// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 /* Copyright (c) 2019 Mellanox Technologies. All rights reserved */ #include #include #include #include #include #include #include #include #include #include #include "spectrum.h" #include "spectrum_ptp.h" #include "core.h" #define MLXSW_SP1_PTP_CLOCK_CYCLES_SHIFT 29 #define MLXSW_SP1_PTP_CLOCK_FREQ_KHZ 156257 /* 6.4nSec */ #define MLXSW_SP1_PTP_CLOCK_MASK 64 #define MLXSW_SP1_PTP_HT_GC_INTERVAL 500 /* ms */ /* How long, approximately, should the unmatched entries stay in the hash table * before they are collected. Should be evenly divisible by the GC interval. */ #define MLXSW_SP1_PTP_HT_GC_TIMEOUT 1000 /* ms */ struct mlxsw_sp_ptp_state { struct mlxsw_sp *mlxsw_sp; struct rhashtable unmatched_ht; spinlock_t unmatched_lock; /* protects the HT */ struct delayed_work ht_gc_dw; u32 gc_cycle; }; struct mlxsw_sp1_ptp_key { u8 local_port; u8 message_type; u16 sequence_id; u8 domain_number; bool ingress; }; struct mlxsw_sp1_ptp_unmatched { struct mlxsw_sp1_ptp_key key; struct rhash_head ht_node; struct rcu_head rcu; struct sk_buff *skb; u64 timestamp; u32 gc_cycle; }; static const struct rhashtable_params mlxsw_sp1_ptp_unmatched_ht_params = { .key_len = sizeof_field(struct mlxsw_sp1_ptp_unmatched, key), .key_offset = offsetof(struct mlxsw_sp1_ptp_unmatched, key), .head_offset = offsetof(struct mlxsw_sp1_ptp_unmatched, ht_node), }; struct mlxsw_sp_ptp_clock { struct mlxsw_core *core; spinlock_t lock; /* protect this structure */ struct cyclecounter cycles; struct timecounter tc; u32 nominal_c_mult; struct ptp_clock *ptp; struct ptp_clock_info ptp_info; unsigned long overflow_period; struct delayed_work overflow_work; }; static u64 __mlxsw_sp1_ptp_read_frc(struct mlxsw_sp_ptp_clock *clock, struct ptp_system_timestamp *sts) { struct mlxsw_core *mlxsw_core = clock->core; u32 frc_h1, frc_h2, frc_l; frc_h1 = mlxsw_core_read_frc_h(mlxsw_core); ptp_read_system_prets(sts); frc_l = mlxsw_core_read_frc_l(mlxsw_core); ptp_read_system_postts(sts); frc_h2 = mlxsw_core_read_frc_h(mlxsw_core); if (frc_h1 != frc_h2) { /* wrap around */ ptp_read_system_prets(sts); frc_l = mlxsw_core_read_frc_l(mlxsw_core); ptp_read_system_postts(sts); } return (u64) frc_l | (u64) frc_h2 << 32; } static u64 mlxsw_sp1_ptp_read_frc(const struct cyclecounter *cc) { struct mlxsw_sp_ptp_clock *clock = container_of(cc, struct mlxsw_sp_ptp_clock, cycles); return __mlxsw_sp1_ptp_read_frc(clock, NULL) & cc->mask; } static int mlxsw_sp1_ptp_phc_adjfreq(struct mlxsw_sp_ptp_clock *clock, int freq_adj) { struct mlxsw_core *mlxsw_core = clock->core; char mtutc_pl[MLXSW_REG_MTUTC_LEN]; mlxsw_reg_mtutc_pack(mtutc_pl, MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ, freq_adj, 0); return mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtutc), mtutc_pl); } static u64 mlxsw_sp1_ptp_ns2cycles(const struct timecounter *tc, u64 nsec) { u64 cycles = (u64) nsec; cycles <<= tc->cc->shift; cycles = div_u64(cycles, tc->cc->mult); return cycles; } static int mlxsw_sp1_ptp_phc_settime(struct mlxsw_sp_ptp_clock *clock, u64 nsec) { struct mlxsw_core *mlxsw_core = clock->core; u64 next_sec, next_sec_in_nsec, cycles; char mtutc_pl[MLXSW_REG_MTUTC_LEN]; char mtpps_pl[MLXSW_REG_MTPPS_LEN]; int err; next_sec = div_u64(nsec, NSEC_PER_SEC) + 1; next_sec_in_nsec = next_sec * NSEC_PER_SEC; spin_lock_bh(&clock->lock); cycles = mlxsw_sp1_ptp_ns2cycles(&clock->tc, next_sec_in_nsec); spin_unlock_bh(&clock->lock); mlxsw_reg_mtpps_vpin_pack(mtpps_pl, cycles); err = mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtpps), mtpps_pl); if (err) return err; mlxsw_reg_mtutc_pack(mtutc_pl, MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC, 0, next_sec); return mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtutc), mtutc_pl); } static int mlxsw_sp1_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct mlxsw_sp_ptp_clock *clock = container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info); int neg_adj = 0; u32 diff; u64 adj; s32 ppb; ppb = scaled_ppm_to_ppb(scaled_ppm); if (ppb < 0) { neg_adj = 1; ppb = -ppb; } adj = clock->nominal_c_mult; adj *= ppb; diff = div_u64(adj, NSEC_PER_SEC); spin_lock_bh(&clock->lock); timecounter_read(&clock->tc); clock->cycles.mult = neg_adj ? clock->nominal_c_mult - diff : clock->nominal_c_mult + diff; spin_unlock_bh(&clock->lock); return mlxsw_sp1_ptp_phc_adjfreq(clock, neg_adj ? -ppb : ppb); } static int mlxsw_sp1_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct mlxsw_sp_ptp_clock *clock = container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info); u64 nsec; spin_lock_bh(&clock->lock); timecounter_adjtime(&clock->tc, delta); nsec = timecounter_read(&clock->tc); spin_unlock_bh(&clock->lock); return mlxsw_sp1_ptp_phc_settime(clock, nsec); } static int mlxsw_sp1_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct mlxsw_sp_ptp_clock *clock = container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info); u64 cycles, nsec; spin_lock_bh(&clock->lock); cycles = __mlxsw_sp1_ptp_read_frc(clock, sts); nsec = timecounter_cyc2time(&clock->tc, cycles); spin_unlock_bh(&clock->lock); *ts = ns_to_timespec64(nsec); return 0; } static int mlxsw_sp1_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct mlxsw_sp_ptp_clock *clock = container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info); u64 nsec = timespec64_to_ns(ts); spin_lock_bh(&clock->lock); timecounter_init(&clock->tc, &clock->cycles, nsec); nsec = timecounter_read(&clock->tc); spin_unlock_bh(&clock->lock); return mlxsw_sp1_ptp_phc_settime(clock, nsec); } static const struct ptp_clock_info mlxsw_sp1_ptp_clock_info = { .owner = THIS_MODULE, .name = "mlxsw_sp_clock", .max_adj = 100000000, .adjfine = mlxsw_sp1_ptp_adjfine, .adjtime = mlxsw_sp1_ptp_adjtime, .gettimex64 = mlxsw_sp1_ptp_gettimex, .settime64 = mlxsw_sp1_ptp_settime, }; static void mlxsw_sp1_ptp_clock_overflow(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct mlxsw_sp_ptp_clock *clock; clock = container_of(dwork, struct mlxsw_sp_ptp_clock, overflow_work); spin_lock_bh(&clock->lock); timecounter_read(&clock->tc); spin_unlock_bh(&clock->lock); mlxsw_core_schedule_dw(&clock->overflow_work, clock->overflow_period); } struct mlxsw_sp_ptp_clock * mlxsw_sp1_ptp_clock_init(struct mlxsw_sp *mlxsw_sp, struct device *dev) { u64 overflow_cycles, nsec, frac = 0; struct mlxsw_sp_ptp_clock *clock; int err; clock = kzalloc(sizeof(*clock), GFP_KERNEL); if (!clock) return ERR_PTR(-ENOMEM); spin_lock_init(&clock->lock); clock->cycles.read = mlxsw_sp1_ptp_read_frc; clock->cycles.shift = MLXSW_SP1_PTP_CLOCK_CYCLES_SHIFT; clock->cycles.mult = clocksource_khz2mult(MLXSW_SP1_PTP_CLOCK_FREQ_KHZ, clock->cycles.shift); clock->nominal_c_mult = clock->cycles.mult; clock->cycles.mask = CLOCKSOURCE_MASK(MLXSW_SP1_PTP_CLOCK_MASK); clock->core = mlxsw_sp->core; timecounter_init(&clock->tc, &clock->cycles, ktime_to_ns(ktime_get_real())); /* Calculate period in seconds to call the overflow watchdog - to make * sure counter is checked at least twice every wrap around. * The period is calculated as the minimum between max HW cycles count * (The clock source mask) and max amount of cycles that can be * multiplied by clock multiplier where the result doesn't exceed * 64bits. */ overflow_cycles = div64_u64(~0ULL >> 1, clock->cycles.mult); overflow_cycles = min(overflow_cycles, div_u64(clock->cycles.mask, 3)); nsec = cyclecounter_cyc2ns(&clock->cycles, overflow_cycles, 0, &frac); clock->overflow_period = nsecs_to_jiffies(nsec); INIT_DELAYED_WORK(&clock->overflow_work, mlxsw_sp1_ptp_clock_overflow); mlxsw_core_schedule_dw(&clock->overflow_work, 0); clock->ptp_info = mlxsw_sp1_ptp_clock_info; clock->ptp = ptp_clock_register(&clock->ptp_info, dev); if (IS_ERR(clock->ptp)) { err = PTR_ERR(clock->ptp); dev_err(dev, "ptp_clock_register failed %d\n", err); goto err_ptp_clock_register; } return clock; err_ptp_clock_register: cancel_delayed_work_sync(&clock->overflow_work); kfree(clock); return ERR_PTR(err); } void mlxsw_sp1_ptp_clock_fini(struct mlxsw_sp_ptp_clock *clock) { ptp_clock_unregister(clock->ptp); cancel_delayed_work_sync(&clock->overflow_work); kfree(clock); } static int mlxsw_sp_ptp_parse(struct sk_buff *skb, u8 *p_domain_number, u8 *p_message_type, u16 *p_sequence_id) { unsigned int offset = 0; unsigned int ptp_class; u8 *data; data = skb_mac_header(skb); ptp_class = ptp_classify_raw(skb); switch (ptp_class & PTP_CLASS_VMASK) { case PTP_CLASS_V1: case PTP_CLASS_V2: break; default: return -ERANGE; } if (ptp_class & PTP_CLASS_VLAN) offset += VLAN_HLEN; switch (ptp_class & PTP_CLASS_PMASK) { case PTP_CLASS_IPV4: offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; break; case PTP_CLASS_IPV6: offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; break; case PTP_CLASS_L2: offset += ETH_HLEN; break; default: return -ERANGE; } /* PTP header is 34 bytes. */ if (skb->len < offset + 34) return -EINVAL; *p_message_type = data[offset] & 0x0f; *p_domain_number = data[offset + 4]; *p_sequence_id = (u16)(data[offset + 30]) << 8 | data[offset + 31]; return 0; } /* Returns NULL on successful insertion, a pointer on conflict, or an ERR_PTR on * error. */ static struct mlxsw_sp1_ptp_unmatched * mlxsw_sp1_ptp_unmatched_save(struct mlxsw_sp *mlxsw_sp, struct mlxsw_sp1_ptp_key key, struct sk_buff *skb, u64 timestamp) { int cycles = MLXSW_SP1_PTP_HT_GC_TIMEOUT / MLXSW_SP1_PTP_HT_GC_INTERVAL; struct mlxsw_sp_ptp_state *ptp_state = mlxsw_sp->ptp_state; struct mlxsw_sp1_ptp_unmatched *unmatched; struct mlxsw_sp1_ptp_unmatched *conflict; unmatched = kzalloc(sizeof(*unmatched), GFP_ATOMIC); if (!unmatched) return ERR_PTR(-ENOMEM); unmatched->key = key; unmatched->skb = skb; unmatched->timestamp = timestamp; unmatched->gc_cycle = mlxsw_sp->ptp_state->gc_cycle + cycles; conflict = rhashtable_lookup_get_insert_fast(&ptp_state->unmatched_ht, &unmatched->ht_node, mlxsw_sp1_ptp_unmatched_ht_params); if (conflict) kfree(unmatched); return conflict; } static struct mlxsw_sp1_ptp_unmatched * mlxsw_sp1_ptp_unmatched_lookup(struct mlxsw_sp *mlxsw_sp, struct mlxsw_sp1_ptp_key key) { return rhashtable_lookup(&mlxsw_sp->ptp_state->unmatched_ht, &key, mlxsw_sp1_ptp_unmatched_ht_params); } static int mlxsw_sp1_ptp_unmatched_remove(struct mlxsw_sp *mlxsw_sp, struct mlxsw_sp1_ptp_unmatched *unmatched) { return rhashtable_remove_fast(&mlxsw_sp->ptp_state->unmatched_ht, &unmatched->ht_node, mlxsw_sp1_ptp_unmatched_ht_params); } /* This function is called in the following scenarios: * * 1) When a packet is matched with its timestamp. * 2) In several situation when it is necessary to immediately pass on * an SKB without a timestamp. * 3) From GC indirectly through mlxsw_sp1_ptp_unmatched_finish(). * This case is similar to 2) above. */ static void mlxsw_sp1_ptp_packet_finish(struct mlxsw_sp *mlxsw_sp, struct sk_buff *skb, u8 local_port, bool ingress, struct skb_shared_hwtstamps *hwtstamps) { struct mlxsw_sp_port *mlxsw_sp_port; /* Between capturing the packet and finishing it, there is a window of * opportunity for the originating port to go away (e.g. due to a * split). Also make sure the SKB device reference is still valid. */ mlxsw_sp_port = mlxsw_sp->ports[local_port]; if (!(mlxsw_sp_port && (!skb->dev || skb->dev == mlxsw_sp_port->dev))) { dev_kfree_skb_any(skb); return; } if (ingress) { if (hwtstamps) *skb_hwtstamps(skb) = *hwtstamps; mlxsw_sp_rx_listener_no_mark_func(skb, local_port, mlxsw_sp); } else { /* skb_tstamp_tx() allows hwtstamps to be NULL. */ skb_tstamp_tx(skb, hwtstamps); dev_kfree_skb_any(skb); } } static void mlxsw_sp1_packet_timestamp(struct mlxsw_sp *mlxsw_sp, struct mlxsw_sp1_ptp_key key, struct sk_buff *skb, u64 timestamp) { struct skb_shared_hwtstamps hwtstamps; u64 nsec; spin_lock_bh(&mlxsw_sp->clock->lock); nsec = timecounter_cyc2time(&mlxsw_sp->clock->tc, timestamp); spin_unlock_bh(&mlxsw_sp->clock->lock); hwtstamps.hwtstamp = ns_to_ktime(nsec); mlxsw_sp1_ptp_packet_finish(mlxsw_sp, skb, key.local_port, key.ingress, &hwtstamps); } static void mlxsw_sp1_ptp_unmatched_finish(struct mlxsw_sp *mlxsw_sp, struct mlxsw_sp1_ptp_unmatched *unmatched) { if (unmatched->skb && unmatched->timestamp) mlxsw_sp1_packet_timestamp(mlxsw_sp, unmatched->key, unmatched->skb, unmatched->timestamp); else if (unmatched->skb) mlxsw_sp1_ptp_packet_finish(mlxsw_sp, unmatched->skb, unmatched->key.local_port, unmatched->key.ingress, NULL); kfree_rcu(unmatched, rcu); } static void mlxsw_sp1_ptp_unmatched_free_fn(void *ptr, void *arg) { struct mlxsw_sp1_ptp_unmatched *unmatched = ptr; /* This is invoked at a point where the ports are gone already. Nothing * to do with whatever is left in the HT but to free it. */ if (unmatched->skb) dev_kfree_skb_any(unmatched->skb); kfree_rcu(unmatched, rcu); } static void mlxsw_sp1_ptp_got_piece(struct mlxsw_sp *mlxsw_sp, struct mlxsw_sp1_ptp_key key, struct sk_buff *skb, u64 timestamp) { struct mlxsw_sp1_ptp_unmatched *unmatched, *conflict; int err; rcu_read_lock(); unmatched = mlxsw_sp1_ptp_unmatched_lookup(mlxsw_sp, key); spin_lock(&mlxsw_sp->ptp_state->unmatched_lock); if (unmatched) { /* There was an unmatched entry when we looked, but it may have * been removed before we took the lock. */ err = mlxsw_sp1_ptp_unmatched_remove(mlxsw_sp, unmatched); if (err) unmatched = NULL; } if (!unmatched) { /* We have no unmatched entry, but one may have been added after * we looked, but before we took the lock. */ unmatched = mlxsw_sp1_ptp_unmatched_save(mlxsw_sp, key, skb, timestamp); if (IS_ERR(unmatched)) { if (skb) mlxsw_sp1_ptp_packet_finish(mlxsw_sp, skb, key.local_port, key.ingress, NULL); unmatched = NULL; } else if (unmatched) { /* Save just told us, under lock, that the entry is * there, so this has to work. */ err = mlxsw_sp1_ptp_unmatched_remove(mlxsw_sp, unmatched); WARN_ON_ONCE(err); } } /* If unmatched is non-NULL here, it comes either from the lookup, or * from the save attempt above. In either case the entry was removed * from the hash table. If unmatched is NULL, a new unmatched entry was * added to the hash table, and there was no conflict. */ if (skb && unmatched && unmatched->timestamp) { unmatched->skb = skb; } else if (timestamp && unmatched && unmatched->skb) { unmatched->timestamp = timestamp; } else if (unmatched) { /* unmatched holds an older entry of the same type: either an * skb if we are handling skb, or a timestamp if we are handling * timestamp. We can't match that up, so save what we have. */ conflict = mlxsw_sp1_ptp_unmatched_save(mlxsw_sp, key, skb, timestamp); if (IS_ERR(conflict)) { if (skb) mlxsw_sp1_ptp_packet_finish(mlxsw_sp, skb, key.local_port, key.ingress, NULL); } else { /* Above, we removed an object with this key from the * hash table, under lock, so conflict can not be a * valid pointer. */ WARN_ON_ONCE(conflict); } } spin_unlock(&mlxsw_sp->ptp_state->unmatched_lock); if (unmatched) mlxsw_sp1_ptp_unmatched_finish(mlxsw_sp, unmatched); rcu_read_unlock(); } static void mlxsw_sp1_ptp_got_packet(struct mlxsw_sp *mlxsw_sp, struct sk_buff *skb, u8 local_port, bool ingress) { struct mlxsw_sp_port *mlxsw_sp_port; struct mlxsw_sp1_ptp_key key; u8 types; int err; mlxsw_sp_port = mlxsw_sp->ports[local_port]; if (!mlxsw_sp_port) goto immediate; types = ingress ? mlxsw_sp_port->ptp.ing_types : mlxsw_sp_port->ptp.egr_types; if (!types) goto immediate; memset(&key, 0, sizeof(key)); key.local_port = local_port; key.ingress = ingress; err = mlxsw_sp_ptp_parse(skb, &key.domain_number, &key.message_type, &key.sequence_id); if (err) goto immediate; /* For packets whose timestamping was not enabled on this port, don't * bother trying to match the timestamp. */ if (!((1 << key.message_type) & types)) goto immediate; mlxsw_sp1_ptp_got_piece(mlxsw_sp, key, skb, 0); return; immediate: mlxsw_sp1_ptp_packet_finish(mlxsw_sp, skb, local_port, ingress, NULL); } void mlxsw_sp1_ptp_got_timestamp(struct mlxsw_sp *mlxsw_sp, bool ingress, u8 local_port, u8 message_type, u8 domain_number, u16 sequence_id, u64 timestamp) { struct mlxsw_sp_port *mlxsw_sp_port; struct mlxsw_sp1_ptp_key key; u8 types; mlxsw_sp_port = mlxsw_sp->ports[local_port]; if (!mlxsw_sp_port) return; types = ingress ? mlxsw_sp_port->ptp.ing_types : mlxsw_sp_port->ptp.egr_types; /* For message types whose timestamping was not enabled on this port, * don't bother with the timestamp. */ if (!((1 << message_type) & types)) return; memset(&key, 0, sizeof(key)); key.local_port = local_port; key.domain_number = domain_number; key.message_type = message_type; key.sequence_id = sequence_id; key.ingress = ingress; mlxsw_sp1_ptp_got_piece(mlxsw_sp, key, NULL, timestamp); } void mlxsw_sp1_ptp_receive(struct mlxsw_sp *mlxsw_sp, struct sk_buff *skb, u8 local_port) { skb_reset_mac_header(skb); mlxsw_sp1_ptp_got_packet(mlxsw_sp, skb, local_port, true); } void mlxsw_sp1_ptp_transmitted(struct mlxsw_sp *mlxsw_sp, struct sk_buff *skb, u8 local_port) { mlxsw_sp1_ptp_got_packet(mlxsw_sp, skb, local_port, false); } static void mlxsw_sp1_ptp_ht_gc_collect(struct mlxsw_sp_ptp_state *ptp_state, struct mlxsw_sp1_ptp_unmatched *unmatched) { int err; /* If an unmatched entry has an SKB, it has to be handed over to the * networking stack. This is usually done from a trap handler, which is * invoked in a softirq context. Here we are going to do it in process * context. If that were to be interrupted by a softirq, it could cause * a deadlock when an attempt is made to take an already-taken lock * somewhere along the sending path. Disable softirqs to prevent this. */ local_bh_disable(); spin_lock(&ptp_state->unmatched_lock); err = rhashtable_remove_fast(&ptp_state->unmatched_ht, &unmatched->ht_node, mlxsw_sp1_ptp_unmatched_ht_params); spin_unlock(&ptp_state->unmatched_lock); if (err) /* The packet was matched with timestamp during the walk. */ goto out; /* mlxsw_sp1_ptp_unmatched_finish() invokes netif_receive_skb(). While * the comment at that function states that it can only be called in * soft IRQ context, this pattern of local_bh_disable() + * netif_receive_skb(), in process context, is seen elsewhere in the * kernel, notably in pktgen. */ mlxsw_sp1_ptp_unmatched_finish(ptp_state->mlxsw_sp, unmatched); out: local_bh_enable(); } static void mlxsw_sp1_ptp_ht_gc(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct mlxsw_sp1_ptp_unmatched *unmatched; struct mlxsw_sp_ptp_state *ptp_state; struct rhashtable_iter iter; u32 gc_cycle; void *obj; ptp_state = container_of(dwork, struct mlxsw_sp_ptp_state, ht_gc_dw); gc_cycle = ptp_state->gc_cycle++; rhashtable_walk_enter(&ptp_state->unmatched_ht, &iter); rhashtable_walk_start(&iter); while ((obj = rhashtable_walk_next(&iter))) { if (IS_ERR(obj)) continue; unmatched = obj; if (unmatched->gc_cycle <= gc_cycle) mlxsw_sp1_ptp_ht_gc_collect(ptp_state, unmatched); } rhashtable_walk_stop(&iter); rhashtable_walk_exit(&iter); mlxsw_core_schedule_dw(&ptp_state->ht_gc_dw, MLXSW_SP1_PTP_HT_GC_INTERVAL); } static int mlxsw_sp_ptp_mtptpt_set(struct mlxsw_sp *mlxsw_sp, enum mlxsw_reg_mtptpt_trap_id trap_id, u16 message_type) { char mtptpt_pl[MLXSW_REG_MTPTPT_LEN]; mlxsw_reg_mtptptp_pack(mtptpt_pl, trap_id, message_type); return mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(mtptpt), mtptpt_pl); } static int mlxsw_sp1_ptp_set_fifo_clr_on_trap(struct mlxsw_sp *mlxsw_sp, bool clr) { char mogcr_pl[MLXSW_REG_MOGCR_LEN] = {0}; int err; err = mlxsw_reg_query(mlxsw_sp->core, MLXSW_REG(mogcr), mogcr_pl); if (err) return err; mlxsw_reg_mogcr_ptp_iftc_set(mogcr_pl, clr); mlxsw_reg_mogcr_ptp_eftc_set(mogcr_pl, clr); return mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(mogcr), mogcr_pl); } static int mlxsw_sp1_ptp_mtpppc_set(struct mlxsw_sp *mlxsw_sp, u16 ing_types, u16 egr_types) { char mtpppc_pl[MLXSW_REG_MTPPPC_LEN]; mlxsw_reg_mtpppc_pack(mtpppc_pl, ing_types, egr_types); return mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(mtpppc), mtpppc_pl); } struct mlxsw_sp1_ptp_shaper_params { u32 ethtool_speed; enum mlxsw_reg_qpsc_port_speed port_speed; u8 shaper_time_exp; u8 shaper_time_mantissa; u8 shaper_inc; u8 shaper_bs; u8 port_to_shaper_credits; int ing_timestamp_inc; int egr_timestamp_inc; }; static const struct mlxsw_sp1_ptp_shaper_params mlxsw_sp1_ptp_shaper_params[] = { }; #define MLXSW_SP1_PTP_SHAPER_PARAMS_LEN ARRAY_SIZE(mlxsw_sp1_ptp_shaper_params) static int mlxsw_sp1_ptp_shaper_params_set(struct mlxsw_sp *mlxsw_sp) { const struct mlxsw_sp1_ptp_shaper_params *params; char qpsc_pl[MLXSW_REG_QPSC_LEN]; int i, err; for (i = 0; i < MLXSW_SP1_PTP_SHAPER_PARAMS_LEN; i++) { params = &mlxsw_sp1_ptp_shaper_params[i]; mlxsw_reg_qpsc_pack(qpsc_pl, params->port_speed, params->shaper_time_exp, params->shaper_time_mantissa, params->shaper_inc, params->shaper_bs, params->port_to_shaper_credits, params->ing_timestamp_inc, params->egr_timestamp_inc); err = mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(qpsc), qpsc_pl); if (err) return err; } return 0; } struct mlxsw_sp_ptp_state *mlxsw_sp1_ptp_init(struct mlxsw_sp *mlxsw_sp) { struct mlxsw_sp_ptp_state *ptp_state; u16 message_type; int err; err = mlxsw_sp1_ptp_shaper_params_set(mlxsw_sp); if (err) return ERR_PTR(err); ptp_state = kzalloc(sizeof(*ptp_state), GFP_KERNEL); if (!ptp_state) return ERR_PTR(-ENOMEM); ptp_state->mlxsw_sp = mlxsw_sp; spin_lock_init(&ptp_state->unmatched_lock); err = rhashtable_init(&ptp_state->unmatched_ht, &mlxsw_sp1_ptp_unmatched_ht_params); if (err) goto err_hashtable_init; /* Delive these message types as PTP0. */ message_type = BIT(MLXSW_SP_PTP_MESSAGE_TYPE_SYNC) | BIT(MLXSW_SP_PTP_MESSAGE_TYPE_DELAY_REQ) | BIT(MLXSW_SP_PTP_MESSAGE_TYPE_PDELAY_REQ) | BIT(MLXSW_SP_PTP_MESSAGE_TYPE_PDELAY_RESP); err = mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP0, message_type); if (err) goto err_mtptpt_set; /* Everything else is PTP1. */ message_type = ~message_type; err = mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP1, message_type); if (err) goto err_mtptpt1_set; err = mlxsw_sp1_ptp_set_fifo_clr_on_trap(mlxsw_sp, true); if (err) goto err_fifo_clr; INIT_DELAYED_WORK(&ptp_state->ht_gc_dw, mlxsw_sp1_ptp_ht_gc); mlxsw_core_schedule_dw(&ptp_state->ht_gc_dw, MLXSW_SP1_PTP_HT_GC_INTERVAL); return ptp_state; err_fifo_clr: mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP1, 0); err_mtptpt1_set: mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP0, 0); err_mtptpt_set: rhashtable_destroy(&ptp_state->unmatched_ht); err_hashtable_init: kfree(ptp_state); return ERR_PTR(err); } void mlxsw_sp1_ptp_fini(struct mlxsw_sp_ptp_state *ptp_state) { struct mlxsw_sp *mlxsw_sp = ptp_state->mlxsw_sp; cancel_delayed_work_sync(&ptp_state->ht_gc_dw); mlxsw_sp1_ptp_mtpppc_set(mlxsw_sp, 0, 0); mlxsw_sp1_ptp_set_fifo_clr_on_trap(mlxsw_sp, false); mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP1, 0); mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP0, 0); rhashtable_free_and_destroy(&ptp_state->unmatched_ht, &mlxsw_sp1_ptp_unmatched_free_fn, NULL); kfree(ptp_state); } int mlxsw_sp1_ptp_hwtstamp_get(struct mlxsw_sp_port *mlxsw_sp_port, struct hwtstamp_config *config) { *config = mlxsw_sp_port->ptp.hwtstamp_config; return 0; } static int mlxsw_sp_ptp_get_message_types(const struct hwtstamp_config *config, u16 *p_ing_types, u16 *p_egr_types, enum hwtstamp_rx_filters *p_rx_filter) { enum hwtstamp_rx_filters rx_filter = config->rx_filter; enum hwtstamp_tx_types tx_type = config->tx_type; u16 ing_types = 0x00; u16 egr_types = 0x00; switch (tx_type) { case HWTSTAMP_TX_OFF: egr_types = 0x00; break; case HWTSTAMP_TX_ON: egr_types = 0xff; break; case HWTSTAMP_TX_ONESTEP_SYNC: return -ERANGE; } switch (rx_filter) { case HWTSTAMP_FILTER_NONE: ing_types = 0x00; break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_SYNC: ing_types = 0x01; break; case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: ing_types = 0x02; break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_EVENT: ing_types = 0x0f; break; case HWTSTAMP_FILTER_ALL: ing_types = 0xff; break; case HWTSTAMP_FILTER_SOME: case HWTSTAMP_FILTER_NTP_ALL: return -ERANGE; } *p_ing_types = ing_types; *p_egr_types = egr_types; *p_rx_filter = rx_filter; return 0; } static int mlxsw_sp1_ptp_mtpppc_update(struct mlxsw_sp_port *mlxsw_sp_port, u16 ing_types, u16 egr_types) { struct mlxsw_sp *mlxsw_sp = mlxsw_sp_port->mlxsw_sp; struct mlxsw_sp_port *tmp; int i; /* MTPPPC configures timestamping globally, not per port. Find the * configuration that contains all configured timestamping requests. */ for (i = 1; i < mlxsw_core_max_ports(mlxsw_sp->core); i++) { tmp = mlxsw_sp->ports[i]; if (tmp && tmp != mlxsw_sp_port) { ing_types |= tmp->ptp.ing_types; egr_types |= tmp->ptp.egr_types; } } return mlxsw_sp1_ptp_mtpppc_set(mlxsw_sp_port->mlxsw_sp, ing_types, egr_types); } static bool mlxsw_sp1_ptp_hwtstamp_enabled(struct mlxsw_sp_port *mlxsw_sp_port) { return mlxsw_sp_port->ptp.ing_types || mlxsw_sp_port->ptp.egr_types; } static int mlxsw_sp1_ptp_port_shaper_set(struct mlxsw_sp_port *mlxsw_sp_port, bool enable) { struct mlxsw_sp *mlxsw_sp = mlxsw_sp_port->mlxsw_sp; char qeec_pl[MLXSW_REG_QEEC_LEN]; mlxsw_reg_qeec_ptps_pack(qeec_pl, mlxsw_sp_port->local_port, enable); return mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(qeec), qeec_pl); } static int mlxsw_sp1_ptp_port_shaper_check(struct mlxsw_sp_port *mlxsw_sp_port) { const struct mlxsw_sp_port_type_speed_ops *port_type_speed_ops; struct mlxsw_sp *mlxsw_sp = mlxsw_sp_port->mlxsw_sp; char ptys_pl[MLXSW_REG_PTYS_LEN]; u32 eth_proto_oper, speed; bool ptps = false; int err, i; if (!mlxsw_sp1_ptp_hwtstamp_enabled(mlxsw_sp_port)) return mlxsw_sp1_ptp_port_shaper_set(mlxsw_sp_port, false); port_type_speed_ops = mlxsw_sp->port_type_speed_ops; port_type_speed_ops->reg_ptys_eth_pack(mlxsw_sp, ptys_pl, mlxsw_sp_port->local_port, 0, false); err = mlxsw_reg_query(mlxsw_sp->core, MLXSW_REG(ptys), ptys_pl); if (err) return err; port_type_speed_ops->reg_ptys_eth_unpack(mlxsw_sp, ptys_pl, NULL, NULL, ð_proto_oper); speed = port_type_speed_ops->from_ptys_speed(mlxsw_sp, eth_proto_oper); for (i = 0; i < MLXSW_SP1_PTP_SHAPER_PARAMS_LEN; i++) { if (mlxsw_sp1_ptp_shaper_params[i].ethtool_speed == speed) { ptps = true; break; } } return mlxsw_sp1_ptp_port_shaper_set(mlxsw_sp_port, ptps); } void mlxsw_sp1_ptp_shaper_work(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct mlxsw_sp_port *mlxsw_sp_port; int err; mlxsw_sp_port = container_of(dwork, struct mlxsw_sp_port, ptp.shaper_dw); if (!mlxsw_sp1_ptp_hwtstamp_enabled(mlxsw_sp_port)) return; err = mlxsw_sp1_ptp_port_shaper_check(mlxsw_sp_port); if (err) netdev_err(mlxsw_sp_port->dev, "Failed to set up PTP shaper\n"); } int mlxsw_sp1_ptp_hwtstamp_set(struct mlxsw_sp_port *mlxsw_sp_port, struct hwtstamp_config *config) { enum hwtstamp_rx_filters rx_filter; u16 ing_types; u16 egr_types; int err; err = mlxsw_sp_ptp_get_message_types(config, &ing_types, &egr_types, &rx_filter); if (err) return err; err = mlxsw_sp1_ptp_mtpppc_update(mlxsw_sp_port, ing_types, egr_types); if (err) return err; mlxsw_sp_port->ptp.hwtstamp_config = *config; mlxsw_sp_port->ptp.ing_types = ing_types; mlxsw_sp_port->ptp.egr_types = egr_types; err = mlxsw_sp1_ptp_port_shaper_check(mlxsw_sp_port); if (err) return err; /* Notify the ioctl caller what we are actually timestamping. */ config->rx_filter = rx_filter; return 0; } int mlxsw_sp1_ptp_get_ts_info(struct mlxsw_sp *mlxsw_sp, struct ethtool_ts_info *info) { info->phc_index = ptp_clock_index(mlxsw_sp->clock->ptp); info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_ALL); return 0; }