_lock_irqsave(&random_ready_list_lock, flags); if (crng_ready()) goto out; owner = NULL; list_add(&rdy->list, &random_ready_list); err = 0; out: spin_unlock_irqrestore(&random_ready_list_lock, flags); module_put(owner); return err; } EXPORT_SYMBOL(add_random_ready_callback); /* * Delete a previously registered readiness callback function. */ void del_random_ready_callback(struct random_ready_callback *rdy) { unsigned long flags; struct module *owner = NULL; spin_lock_irqsave(&random_ready_list_lock, flags); if (!list_empty(&rdy->list)) { list_del_init(&rdy->list); owner = rdy->owner; } spin_unlock_irqrestore(&random_ready_list_lock, flags); module_put(owner); } EXPORT_SYMBOL(del_random_ready_callback); /* * This function will use the architecture-specific hardware random * number generator if it is available. It is not recommended for * use. Use get_random_bytes() instead. It returns the number of * bytes filled in. */ size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes) { size_t left = nbytes; u8 *p = buf; while (left) { unsigned long v; size_t chunk = min_t(size_t, left, sizeof(unsigned long)); if (!arch_get_random_long(&v)) break; memcpy(p, &v, chunk); p += chunk; left -= chunk; } return nbytes - left; } EXPORT_SYMBOL(get_random_bytes_arch); static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); static int __init parse_trust_cpu(char *arg) { return kstrtobool(arg, &trust_cpu); } early_param("random.trust_cpu", parse_trust_cpu); /* * Note that setup_arch() may call add_device_randomness() * long before we get here. This allows seeding of the pools * with some platform dependent data very early in the boot * process. But it limits our options here. We must use * statically allocated structures that already have all * initializations complete at compile time. We should also * take care not to overwrite the precious per platform data * we were given. */ int __init rand_initialize(void) { size_t i; ktime_t now = ktime_get_real(); bool arch_init = true; unsigned long rv; for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) { if (!arch_get_random_seed_long_early(&rv) && !arch_get_random_long_early(&rv)) { rv = random_get_entropy(); arch_init = false; } mix_pool_bytes(&rv, sizeof(rv)); } mix_pool_bytes(&now, sizeof(now)); mix_pool_bytes(utsname(), sizeof(*(utsname()))); extract_entropy(base_crng.key, sizeof(base_crng.key)); ++base_crng.generation; if (arch_init && trust_cpu && crng_init < 2) { crng_init = 2; pr_notice("crng init done (trusting CPU's manufacturer)\n"); } if (ratelimit_disable) { urandom_warning.interval = 0; unseeded_warning.interval = 0; } return 0; } #ifdef CONFIG_BLOCK void rand_initialize_disk(struct gendisk *disk) { struct timer_rand_state *state; /* * If kzalloc returns null, we just won't use that entropy * source. */ state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); if (state) { state->last_time = INITIAL_JIFFIES; disk->random = state; } } #endif static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { static int maxwarn = 10; if (!crng_ready() && maxwarn > 0) { maxwarn--; if (__ratelimit(&urandom_warning)) pr_notice("%s: uninitialized urandom read (%zd bytes read)\n", current->comm, nbytes); } return get_random_bytes_user(buf, nbytes); } static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { int ret; ret = wait_for_random_bytes(); if (ret != 0) return ret; return get_random_bytes_user(buf, nbytes); } static __poll_t random_poll(struct file *file, poll_table *wait) { __poll_t mask; poll_wait(file, &crng_init_wait, wait); poll_wait(file, &random_write_wait, wait); mask = 0; if (crng_ready()) mask |= EPOLLIN | EPOLLRDNORM; if (input_pool.entropy_count < POOL_MIN_BITS) mask |= EPOLLOUT | EPOLLWRNORM; return mask; } static int write_pool(const char __user *ubuf, size_t count) { size_t len; int ret = 0; u8 block[BLAKE2S_BLOCK_SIZE]; while (count) { len = min(count, sizeof(block)); if (copy_from_user(block, ubuf, len)) { ret = -EFAULT; goto out; } count -= len; ubuf += len; mix_pool_bytes(block, len); cond_resched(); } out: memzero_explicit(block, sizeof(block)); return ret; } static ssize_t random_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { int ret; ret = write_pool(buffer, count); if (ret) return ret; return (ssize_t)count; } static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) { int size, ent_count; int __user *p = (int __user *)arg; int retval; switch (cmd) { case RNDGETENTCNT: /* inherently racy, no point locking */ if (put_user(input_pool.entropy_count, p)) return -EFAULT; return 0; case RNDADDTOENTCNT: if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (get_user(ent_count, p)) return -EFAULT; if (ent_count < 0) return -EINVAL; credit_entropy_bits(ent_count); return 0; case RNDADDENTROPY: if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (get_user(ent_count, p++)) return -EFAULT; if (ent_count < 0) return -EINVAL; if (get_user(size, p++)) return -EFAULT; retval = write_pool((const char __user *)p, size); if (retval < 0) return retval; credit_entropy_bits(ent_count); return 0; case RNDZAPENTCNT: case RNDCLEARPOOL: /* * Clear the entropy pool counters. We no longer clear * the entropy pool, as that's silly. */ if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (xchg(&input_pool.entropy_count, 0)) { wake_up_interruptible(&random_write_wait); kill_fasync(&fasync, SIGIO, POLL_OUT); } return 0; case RNDRESEEDCRNG: if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (crng_init < 2) return -ENODATA; crng_reseed(); return 0; default: return -EINVAL; } } static int random_fasync(int fd, struct file *filp, int on) { return fasync_helper(fd, filp, on, &fasync); } const struct file_operations random_fops = { .read = random_read, .write = random_write, .poll = random_poll, .unlocked_ioctl = random_ioctl, .compat_ioctl = compat_ptr_ioctl, .fasync = random_fasync, .llseek = noop_llseek, }; const struct file_operations urandom_fops = { .read = urandom_read, .write = random_write, .unlocked_ioctl = random_ioctl, .compat_ioctl = compat_ptr_ioctl, .fasync = random_fasync, .llseek = noop_llseek, }; SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int, flags) { if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) return -EINVAL; /* * Requesting insecure and blocking randomness at the same time makes * no sense. */ if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) return -EINVAL; if (count > INT_MAX) count = INT_MAX; if (!(flags & GRND_INSECURE) && !crng_ready()) { int ret; if (flags & GRND_NONBLOCK) return -EAGAIN; ret = wait_for_random_bytes(); if (unlikely(ret)) return ret; } return get_random_bytes_user(buf, count); } /******************************************************************** * * Sysctl interface * ********************************************************************/ #ifdef CONFIG_SYSCTL #include static int random_min_urandom_seed = 60; static int random_write_wakeup_bits = POOL_MIN_BITS; static int sysctl_poolsize = POOL_BITS; static char sysctl_bootid[16]; /* * This function is used to return both the bootid UUID, and random * UUID. The difference is in whether table->data is NULL; if it is, * then a new UUID is generated and returned to the user. * * If the user accesses this via the proc interface, the UUID will be * returned as an ASCII string in the standard UUID format; if via the * sysctl system call, as 16 bytes of binary data. */ static int proc_do_uuid(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table fake_table; unsigned char buf[64], tmp_uuid[16], *uuid; uuid = table->data; if (!uuid) { uuid = tmp_uuid; generate_random_uuid(uuid); } else { static DEFINE_SPINLOCK(bootid_spinlock); spin_lock(&bootid_spinlock); if (!uuid[8]) generate_random_uuid(uuid); spin_unlock(&bootid_spinlock); } sprintf(buf, "%pU", uuid); fake_table.data = buf; fake_table.maxlen = sizeof(buf); return proc_dostring(&fake_table, write, buffer, lenp, ppos); } static struct ctl_table random_table[] = { { .procname = "poolsize", .data = &sysctl_poolsize, .maxlen = sizeof(int), .mode = 0444, .proc_handler = proc_dointvec, }, { .procname = "entropy_avail", .data = &input_pool.entropy_count, .maxlen = sizeof(int), .mode = 0444, .proc_handler = proc_dointvec, }, { .procname = "write_wakeup_threshold", .data = &random_write_wakeup_bits, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "urandom_min_reseed_secs", .data = &random_min_urandom_seed, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "boot_id", .data = &sysctl_bootid, .maxlen = 16, .mode = 0444, .proc_handler = proc_do_uuid, }, { .procname = "uuid", .maxlen = 16, .mode = 0444, .proc_handler = proc_do_uuid, }, { } }; /* * rand_initialize() is called before sysctl_init(), * so we cannot call register_sysctl_init() in rand_initialize() */ static int __init random_sysctls_init(void) { register_sysctl_init("kernel/random", random_table); return 0; } device_initcall(random_sysctls_init); #endif /* CONFIG_SYSCTL */ struct batched_entropy { union { /* * We make this 1.5x a ChaCha block, so that we get the * remaining 32 bytes from fast key erasure, plus one full * block from the detached ChaCha state. We can increase * the size of this later if needed so long as we keep the * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. */ u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))]; u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))]; }; local_lock_t lock; unsigned long generation; unsigned int position; }; /* * Get a random word for internal kernel use only. The quality of the random * number is good as /dev/urandom. In order to ensure that the randomness * provided by this function is okay, the function wait_for_random_bytes() * should be called and return 0 at least once at any point prior. */ static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { .lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock), .position = UINT_MAX }; u64 get_random_u64(void) { u64 ret; unsigned long flags; struct batched_entropy *batch; static void *previous; unsigned long next_gen; warn_unseeded_randomness(&previous); local_lock_irqsave(&batched_entropy_u64.lock, flags); batch = raw_cpu_ptr(&batched_entropy_u64); next_gen = READ_ONCE(base_crng.generation); if (batch->position >= ARRAY_SIZE(batch->entropy_u64) || next_gen != batch->generation) { _get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64)); batch->position = 0; batch->generation = next_gen; } ret = batch->entropy_u64[batch->position]; batch->entropy_u64[batch->position] = 0; ++batch->position; local_unlock_irqrestore(&batched_entropy_u64.lock, flags); return ret; } EXPORT_SYMBOL(get_random_u64); static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { .lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock), .position = UINT_MAX }; u32 get_random_u32(void) { u32 ret; unsigned long flags; struct batched_entropy *batch; static void *previous; unsigned long next_gen; warn_unseeded_randomness(&previous); local_lock_irqsave(&batched_entropy_u32.lock, flags); batch = raw_cpu_ptr(&batched_entropy_u32); next_gen = READ_ONCE(base_crng.generation); if (batch->position >= ARRAY_SIZE(batch->entropy_u32) || next_gen != batch->generation) { _get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32)); batch->position = 0; batch->generation = next_gen; } ret = batch->entropy_u32[batch->position]; batch->entropy_u32[batch->position] = 0; ++batch->position; local_unlock_irqrestore(&batched_entropy_u32.lock, flags); return ret; } EXPORT_SYMBOL(get_random_u32); /** * randomize_page - Generate a random, page aligned address * @start: The smallest acceptable address the caller will take. * @range: The size of the area, starting at @start, within which the * random address must fall. * * If @start + @range would overflow, @range is capped. * * NOTE: Historical use of randomize_range, which this replaces, presumed that * @start was already page aligned. We now align it regardless. * * Return: A page aligned address within [start, start + range). On error, * @start is returned. */ unsigned long randomize_page(unsigned long start, unsigned long range) { if (!PAGE_ALIGNED(start)) { range -= PAGE_ALIGN(start) - start; start = PAGE_ALIGN(start); } if (start > ULONG_MAX - range) range = ULONG_MAX - start; range >>= PAGE_SHIFT; if (range == 0) return start; return start + (get_random_long() % range << PAGE_SHIFT); } /* Interface for in-kernel drivers of true hardware RNGs. * Those devices may produce endless random bits and will be throttled * when our pool is full. */ void add_hwgenerator_randomness(const void *buffer, size_t count, size_t entropy) { if (unlikely(crng_init == 0)) { size_t ret = crng_fast_load(buffer, count); mix_pool_bytes(buffer, ret); count -= ret; buffer += ret; if (!count || crng_init == 0) return; } /* Throttle writing if we're above the trickle threshold. * We'll be woken up again once below POOL_MIN_BITS, when * the calling thread is about to terminate, or once * CRNG_RESEED_INTERVAL has elapsed. */ wait_event_interruptible_timeout(random_write_wait, !system_wq || kthread_should_stop() || input_pool.entropy_count < POOL_MIN_BITS, CRNG_RESEED_INTERVAL); mix_pool_bytes(buffer, count); credit_entropy_bits(entropy); } EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); /* Handle random seed passed by bootloader. * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise * it would be regarded as device data. * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. */ void add_bootloader_randomness(const void *buf, size_t size) { if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER)) add_hwgenerator_randomness(buf, size, size * 8); else add_device_randomness(buf, size); } EXPORT_SYMBOL_GPL(add_bootloader_randomness);