/* * Copyright 2011 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include #include #include #include "nouveau_drm.h" #include "nouveau_dma.h" #include "nouveau_gem.h" #include "nouveau_connector.h" #include "nouveau_encoder.h" #include "nouveau_crtc.h" #include "nouveau_fence.h" #include "nv50_display.h" #include #include #include #include #include #include #include #define EVO_DMA_NR 9 #define EVO_MASTER (0x00) #define EVO_FLIP(c) (0x01 + (c)) #define EVO_OVLY(c) (0x05 + (c)) #define EVO_OIMM(c) (0x09 + (c)) #define EVO_CURS(c) (0x0d + (c)) /* offsets in shared sync bo of various structures */ #define EVO_SYNC(c, o) ((c) * 0x0100 + (o)) #define EVO_MAST_NTFY EVO_SYNC( 0, 0x00) #define EVO_FLIP_SEM0(c) EVO_SYNC((c), 0x00) #define EVO_FLIP_SEM1(c) EVO_SYNC((c), 0x10) #define EVO_CORE_HANDLE (0xd1500000) #define EVO_CHAN_HANDLE(t,i) (0xd15c0000 | (((t) & 0x00ff) << 8) | (i)) #define EVO_CHAN_OCLASS(t,c) ((nv_hclass(c) & 0xff00) | ((t) & 0x00ff)) #define EVO_PUSH_HANDLE(t,i) (0xd15b0000 | (i) | \ (((NV50_DISP_##t##_CLASS) & 0x00ff) << 8)) /****************************************************************************** * EVO channel *****************************************************************************/ struct nv50_chan { struct nouveau_object *user; u32 handle; }; static int nv50_chan_create(struct nouveau_object *core, u32 bclass, u8 head, void *data, u32 size, struct nv50_chan *chan) { struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS); const u32 oclass = EVO_CHAN_OCLASS(bclass, core); const u32 handle = EVO_CHAN_HANDLE(bclass, head); int ret; ret = nouveau_object_new(client, EVO_CORE_HANDLE, handle, oclass, data, size, &chan->user); if (ret) return ret; chan->handle = handle; return 0; } static void nv50_chan_destroy(struct nouveau_object *core, struct nv50_chan *chan) { struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS); if (chan->handle) nouveau_object_del(client, EVO_CORE_HANDLE, chan->handle); } /****************************************************************************** * PIO EVO channel *****************************************************************************/ struct nv50_pioc { struct nv50_chan base; }; static void nv50_pioc_destroy(struct nouveau_object *core, struct nv50_pioc *pioc) { nv50_chan_destroy(core, &pioc->base); } static int nv50_pioc_create(struct nouveau_object *core, u32 bclass, u8 head, void *data, u32 size, struct nv50_pioc *pioc) { return nv50_chan_create(core, bclass, head, data, size, &pioc->base); } /****************************************************************************** * DMA EVO channel *****************************************************************************/ struct nv50_dmac { struct nv50_chan base; dma_addr_t handle; u32 *ptr; }; static void nv50_dmac_destroy(struct nouveau_object *core, struct nv50_dmac *dmac) { if (dmac->ptr) { struct pci_dev *pdev = nv_device(core)->pdev; pci_free_consistent(pdev, PAGE_SIZE, dmac->ptr, dmac->handle); } nv50_chan_destroy(core, &dmac->base); } static int nv50_dmac_create_fbdma(struct nouveau_object *core, u32 parent) { struct nouveau_fb *pfb = nouveau_fb(core); struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS); struct nouveau_object *object; int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP, NV_DMA_IN_MEMORY_CLASS, &(struct nv_dma_class) { .flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR, .start = 0, .limit = pfb->ram.size - 1, .conf0 = NV50_DMA_CONF0_ENABLE | NV50_DMA_CONF0_PART_256, }, sizeof(struct nv_dma_class), &object); if (ret) return ret; ret = nouveau_object_new(client, parent, NvEvoFB16, NV_DMA_IN_MEMORY_CLASS, &(struct nv_dma_class) { .flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR, .start = 0, .limit = pfb->ram.size - 1, .conf0 = NV50_DMA_CONF0_ENABLE | 0x70 | NV50_DMA_CONF0_PART_256, }, sizeof(struct nv_dma_class), &object); if (ret) return ret; ret = nouveau_object_new(client, parent, NvEvoFB32, NV_DMA_IN_MEMORY_CLASS, &(struct nv_dma_class) { .flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR, .start = 0, .limit = pfb->ram.size - 1, .conf0 = NV50_DMA_CONF0_ENABLE | 0x7a | NV50_DMA_CONF0_PART_256, }, sizeof(struct nv_dma_class), &object); return ret; } static int nvc0_dmac_create_fbdma(struct nouveau_object *core, u32 parent) { struct nouveau_fb *pfb = nouveau_fb(core); struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS); struct nouveau_object *object; int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP, NV_DMA_IN_MEMORY_CLASS, &(struct nv_dma_class) { .flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR, .start = 0, .limit = pfb->ram.size - 1, .conf0 = NVC0_DMA_CONF0_ENABLE, }, sizeof(struct nv_dma_class), &object); if (ret) return ret; ret = nouveau_object_new(client, parent, NvEvoFB16, NV_DMA_IN_MEMORY_CLASS, &(struct nv_dma_class) { .flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR, .start = 0, .limit = pfb->ram.size - 1, .conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe, }, sizeof(struct nv_dma_class), &object); if (ret) return ret; ret = nouveau_object_new(client, parent, NvEvoFB32, NV_DMA_IN_MEMORY_CLASS, &(struct nv_dma_class) { .flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR, .start = 0, .limit = pfb->ram.size - 1, .conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe, }, sizeof(struct nv_dma_class), &object); return ret; } static int nvd0_dmac_create_fbdma(struct nouveau_object *core, u32 parent) { struct nouveau_fb *pfb = nouveau_fb(core); struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS); struct nouveau_object *object; int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP, NV_DMA_IN_MEMORY_CLASS, &(struct nv_dma_class) { .flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR, .start = 0, .limit = pfb->ram.size - 1, .conf0 = NVD0_DMA_CONF0_ENABLE | NVD0_DMA_CONF0_PAGE_LP, }, sizeof(struct nv_dma_class), &object); if (ret) return ret; ret = nouveau_object_new(client, parent, NvEvoFB32, NV_DMA_IN_MEMORY_CLASS, &(struct nv_dma_class) { .flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR, .start = 0, .limit = pfb->ram.size - 1, .conf0 = NVD0_DMA_CONF0_ENABLE | 0xfe | NVD0_DMA_CONF0_PAGE_LP, }, sizeof(struct nv_dma_class), &object); return ret; } static int nv50_dmac_create(struct nouveau_object *core, u32 bclass, u8 head, void *data, u32 size, u64 syncbuf, struct nv50_dmac *dmac) { struct nouveau_fb *pfb = nouveau_fb(core); struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS); struct nouveau_object *object; u32 pushbuf = *(u32 *)data; int ret; dmac->ptr = pci_alloc_consistent(nv_device(core)->pdev, PAGE_SIZE, &dmac->handle); if (!dmac->ptr) return -ENOMEM; ret = nouveau_object_new(client, NVDRM_DEVICE, pushbuf, NV_DMA_FROM_MEMORY_CLASS, &(struct nv_dma_class) { .flags = NV_DMA_TARGET_PCI_US | NV_DMA_ACCESS_RD, .start = dmac->handle + 0x0000, .limit = dmac->handle + 0x0fff, }, sizeof(struct nv_dma_class), &object); if (ret) return ret; ret = nv50_chan_create(core, bclass, head, data, size, &dmac->base); if (ret) return ret; ret = nouveau_object_new(client, dmac->base.handle, NvEvoSync, NV_DMA_IN_MEMORY_CLASS, &(struct nv_dma_class) { .flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR, .start = syncbuf + 0x0000, .limit = syncbuf + 0x0fff, }, sizeof(struct nv_dma_class), &object); if (ret) return ret; ret = nouveau_object_new(client, dmac->base.handle, NvEvoVRAM, NV_DMA_IN_MEMORY_CLASS, &(struct nv_dma_class) { .flags = NV_DMA_TARGET_VRAM | NV_DMA_ACCESS_RDWR, .start = 0, .limit = pfb->ram.size - 1, }, sizeof(struct nv_dma_class), &object); if (ret) return ret; if (nv_device(core)->card_type < NV_C0) ret = nv50_dmac_create_fbdma(core, dmac->base.handle); else if (nv_device(core)->card_type < NV_D0) ret = nvc0_dmac_create_fbdma(core, dmac->base.handle); else ret = nvd0_dmac_create_fbdma(core, dmac->base.handle); return ret; } struct nv50_mast { struct nv50_dmac base; }; struct nv50_curs { struct nv50_pioc base; }; struct nv50_sync { struct nv50_dmac base; struct { u32 offset; u16 value; } sem; }; struct nv50_ovly { struct nv50_dmac base; }; struct nv50_oimm { struct nv50_pioc base; }; struct nv50_head { struct nouveau_crtc base; struct nv50_curs curs; struct nv50_sync sync; struct nv50_ovly ovly; struct nv50_oimm oimm; }; #define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c)) #define nv50_curs(c) (&nv50_head(c)->curs) #define nv50_sync(c) (&nv50_head(c)->sync) #define nv50_ovly(c) (&nv50_head(c)->ovly) #define nv50_oimm(c) (&nv50_head(c)->oimm) #define nv50_chan(c) (&(c)->base.base) #define nv50_vers(c) nv_mclass(nv50_chan(c)->user) struct nv50_disp { struct nouveau_object *core; struct nv50_mast mast; u32 modeset; struct nouveau_bo *sync; }; static struct nv50_disp * nv50_disp(struct drm_device *dev) { return nouveau_display(dev)->priv; } #define nv50_mast(d) (&nv50_disp(d)->mast) static struct drm_crtc * nv50_display_crtc_get(struct drm_encoder *encoder) { return nouveau_encoder(encoder)->crtc; } /****************************************************************************** * EVO channel helpers *****************************************************************************/ static u32 * evo_wait(void *evoc, int nr) { struct nv50_dmac *dmac = evoc; u32 put = nv_ro32(dmac->base.user, 0x0000) / 4; if (put + nr >= (PAGE_SIZE / 4) - 8) { dmac->ptr[put] = 0x20000000; nv_wo32(dmac->base.user, 0x0000, 0x00000000); if (!nv_wait(dmac->base.user, 0x0004, ~0, 0x00000000)) { NV_ERROR(dmac->base.user, "channel stalled\n"); return NULL; } put = 0; } return dmac->ptr + put; } static void evo_kick(u32 *push, void *evoc) { struct nv50_dmac *dmac = evoc; nv_wo32(dmac->base.user, 0x0000, (push - dmac->ptr) << 2); } #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m)) #define evo_data(p,d) *((p)++) = (d) static bool evo_sync_wait(void *data) { return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000; } static int evo_sync(struct drm_device *dev) { struct nouveau_device *device = nouveau_dev(dev); struct nv50_disp *disp = nv50_disp(dev); struct nv50_mast *mast = nv50_mast(dev); u32 *push = evo_wait(mast, 8); if (push) { nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000); evo_mthd(push, 0x0084, 1); evo_data(push, 0x80000000 | EVO_MAST_NTFY); evo_mthd(push, 0x0080, 2); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_kick(push, mast); if (nv_wait_cb(device, evo_sync_wait, disp->sync)) return 0; } return -EBUSY; } /****************************************************************************** * Page flipping channel *****************************************************************************/ struct nouveau_bo * nv50_display_crtc_sema(struct drm_device *dev, int crtc) { return nv50_disp(dev)->sync; } void nv50_display_flip_stop(struct drm_crtc *crtc) { struct nv50_sync *sync = nv50_sync(crtc); u32 *push; push = evo_wait(sync, 8); if (push) { evo_mthd(push, 0x0084, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0094, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x00c0, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, sync); } } int nv50_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct nouveau_channel *chan, u32 swap_interval) { struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb); struct nv50_disp *disp = nv50_disp(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv50_sync *sync = nv50_sync(crtc); u32 *push; int ret; swap_interval <<= 4; if (swap_interval == 0) swap_interval |= 0x100; push = evo_wait(sync, 128); if (unlikely(push == NULL)) return -EBUSY; /* synchronise with the rendering channel, if necessary */ if (likely(chan)) { ret = RING_SPACE(chan, 10); if (ret) return ret; if (nv_mclass(chan->object) < NV84_CHANNEL_IND_CLASS) { BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 2); OUT_RING (chan, NvEvoSema0 + nv_crtc->index); OUT_RING (chan, sync->sem.offset); BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE, 1); OUT_RING (chan, 0xf00d0000 | sync->sem.value); BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET, 2); OUT_RING (chan, sync->sem.offset ^ 0x10); OUT_RING (chan, 0x74b1e000); BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 1); OUT_RING (chan, NvSema); } else if (nv_mclass(chan->object) < NVC0_CHANNEL_IND_CLASS) { u64 offset = nv84_fence_crtc(chan, nv_crtc->index); offset += sync->sem.offset; BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4); OUT_RING (chan, upper_32_bits(offset)); OUT_RING (chan, lower_32_bits(offset)); OUT_RING (chan, 0xf00d0000 | sync->sem.value); OUT_RING (chan, 0x00000002); BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4); OUT_RING (chan, upper_32_bits(offset)); OUT_RING (chan, lower_32_bits(offset ^ 0x10)); OUT_RING (chan, 0x74b1e000); OUT_RING (chan, 0x00000001); } else { u64 offset = nv84_fence_crtc(chan, nv_crtc->index); offset += sync->sem.offset; BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4); OUT_RING (chan, upper_32_bits(offset)); OUT_RING (chan, lower_32_bits(offset)); OUT_RING (chan, 0xf00d0000 | sync->sem.value); OUT_RING (chan, 0x00001002); BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4); OUT_RING (chan, upper_32_bits(offset)); OUT_RING (chan, lower_32_bits(offset ^ 0x10)); OUT_RING (chan, 0x74b1e000); OUT_RING (chan, 0x00001001); } FIRE_RING (chan); } else { nouveau_bo_wr32(disp->sync, sync->sem.offset / 4, 0xf00d0000 | sync->sem.value); evo_sync(crtc->dev); } /* queue the flip */ evo_mthd(push, 0x0100, 1); evo_data(push, 0xfffe0000); evo_mthd(push, 0x0084, 1); evo_data(push, swap_interval); if (!(swap_interval & 0x00000100)) { evo_mthd(push, 0x00e0, 1); evo_data(push, 0x40000000); } evo_mthd(push, 0x0088, 4); evo_data(push, sync->sem.offset); evo_data(push, 0xf00d0000 | sync->sem.value); evo_data(push, 0x74b1e000); evo_data(push, NvEvoSync); evo_mthd(push, 0x00a0, 2); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_mthd(push, 0x00c0, 1); evo_data(push, nv_fb->r_dma); evo_mthd(push, 0x0110, 2); evo_data(push, 0x00000000); evo_data(push, 0x00000000); if (nv50_vers(sync) < NVD0_DISP_SYNC_CLASS) { evo_mthd(push, 0x0800, 5); evo_data(push, nv_fb->nvbo->bo.offset >> 8); evo_data(push, 0); evo_data(push, (fb->height << 16) | fb->width); evo_data(push, nv_fb->r_pitch); evo_data(push, nv_fb->r_format); } else { evo_mthd(push, 0x0400, 5); evo_data(push, nv_fb->nvbo->bo.offset >> 8); evo_data(push, 0); evo_data(push, (fb->height << 16) | fb->width); evo_data(push, nv_fb->r_pitch); evo_data(push, nv_fb->r_format); } evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, sync); sync->sem.offset ^= 0x10; sync->sem.value++; return 0; } /****************************************************************************** * CRTC *****************************************************************************/ static int nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); struct nouveau_connector *nv_connector; struct drm_connector *connector; u32 *push, mode = 0x00; nv_connector = nouveau_crtc_connector_get(nv_crtc); connector = &nv_connector->base; if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) { if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3) mode = DITHERING_MODE_DYNAMIC2X2; } else { mode = nv_connector->dithering_mode; } if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) { if (connector->display_info.bpc >= 8) mode |= DITHERING_DEPTH_8BPC; } else { mode |= nv_connector->dithering_depth; } push = evo_wait(mast, 4); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x08a0 + (nv_crtc->index * 0x0400), 1); evo_data(push, mode); } else if (nv50_vers(mast) < NVE0_DISP_MAST_CLASS) { evo_mthd(push, 0x0490 + (nv_crtc->index * 0x0300), 1); evo_data(push, mode); } else { evo_mthd(push, 0x04a0 + (nv_crtc->index * 0x0300), 1); evo_data(push, mode); } if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } return 0; } static int nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); struct drm_display_mode *omode, *umode = &nv_crtc->base.mode; struct drm_crtc *crtc = &nv_crtc->base; struct nouveau_connector *nv_connector; int mode = DRM_MODE_SCALE_NONE; u32 oX, oY, *push; /* start off at the resolution we programmed the crtc for, this * effectively handles NONE/FULL scaling */ nv_connector = nouveau_crtc_connector_get(nv_crtc); if (nv_connector && nv_connector->native_mode) mode = nv_connector->scaling_mode; if (mode != DRM_MODE_SCALE_NONE) omode = nv_connector->native_mode; else omode = umode; oX = omode->hdisplay; oY = omode->vdisplay; if (omode->flags & DRM_MODE_FLAG_DBLSCAN) oY *= 2; /* add overscan compensation if necessary, will keep the aspect * ratio the same as the backend mode unless overridden by the * user setting both hborder and vborder properties. */ if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON || (nv_connector->underscan == UNDERSCAN_AUTO && nv_connector->edid && drm_detect_hdmi_monitor(nv_connector->edid)))) { u32 bX = nv_connector->underscan_hborder; u32 bY = nv_connector->underscan_vborder; u32 aspect = (oY << 19) / oX; if (bX) { oX -= (bX * 2); if (bY) oY -= (bY * 2); else oY = ((oX * aspect) + (aspect / 2)) >> 19; } else { oX -= (oX >> 4) + 32; if (bY) oY -= (bY * 2); else oY = ((oX * aspect) + (aspect / 2)) >> 19; } } /* handle CENTER/ASPECT scaling, taking into account the areas * removed already for overscan compensation */ switch (mode) { case DRM_MODE_SCALE_CENTER: oX = min((u32)umode->hdisplay, oX); oY = min((u32)umode->vdisplay, oY); /* fall-through */ case DRM_MODE_SCALE_ASPECT: if (oY < oX) { u32 aspect = (umode->hdisplay << 19) / umode->vdisplay; oX = ((oY * aspect) + (aspect / 2)) >> 19; } else { u32 aspect = (umode->vdisplay << 19) / umode->hdisplay; oY = ((oX * aspect) + (aspect / 2)) >> 19; } break; default: break; } push = evo_wait(mast, 8); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { /*XXX: SCALE_CTRL_ACTIVE??? */ evo_mthd(push, 0x08d8 + (nv_crtc->index * 0x400), 2); evo_data(push, (oY << 16) | oX); evo_data(push, (oY << 16) | oX); evo_mthd(push, 0x08a4 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x08c8 + (nv_crtc->index * 0x400), 1); evo_data(push, umode->vdisplay << 16 | umode->hdisplay); } else { evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3); evo_data(push, (oY << 16) | oX); evo_data(push, (oY << 16) | oX); evo_data(push, (oY << 16) | oX); evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1); evo_data(push, umode->vdisplay << 16 | umode->hdisplay); } evo_kick(push, mast); if (update) { nv50_display_flip_stop(crtc); nv50_display_flip_next(crtc, crtc->fb, NULL, 1); } } return 0; } static int nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); u32 *push, hue, vib; int adj; adj = (nv_crtc->color_vibrance > 0) ? 50 : 0; vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff; hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff; push = evo_wait(mast, 16); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x08a8 + (nv_crtc->index * 0x400), 1); evo_data(push, (hue << 20) | (vib << 8)); } else { evo_mthd(push, 0x0498 + (nv_crtc->index * 0x300), 1); evo_data(push, (hue << 20) | (vib << 8)); } if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } return 0; } static int nv50_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb, int x, int y, bool update) { struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb); struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); u32 *push; push = evo_wait(mast, 16); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0860 + (nv_crtc->index * 0x400), 1); evo_data(push, nvfb->nvbo->bo.offset >> 8); evo_mthd(push, 0x0868 + (nv_crtc->index * 0x400), 3); evo_data(push, (fb->height << 16) | fb->width); evo_data(push, nvfb->r_pitch); evo_data(push, nvfb->r_format); evo_mthd(push, 0x08c0 + (nv_crtc->index * 0x400), 1); evo_data(push, (y << 16) | x); if (nv50_vers(mast) > NV50_DISP_MAST_CLASS) { evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1); evo_data(push, nvfb->r_dma); } } else { evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1); evo_data(push, nvfb->nvbo->bo.offset >> 8); evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4); evo_data(push, (fb->height << 16) | fb->width); evo_data(push, nvfb->r_pitch); evo_data(push, nvfb->r_format); evo_data(push, nvfb->r_dma); evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1); evo_data(push, (y << 16) | x); } if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } nv_crtc->fb.tile_flags = nvfb->r_dma; return 0; } static void nv50_crtc_cursor_show(struct nouveau_crtc *nv_crtc) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); u32 *push = evo_wait(mast, 16); if (push) { if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) { evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2); evo_data(push, 0x85000000); evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8); } else if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2); evo_data(push, 0x85000000); evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8); evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1); evo_data(push, NvEvoVRAM); } else { evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2); evo_data(push, 0x85000000); evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8); evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1); evo_data(push, NvEvoVRAM); } evo_kick(push, mast); } } static void nv50_crtc_cursor_hide(struct nouveau_crtc *nv_crtc) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); u32 *push = evo_wait(mast, 16); if (push) { if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) { evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x05000000); } else if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x05000000); evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); } else { evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x05000000); evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } } static void nv50_crtc_cursor_show_hide(struct nouveau_crtc *nv_crtc, bool show, bool update) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); if (show) nv50_crtc_cursor_show(nv_crtc); else nv50_crtc_cursor_hide(nv_crtc); if (update) { u32 *push = evo_wait(mast, 2); if (push) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, mast); } } } static void nv50_crtc_dpms(struct drm_crtc *crtc, int mode) { } static void nv50_crtc_prepare(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv50_mast *mast = nv50_mast(crtc->dev); u32 *push; nv50_display_flip_stop(crtc); push = evo_wait(mast, 2); if (push) { if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) { evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x40000000); } else if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x40000000); evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); } else { evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x03000000); evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } nv50_crtc_cursor_show_hide(nv_crtc, false, false); } static void nv50_crtc_commit(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv50_mast *mast = nv50_mast(crtc->dev); u32 *push; push = evo_wait(mast, 32); if (push) { if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) { evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1); evo_data(push, NvEvoVRAM_LP); evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2); evo_data(push, 0xc0000000); evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8); } else if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1); evo_data(push, nv_crtc->fb.tile_flags); evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2); evo_data(push, 0xc0000000); evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8); evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1); evo_data(push, NvEvoVRAM); } else { evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1); evo_data(push, nv_crtc->fb.tile_flags); evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4); evo_data(push, 0x83000000); evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1); evo_data(push, NvEvoVRAM); evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1); evo_data(push, 0xffffff00); } evo_kick(push, mast); } nv50_crtc_cursor_show_hide(nv_crtc, nv_crtc->cursor.visible, true); nv50_display_flip_next(crtc, crtc->fb, NULL, 1); } static bool nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static int nv50_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb) { struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb); int ret; ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM); if (ret) return ret; if (old_fb) { nvfb = nouveau_framebuffer(old_fb); nouveau_bo_unpin(nvfb->nvbo); } return 0; } static int nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode, struct drm_display_mode *mode, int x, int y, struct drm_framebuffer *old_fb) { struct nv50_mast *mast = nv50_mast(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nouveau_connector *nv_connector; u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1; u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1; u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks; u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks; u32 vblan2e = 0, vblan2s = 1; u32 *push; int ret; hactive = mode->htotal; hsynce = mode->hsync_end - mode->hsync_start - 1; hbackp = mode->htotal - mode->hsync_end; hblanke = hsynce + hbackp; hfrontp = mode->hsync_start - mode->hdisplay; hblanks = mode->htotal - hfrontp - 1; vactive = mode->vtotal * vscan / ilace; vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1; vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace; vblanke = vsynce + vbackp; vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace; vblanks = vactive - vfrontp - 1; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { vblan2e = vactive + vsynce + vbackp; vblan2s = vblan2e + (mode->vdisplay * vscan / ilace); vactive = (vactive * 2) + 1; } ret = nv50_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; push = evo_wait(mast, 64); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0804 + (nv_crtc->index * 0x400), 2); evo_data(push, 0x00800000 | mode->clock); evo_data(push, (ilace == 2) ? 2 : 0); evo_mthd(push, 0x0810 + (nv_crtc->index * 0x400), 6); evo_data(push, 0x00000000); evo_data(push, (vactive << 16) | hactive); evo_data(push, ( vsynce << 16) | hsynce); evo_data(push, (vblanke << 16) | hblanke); evo_data(push, (vblanks << 16) | hblanks); evo_data(push, (vblan2e << 16) | vblan2s); evo_mthd(push, 0x082c + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0900 + (nv_crtc->index * 0x400), 2); evo_data(push, 0x00000311); evo_data(push, 0x00000100); } else { evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6); evo_data(push, 0x00000000); evo_data(push, (vactive << 16) | hactive); evo_data(push, ( vsynce << 16) | hsynce); evo_data(push, (vblanke << 16) | hblanke); evo_data(push, (vblanks << 16) | hblanks); evo_data(push, (vblan2e << 16) | vblan2s); evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); /* ??? */ evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3); evo_data(push, mode->clock * 1000); evo_data(push, 0x00200000); /* ??? */ evo_data(push, mode->clock * 1000); evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2); evo_data(push, 0x00000311); evo_data(push, 0x00000100); } evo_kick(push, mast); } nv_connector = nouveau_crtc_connector_get(nv_crtc); nv50_crtc_set_dither(nv_crtc, false); nv50_crtc_set_scale(nv_crtc, false); nv50_crtc_set_color_vibrance(nv_crtc, false); nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, false); return 0; } static int nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { struct nouveau_drm *drm = nouveau_drm(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); int ret; if (!crtc->fb) { NV_DEBUG(drm, "No FB bound\n"); return 0; } ret = nv50_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; nv50_display_flip_stop(crtc); nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, true); nv50_display_flip_next(crtc, crtc->fb, NULL, 1); return 0; } static int nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nv50_display_flip_stop(crtc); nv50_crtc_set_image(nv_crtc, fb, x, y, true); return 0; } static void nv50_crtc_lut_load(struct drm_crtc *crtc) { struct nv50_disp *disp = nv50_disp(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo); int i; for (i = 0; i < 256; i++) { u16 r = nv_crtc->lut.r[i] >> 2; u16 g = nv_crtc->lut.g[i] >> 2; u16 b = nv_crtc->lut.b[i] >> 2; if (nv_mclass(disp->core) < NVD0_DISP_CLASS) { writew(r + 0x0000, lut + (i * 0x08) + 0); writew(g + 0x0000, lut + (i * 0x08) + 2); writew(b + 0x0000, lut + (i * 0x08) + 4); } else { writew(r + 0x6000, lut + (i * 0x20) + 0); writew(g + 0x6000, lut + (i * 0x20) + 2); writew(b + 0x6000, lut + (i * 0x20) + 4); } } } static int nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t handle, uint32_t width, uint32_t height) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct drm_gem_object *gem; struct nouveau_bo *nvbo; bool visible = (handle != 0); int i, ret = 0; if (visible) { if (width != 64 || height != 64) return -EINVAL; gem = drm_gem_object_lookup(dev, file_priv, handle); if (unlikely(!gem)) return -ENOENT; nvbo = nouveau_gem_object(gem); ret = nouveau_bo_map(nvbo); if (ret == 0) { for (i = 0; i < 64 * 64; i++) { u32 v = nouveau_bo_rd32(nvbo, i); nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v); } nouveau_bo_unmap(nvbo); } drm_gem_object_unreference_unlocked(gem); } if (visible != nv_crtc->cursor.visible) { nv50_crtc_cursor_show_hide(nv_crtc, visible, true); nv_crtc->cursor.visible = visible; } return ret; } static int nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct nv50_curs *curs = nv50_curs(crtc); struct nv50_chan *chan = nv50_chan(curs); nv_wo32(chan->user, 0x0084, (y << 16) | (x & 0xffff)); nv_wo32(chan->user, 0x0080, 0x00000000); return 0; } static void nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t start, uint32_t size) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); u32 end = max(start + size, (u32)256); u32 i; for (i = start; i < end; i++) { nv_crtc->lut.r[i] = r[i]; nv_crtc->lut.g[i] = g[i]; nv_crtc->lut.b[i] = b[i]; } nv50_crtc_lut_load(crtc); } static void nv50_crtc_destroy(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv50_disp *disp = nv50_disp(crtc->dev); struct nv50_head *head = nv50_head(crtc); nv50_dmac_destroy(disp->core, &head->ovly.base); nv50_pioc_destroy(disp->core, &head->oimm.base); nv50_dmac_destroy(disp->core, &head->sync.base); nv50_pioc_destroy(disp->core, &head->curs.base); nouveau_bo_unmap(nv_crtc->cursor.nvbo); if (nv_crtc->cursor.nvbo) nouveau_bo_unpin(nv_crtc->cursor.nvbo); nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); nouveau_bo_unmap(nv_crtc->lut.nvbo); if (nv_crtc->lut.nvbo) nouveau_bo_unpin(nv_crtc->lut.nvbo); nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo); drm_crtc_cleanup(crtc); kfree(crtc); } static const struct drm_crtc_helper_funcs nv50_crtc_hfunc = { .dpms = nv50_crtc_dpms, .prepare = nv50_crtc_prepare, .commit = nv50_crtc_commit, .mode_fixup = nv50_crtc_mode_fixup, .mode_set = nv50_crtc_mode_set, .mode_set_base = nv50_crtc_mode_set_base, .mode_set_base_atomic = nv50_crtc_mode_set_base_atomic, .load_lut = nv50_crtc_lut_load, }; static const struct drm_crtc_funcs nv50_crtc_func = { .cursor_set = nv50_crtc_cursor_set, .cursor_move = nv50_crtc_cursor_move, .gamma_set = nv50_crtc_gamma_set, .set_config = drm_crtc_helper_set_config, .destroy = nv50_crtc_destroy, .page_flip = nouveau_crtc_page_flip, }; static void nv50_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y) { } static void nv50_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset) { } static int nv50_crtc_create(struct drm_device *dev, struct nouveau_object *core, int index) { struct nv50_disp *disp = nv50_disp(dev); struct nv50_head *head; struct drm_crtc *crtc; int ret, i; head = kzalloc(sizeof(*head), GFP_KERNEL); if (!head) return -ENOMEM; head->base.index = index; head->base.set_dither = nv50_crtc_set_dither; head->base.set_scale = nv50_crtc_set_scale; head->base.set_color_vibrance = nv50_crtc_set_color_vibrance; head->base.color_vibrance = 50; head->base.vibrant_hue = 0; head->base.cursor.set_offset = nv50_cursor_set_offset; head->base.cursor.set_pos = nv50_cursor_set_pos; for (i = 0; i < 256; i++) { head->base.lut.r[i] = i << 8; head->base.lut.g[i] = i << 8; head->base.lut.b[i] = i << 8; } crtc = &head->base.base; drm_crtc_init(dev, crtc, &nv50_crtc_func); drm_crtc_helper_add(crtc, &nv50_crtc_hfunc); drm_mode_crtc_set_gamma_size(crtc, 256); ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, &head->base.lut.nvbo); if (!ret) { ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM); if (!ret) { ret = nouveau_bo_map(head->base.lut.nvbo); if (ret) nouveau_bo_unpin(head->base.lut.nvbo); } if (ret) nouveau_bo_ref(NULL, &head->base.lut.nvbo); } if (ret) goto out; nv50_crtc_lut_load(crtc); /* allocate cursor resources */ ret = nv50_pioc_create(disp->core, NV50_DISP_CURS_CLASS, index, &(struct nv50_display_curs_class) { .head = index, }, sizeof(struct nv50_display_curs_class), &head->curs.base); if (ret) goto out; ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, &head->base.cursor.nvbo); if (!ret) { ret = nouveau_bo_pin(head->base.cursor.nvbo, TTM_PL_FLAG_VRAM); if (!ret) { ret = nouveau_bo_map(head->base.cursor.nvbo); if (ret) nouveau_bo_unpin(head->base.lut.nvbo); } if (ret) nouveau_bo_ref(NULL, &head->base.cursor.nvbo); } if (ret) goto out; /* allocate page flip / sync resources */ ret = nv50_dmac_create(disp->core, NV50_DISP_SYNC_CLASS, index, &(struct nv50_display_sync_class) { .pushbuf = EVO_PUSH_HANDLE(SYNC, index), .head = index, }, sizeof(struct nv50_display_sync_class), disp->sync->bo.offset, &head->sync.base); if (ret) goto out; head->sync.sem.offset = EVO_SYNC(1 + index, 0x00); /* allocate overlay resources */ ret = nv50_pioc_create(disp->core, NV50_DISP_OIMM_CLASS, index, &(struct nv50_display_oimm_class) { .head = index, }, sizeof(struct nv50_display_oimm_class), &head->oimm.base); if (ret) goto out; ret = nv50_dmac_create(disp->core, NV50_DISP_OVLY_CLASS, index, &(struct nv50_display_ovly_class) { .pushbuf = EVO_PUSH_HANDLE(OVLY, index), .head = index, }, sizeof(struct nv50_display_ovly_class), disp->sync->bo.offset, &head->ovly.base); if (ret) goto out; out: if (ret) nv50_crtc_destroy(crtc); return ret; } /****************************************************************************** * DAC *****************************************************************************/ static void nv50_dac_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); int or = nv_encoder->or; u32 dpms_ctrl; dpms_ctrl = 0x00000000; if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF) dpms_ctrl |= 0x00000001; if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF) dpms_ctrl |= 0x00000004; nv_call(disp->core, NV50_DISP_DAC_PWR + or, dpms_ctrl); } static bool nv50_dac_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (nv_connector && nv_connector->native_mode) { if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) { int id = adjusted_mode->base.id; *adjusted_mode = *nv_connector->native_mode; adjusted_mode->base.id = id; } } return true; } static void nv50_dac_commit(struct drm_encoder *encoder) { } static void nv50_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nv50_mast *mast = nv50_mast(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); u32 *push; nv50_dac_dpms(encoder, DRM_MODE_DPMS_ON); push = evo_wait(mast, 8); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { u32 syncs = 0x00000000; if (mode->flags & DRM_MODE_FLAG_NHSYNC) syncs |= 0x00000001; if (mode->flags & DRM_MODE_FLAG_NVSYNC) syncs |= 0x00000002; evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2); evo_data(push, 1 << nv_crtc->index); evo_data(push, syncs); } else { u32 magic = 0x31ec6000 | (nv_crtc->index << 25); u32 syncs = 0x00000001; if (mode->flags & DRM_MODE_FLAG_NHSYNC) syncs |= 0x00000008; if (mode->flags & DRM_MODE_FLAG_NVSYNC) syncs |= 0x00000010; if (mode->flags & DRM_MODE_FLAG_INTERLACE) magic |= 0x00000001; evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2); evo_data(push, syncs); evo_data(push, magic); evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1); evo_data(push, 1 << nv_crtc->index); } evo_kick(push, mast); } nv_encoder->crtc = encoder->crtc; } static void nv50_dac_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_mast *mast = nv50_mast(encoder->dev); const int or = nv_encoder->or; u32 *push; if (nv_encoder->crtc) { nv50_crtc_prepare(nv_encoder->crtc); push = evo_wait(mast, 4); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0400 + (or * 0x080), 1); evo_data(push, 0x00000000); } else { evo_mthd(push, 0x0180 + (or * 0x020), 1); evo_data(push, 0x00000000); } evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, mast); } } nv_encoder->crtc = NULL; } static enum drm_connector_status nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) { struct nv50_disp *disp = nv50_disp(encoder->dev); int ret, or = nouveau_encoder(encoder)->or; u32 load = 0; ret = nv_exec(disp->core, NV50_DISP_DAC_LOAD + or, &load, sizeof(load)); if (ret || load != 7) return connector_status_disconnected; return connector_status_connected; } static void nv50_dac_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_helper_funcs nv50_dac_hfunc = { .dpms = nv50_dac_dpms, .mode_fixup = nv50_dac_mode_fixup, .prepare = nv50_dac_disconnect, .commit = nv50_dac_commit, .mode_set = nv50_dac_mode_set, .disable = nv50_dac_disconnect, .get_crtc = nv50_display_crtc_get, .detect = nv50_dac_detect }; static const struct drm_encoder_funcs nv50_dac_func = { .destroy = nv50_dac_destroy, }; static int nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nouveau_i2c *i2c = nouveau_i2c(drm->device); struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type = DRM_MODE_ENCODER_DAC; nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->or = ffs(dcbe->or) - 1; nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index); encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type); drm_encoder_helper_add(encoder, &nv50_dac_hfunc); drm_mode_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * Audio *****************************************************************************/ static void nv50_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector; struct nv50_disp *disp = nv50_disp(encoder->dev); nv_connector = nouveau_encoder_connector_get(nv_encoder); if (!drm_detect_monitor_audio(nv_connector->edid)) return; drm_edid_to_eld(&nv_connector->base, nv_connector->edid); nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or, nv_connector->base.eld, nv_connector->base.eld[2] * 4); } static void nv50_audio_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or, NULL, 0); } /****************************************************************************** * HDMI *****************************************************************************/ static void nv50_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector; struct nv50_disp *disp = nv50_disp(encoder->dev); const u32 moff = (nv_crtc->index << 3) | nv_encoder->or; u32 rekey = 56; /* binary driver, and tegra constant */ u32 max_ac_packet; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (!drm_detect_hdmi_monitor(nv_connector->edid)) return; max_ac_packet = mode->htotal - mode->hdisplay; max_ac_packet -= rekey; max_ac_packet -= 18; /* constant from tegra */ max_ac_packet /= 32; nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff, NV84_DISP_SOR_HDMI_PWR_STATE_ON | (max_ac_packet << 16) | rekey); nv50_audio_mode_set(encoder, mode); } static void nv50_hdmi_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc); struct nv50_disp *disp = nv50_disp(encoder->dev); const u32 moff = (nv_crtc->index << 3) | nv_encoder->or; nv50_audio_disconnect(encoder); nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff, 0x00000000); } /****************************************************************************** * SOR *****************************************************************************/ static void nv50_sor_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct nv50_disp *disp = nv50_disp(dev); struct drm_encoder *partner; int or = nv_encoder->or; nv_encoder->last_dpms = mode; list_for_each_entry(partner, &dev->mode_config.encoder_list, head) { struct nouveau_encoder *nv_partner = nouveau_encoder(partner); if (partner->encoder_type != DRM_MODE_ENCODER_TMDS) continue; if (nv_partner != nv_encoder && nv_partner->dcb->or == nv_encoder->dcb->or) { if (nv_partner->last_dpms == DRM_MODE_DPMS_ON) return; break; } } nv_call(disp->core, NV50_DISP_SOR_PWR + or, (mode == DRM_MODE_DPMS_ON)); if (nv_encoder->dcb->type == DCB_OUTPUT_DP) nouveau_dp_dpms(encoder, mode, nv_encoder->dp.datarate, disp->core); } static bool nv50_sor_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (nv_connector && nv_connector->native_mode) { if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) { int id = adjusted_mode->base.id; *adjusted_mode = *nv_connector->native_mode; adjusted_mode->base.id = id; } } return true; } static void nv50_sor_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_mast *mast = nv50_mast(encoder->dev); const int or = nv_encoder->or; u32 *push; if (nv_encoder->crtc) { nv50_crtc_prepare(nv_encoder->crtc); push = evo_wait(mast, 4); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0600 + (or * 0x40), 1); evo_data(push, 0x00000000); } else { evo_mthd(push, 0x0200 + (or * 0x20), 1); evo_data(push, 0x00000000); } evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, mast); } nv50_hdmi_disconnect(encoder); } nv_encoder->last_dpms = DRM_MODE_DPMS_OFF; nv_encoder->crtc = NULL; } static void nv50_sor_prepare(struct drm_encoder *encoder) { nv50_sor_disconnect(encoder); if (nouveau_encoder(encoder)->dcb->type == DCB_OUTPUT_DP) evo_sync(encoder->dev); } static void nv50_sor_commit(struct drm_encoder *encoder) { } static void nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode, struct drm_display_mode *mode) { struct nv50_disp *disp = nv50_disp(encoder->dev); struct nv50_mast *mast = nv50_mast(encoder->dev); struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector; struct nvbios *bios = &drm->vbios; u32 *push, lvds = 0; u8 owner = 1 << nv_crtc->index; u8 proto = 0xf; u8 depth = 0x0; nv_connector = nouveau_encoder_connector_get(nv_encoder); switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: if (nv_encoder->dcb->sorconf.link & 1) { if (mode->clock < 165000) proto = 0x1; else proto = 0x5; } else { proto = 0x2; } nv50_hdmi_mode_set(encoder, mode); break; case DCB_OUTPUT_LVDS: proto = 0x0; if (bios->fp_no_ddc) { if (bios->fp.dual_link) lvds |= 0x0100; if (bios->fp.if_is_24bit) lvds |= 0x0200; } else { if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { if (((u8 *)nv_connector->edid)[121] == 2) lvds |= 0x0100; } else if (mode->clock >= bios->fp.duallink_transition_clk) { lvds |= 0x0100; } if (lvds & 0x0100) { if (bios->fp.strapless_is_24bit & 2) lvds |= 0x0200; } else { if (bios->fp.strapless_is_24bit & 1) lvds |= 0x0200; } if (nv_connector->base.display_info.bpc == 8) lvds |= 0x0200; } nv_call(disp->core, NV50_DISP_SOR_LVDS_SCRIPT + nv_encoder->or, lvds); break; case DCB_OUTPUT_DP: if (nv_connector->base.display_info.bpc == 6) { nv_encoder->dp.datarate = mode->clock * 18 / 8; depth = 0x2; } else if (nv_connector->base.display_info.bpc == 8) { nv_encoder->dp.datarate = mode->clock * 24 / 8; depth = 0x5; } else { nv_encoder->dp.datarate = mode->clock * 30 / 8; depth = 0x6; } if (nv_encoder->dcb->sorconf.link & 1) proto = 0x8; else proto = 0x9; break; default: BUG_ON(1); break; } nv50_sor_dpms(encoder, DRM_MODE_DPMS_ON); push = evo_wait(nv50_mast(dev), 8); if (push) { if (nv50_vers(mast) < NVD0_DISP_CLASS) { u32 ctrl = (depth << 16) | (proto << 8) | owner; if (mode->flags & DRM_MODE_FLAG_NHSYNC) ctrl |= 0x00001000; if (mode->flags & DRM_MODE_FLAG_NVSYNC) ctrl |= 0x00002000; evo_mthd(push, 0x0600 + (nv_encoder->or * 0x040), 1); evo_data(push, ctrl); } else { u32 magic = 0x31ec6000 | (nv_crtc->index << 25); u32 syncs = 0x00000001; if (mode->flags & DRM_MODE_FLAG_NHSYNC) syncs |= 0x00000008; if (mode->flags & DRM_MODE_FLAG_NVSYNC) syncs |= 0x00000010; if (mode->flags & DRM_MODE_FLAG_INTERLACE) magic |= 0x00000001; evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2); evo_data(push, syncs | (depth << 6)); evo_data(push, magic); evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 1); evo_data(push, owner | (proto << 8)); } evo_kick(push, mast); } nv_encoder->crtc = encoder->crtc; } static void nv50_sor_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_helper_funcs nv50_sor_hfunc = { .dpms = nv50_sor_dpms, .mode_fixup = nv50_sor_mode_fixup, .prepare = nv50_sor_prepare, .commit = nv50_sor_commit, .mode_set = nv50_sor_mode_set, .disable = nv50_sor_disconnect, .get_crtc = nv50_display_crtc_get, }; static const struct drm_encoder_funcs nv50_sor_func = { .destroy = nv50_sor_destroy, }; static int nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nouveau_i2c *i2c = nouveau_i2c(drm->device); struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type; switch (dcbe->type) { case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; case DCB_OUTPUT_TMDS: case DCB_OUTPUT_DP: default: type = DRM_MODE_ENCODER_TMDS; break; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->or = ffs(dcbe->or) - 1; nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index); nv_encoder->last_dpms = DRM_MODE_DPMS_OFF; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type); drm_encoder_helper_add(encoder, &nv50_sor_hfunc); drm_mode_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * Init *****************************************************************************/ void nv50_display_fini(struct drm_device *dev) { } int nv50_display_init(struct drm_device *dev) { u32 *push = evo_wait(nv50_mast(dev), 32); if (push) { evo_mthd(push, 0x0088, 1); evo_data(push, NvEvoSync); evo_kick(push, nv50_mast(dev)); return evo_sync(dev); } return -EBUSY; } void nv50_display_destroy(struct drm_device *dev) { struct nv50_disp *disp = nv50_disp(dev); nv50_dmac_destroy(disp->core, &disp->mast.base); nouveau_bo_unmap(disp->sync); if (disp->sync) nouveau_bo_unpin(disp->sync); nouveau_bo_ref(NULL, &disp->sync); nouveau_display(dev)->priv = NULL; kfree(disp); } int nv50_display_create(struct drm_device *dev) { static const u16 oclass[] = { NVE0_DISP_CLASS, NVD0_DISP_CLASS, NVA3_DISP_CLASS, NV94_DISP_CLASS, NVA0_DISP_CLASS, NV84_DISP_CLASS, NV50_DISP_CLASS, }; struct nouveau_device *device = nouveau_dev(dev); struct nouveau_drm *drm = nouveau_drm(dev); struct dcb_table *dcb = &drm->vbios.dcb; struct drm_connector *connector, *tmp; struct nv50_disp *disp; struct dcb_output *dcbe; int crtcs, ret, i; disp = kzalloc(sizeof(*disp), GFP_KERNEL); if (!disp) return -ENOMEM; nouveau_display(dev)->priv = disp; nouveau_display(dev)->dtor = nv50_display_destroy; nouveau_display(dev)->init = nv50_display_init; nouveau_display(dev)->fini = nv50_display_fini; /* small shared memory area we use for notifiers and semaphores */ ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, &disp->sync); if (!ret) { ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM); if (!ret) { ret = nouveau_bo_map(disp->sync); if (ret) nouveau_bo_unpin(disp->sync); } if (ret) nouveau_bo_ref(NULL, &disp->sync); } if (ret) goto out; /* attempt to allocate a supported evo display class */ ret = -ENODEV; for (i = 0; ret && i < ARRAY_SIZE(oclass); i++) { ret = nouveau_object_new(nv_object(drm), NVDRM_DEVICE, 0xd1500000, oclass[i], NULL, 0, &disp->core); } if (ret) goto out; /* allocate master evo channel */ ret = nv50_dmac_create(disp->core, NV50_DISP_MAST_CLASS, 0, &(struct nv50_display_mast_class) { .pushbuf = EVO_PUSH_HANDLE(MAST, 0), }, sizeof(struct nv50_display_mast_class), disp->sync->bo.offset, &disp->mast.base); if (ret) goto out; /* create crtc objects to represent the hw heads */ if (nv_mclass(disp->core) >= NVD0_DISP_CLASS) crtcs = nv_rd32(device, 0x022448); else crtcs = 2; for (i = 0; i < crtcs; i++) { ret = nv50_crtc_create(dev, disp->core, i); if (ret) goto out; } /* create encoder/connector objects based on VBIOS DCB table */ for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { connector = nouveau_connector_create(dev, dcbe->connector); if (IS_ERR(connector)) continue; if (dcbe->location != DCB_LOC_ON_CHIP) { NV_WARN(drm, "skipping off-chip encoder %d/%d\n", dcbe->type, ffs(dcbe->or) - 1); continue; } switch (dcbe->type) { case DCB_OUTPUT_TMDS: case DCB_OUTPUT_LVDS: case DCB_OUTPUT_DP: nv50_sor_create(connector, dcbe); break; case DCB_OUTPUT_ANALOG: nv50_dac_create(connector, dcbe); break; default: NV_WARN(drm, "skipping unsupported encoder %d/%d\n", dcbe->type, ffs(dcbe->or) - 1); continue; } } /* cull any connectors we created that don't have an encoder */ list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { if (connector->encoder_ids[0]) continue; NV_WARN(drm, "%s has no encoders, removing\n", drm_get_connector_name(connector)); connector->funcs->destroy(connector); } out: if (ret) nv50_display_destroy(dev); return ret; }