/* * PowerPC64 SLB support. * * Copyright (C) 2004 David Gibson , IBM * Based on earlier code written by: * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com * Copyright (c) 2001 Dave Engebretsen * Copyright (C) 2002 Anton Blanchard , IBM * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include extern void slb_allocate_realmode(unsigned long ea); extern void slb_allocate_user(unsigned long ea); static void slb_allocate(unsigned long ea) { /* Currently, we do real mode for all SLBs including user, but * that will change if we bring back dynamic VSIDs */ slb_allocate_realmode(ea); } #define slb_esid_mask(ssize) \ (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T) static inline unsigned long mk_esid_data(unsigned long ea, int ssize, unsigned long slot) { return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | slot; } #define slb_vsid_shift(ssize) \ ((ssize) == MMU_SEGSIZE_256M? SLB_VSID_SHIFT: SLB_VSID_SHIFT_1T) static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, unsigned long flags) { return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags | ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); } static inline void slb_shadow_update(unsigned long ea, int ssize, unsigned long flags, unsigned long entry) { /* * Clear the ESID first so the entry is not valid while we are * updating it. No write barriers are needed here, provided * we only update the current CPU's SLB shadow buffer. */ get_slb_shadow()->save_area[entry].esid = 0; get_slb_shadow()->save_area[entry].vsid = mk_vsid_data(ea, ssize, flags); get_slb_shadow()->save_area[entry].esid = mk_esid_data(ea, ssize, entry); } static inline void slb_shadow_clear(unsigned long entry) { get_slb_shadow()->save_area[entry].esid = 0; } static inline void create_shadowed_slbe(unsigned long ea, int ssize, unsigned long flags, unsigned long entry) { /* * Updating the shadow buffer before writing the SLB ensures * we don't get a stale entry here if we get preempted by PHYP * between these two statements. */ slb_shadow_update(ea, ssize, flags, entry); asm volatile("slbmte %0,%1" : : "r" (mk_vsid_data(ea, ssize, flags)), "r" (mk_esid_data(ea, ssize, entry)) : "memory" ); } void slb_flush_and_rebolt(void) { /* If you change this make sure you change SLB_NUM_BOLTED * appropriately too. */ unsigned long linear_llp, vmalloc_llp, lflags, vflags; unsigned long ksp_esid_data, ksp_vsid_data; WARN_ON(!irqs_disabled()); linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; lflags = SLB_VSID_KERNEL | linear_llp; vflags = SLB_VSID_KERNEL | vmalloc_llp; ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, 2); if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) { ksp_esid_data &= ~SLB_ESID_V; ksp_vsid_data = 0; slb_shadow_clear(2); } else { /* Update stack entry; others don't change */ slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, 2); ksp_vsid_data = get_slb_shadow()->save_area[2].vsid; } /* * We can't take a PMU exception in the following code, so hard * disable interrupts. */ hard_irq_disable(); /* We need to do this all in asm, so we're sure we don't touch * the stack between the slbia and rebolting it. */ asm volatile("isync\n" "slbia\n" /* Slot 1 - first VMALLOC segment */ "slbmte %0,%1\n" /* Slot 2 - kernel stack */ "slbmte %2,%3\n" "isync" :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)), "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)), "r"(ksp_vsid_data), "r"(ksp_esid_data) : "memory"); } void slb_vmalloc_update(void) { unsigned long vflags; vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp; slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, 1); slb_flush_and_rebolt(); } /* Helper function to compare esids. There are four cases to handle. * 1. The system is not 1T segment size capable. Use the GET_ESID compare. * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare. * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match. * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare. */ static inline int esids_match(unsigned long addr1, unsigned long addr2) { int esid_1t_count; /* System is not 1T segment size capable. */ if (!cpu_has_feature(CPU_FTR_1T_SEGMENT)) return (GET_ESID(addr1) == GET_ESID(addr2)); esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) + ((addr2 >> SID_SHIFT_1T) != 0)); /* both addresses are < 1T */ if (esid_1t_count == 0) return (GET_ESID(addr1) == GET_ESID(addr2)); /* One address < 1T, the other > 1T. Not a match */ if (esid_1t_count == 1) return 0; /* Both addresses are > 1T. */ return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2)); } /* Flush all user entries from the segment table of the current processor. */ void switch_slb(struct task_struct *tsk, struct mm_struct *mm) { unsigned long offset = get_paca()->slb_cache_ptr; unsigned long slbie_data = 0; unsigned long pc = KSTK_EIP(tsk); unsigned long stack = KSTK_ESP(tsk); unsigned long unmapped_base; if (!cpu_has_feature(CPU_FTR_NO_SLBIE_B) && offset <= SLB_CACHE_ENTRIES) { int i; asm volatile("isync" : : : "memory"); for (i = 0; i < offset; i++) { slbie_data = (unsigned long)get_paca()->slb_cache[i] << SID_SHIFT; /* EA */ slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT; slbie_data |= SLBIE_C; /* C set for user addresses */ asm volatile("slbie %0" : : "r" (slbie_data)); } asm volatile("isync" : : : "memory"); } else { slb_flush_and_rebolt(); } /* Workaround POWER5 < DD2.1 issue */ if (offset == 1 || offset > SLB_CACHE_ENTRIES) asm volatile("slbie %0" : : "r" (slbie_data)); get_paca()->slb_cache_ptr = 0; get_paca()->context = mm->context; /* * preload some userspace segments into the SLB. */ if (test_tsk_thread_flag(tsk, TIF_32BIT)) unmapped_base = TASK_UNMAPPED_BASE_USER32; else unmapped_base = TASK_UNMAPPED_BASE_USER64; if (is_kernel_addr(pc) || is_kernel_addr(stack) || is_kernel_addr(unmapped_base)) return; slb_allocate(pc); if (!esids_match(pc, stack)) slb_allocate(stack); if (!esids_match(pc, unmapped_base) && !esids_match(stack, unmapped_base)) slb_allocate(unmapped_base); } static inline void patch_slb_encoding(unsigned int *insn_addr, unsigned int immed) { /* Assume the instruction had a "0" immediate value, just * "or" in the new value */ *insn_addr |= immed; flush_icache_range((unsigned long)insn_addr, 4+ (unsigned long)insn_addr); } void slb_initialize(void) { unsigned long linear_llp, vmalloc_llp, io_llp; unsigned long lflags, vflags; static int slb_encoding_inited; extern unsigned int *slb_miss_kernel_load_linear; extern unsigned int *slb_miss_kernel_load_io; extern unsigned int *slb_compare_rr_to_size; #ifdef CONFIG_SPARSEMEM_VMEMMAP extern unsigned int *slb_miss_kernel_load_vmemmap; unsigned long vmemmap_llp; #endif /* Prepare our SLB miss handler based on our page size */ linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; io_llp = mmu_psize_defs[mmu_io_psize].sllp; vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; #ifdef CONFIG_SPARSEMEM_VMEMMAP vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; #endif if (!slb_encoding_inited) { slb_encoding_inited = 1; patch_slb_encoding(slb_miss_kernel_load_linear, SLB_VSID_KERNEL | linear_llp); patch_slb_encoding(slb_miss_kernel_load_io, SLB_VSID_KERNEL | io_llp); patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size); pr_devel("SLB: linear LLP = %04lx\n", linear_llp); pr_devel("SLB: io LLP = %04lx\n", io_llp); #ifdef CONFIG_SPARSEMEM_VMEMMAP patch_slb_encoding(slb_miss_kernel_load_vmemmap, SLB_VSID_KERNEL | vmemmap_llp); pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); #endif } get_paca()->stab_rr = SLB_NUM_BOLTED; /* On iSeries the bolted entries have already been set up by * the hypervisor from the lparMap data in head.S */ if (firmware_has_feature(FW_FEATURE_ISERIES)) return; lflags = SLB_VSID_KERNEL | linear_llp; vflags = SLB_VSID_KERNEL | vmalloc_llp; /* Invalidate the entire SLB (even slot 0) & all the ERATS */ asm volatile("isync":::"memory"); asm volatile("slbmte %0,%0"::"r" (0) : "memory"); asm volatile("isync; slbia; isync":::"memory"); create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, 0); create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, 1); /* For the boot cpu, we're running on the stack in init_thread_union, * which is in the first segment of the linear mapping, and also * get_paca()->kstack hasn't been initialized yet. * For secondary cpus, we need to bolt the kernel stack entry now. */ slb_shadow_clear(2); if (raw_smp_processor_id() != boot_cpuid && (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) create_shadowed_slbe(get_paca()->kstack, mmu_kernel_ssize, lflags, 2); asm volatile("isync":::"memory"); }