/* * Copyright 2001, 2007-2008 MontaVista Software Inc. * Author: MontaVista Software, Inc. * * Copyright (C) 2007 Ralf Baechle (ralf@linux-mips.org) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #ifdef CONFIG_MIPS_PB1000 #include #endif static int au1x_ic_settype(unsigned int irq, unsigned int flow_type); /* NOTE on interrupt priorities: The original writers of this code said: * * Because of the tight timing of SETUP token to reply transactions, * the USB devices-side packet complete interrupt (USB_DEV_REQ_INT) * needs the highest priority. */ /* per-processor fixed function irqs */ struct au1xxx_irqmap { int im_irq; int im_type; int im_request; /* set 1 to get higher priority */ } au1xxx_ic0_map[] __initdata = { #if defined(CONFIG_SOC_AU1000) { AU1000_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_UART2_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 }, { AU1000_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 }, { AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1000_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 }, #elif defined(CONFIG_SOC_AU1500) { AU1500_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1500_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1500_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1500_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1500_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 }, { AU1500_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 }, { AU1500_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1500_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 }, #elif defined(CONFIG_SOC_AU1100) { AU1100_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 }, { AU1100_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 }, { AU1100_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1100_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 }, #elif defined(CONFIG_SOC_AU1550) { AU1550_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_CRYPTO_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_PCI_RST_INT, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PSC2_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PSC3_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 }, { AU1550_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 }, { AU1550_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, #elif defined(CONFIG_SOC_AU1200) { AU1200_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_SWT_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_MAE_BE_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_MAE_FE_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_AES_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_CAMERA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 }, { AU1200_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_USB_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_MAE_BOTH_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, #else #error "Error: Unknown Alchemy SOC" #endif }; #ifdef CONFIG_PM /* * Save/restore the interrupt controller state. * Called from the save/restore core registers as part of the * au_sleep function in power.c.....maybe I should just pm_register() * them instead? */ static unsigned int sleep_intctl_config0[2]; static unsigned int sleep_intctl_config1[2]; static unsigned int sleep_intctl_config2[2]; static unsigned int sleep_intctl_src[2]; static unsigned int sleep_intctl_assign[2]; static unsigned int sleep_intctl_wake[2]; static unsigned int sleep_intctl_mask[2]; void save_au1xxx_intctl(void) { sleep_intctl_config0[0] = au_readl(IC0_CFG0RD); sleep_intctl_config1[0] = au_readl(IC0_CFG1RD); sleep_intctl_config2[0] = au_readl(IC0_CFG2RD); sleep_intctl_src[0] = au_readl(IC0_SRCRD); sleep_intctl_assign[0] = au_readl(IC0_ASSIGNRD); sleep_intctl_wake[0] = au_readl(IC0_WAKERD); sleep_intctl_mask[0] = au_readl(IC0_MASKRD); sleep_intctl_config0[1] = au_readl(IC1_CFG0RD); sleep_intctl_config1[1] = au_readl(IC1_CFG1RD); sleep_intctl_config2[1] = au_readl(IC1_CFG2RD); sleep_intctl_src[1] = au_readl(IC1_SRCRD); sleep_intctl_assign[1] = au_readl(IC1_ASSIGNRD); sleep_intctl_wake[1] = au_readl(IC1_WAKERD); sleep_intctl_mask[1] = au_readl(IC1_MASKRD); } /* * For most restore operations, we clear the entire register and * then set the bits we found during the save. */ void restore_au1xxx_intctl(void) { au_writel(0xffffffff, IC0_MASKCLR); au_sync(); au_writel(0xffffffff, IC0_CFG0CLR); au_sync(); au_writel(sleep_intctl_config0[0], IC0_CFG0SET); au_sync(); au_writel(0xffffffff, IC0_CFG1CLR); au_sync(); au_writel(sleep_intctl_config1[0], IC0_CFG1SET); au_sync(); au_writel(0xffffffff, IC0_CFG2CLR); au_sync(); au_writel(sleep_intctl_config2[0], IC0_CFG2SET); au_sync(); au_writel(0xffffffff, IC0_SRCCLR); au_sync(); au_writel(sleep_intctl_src[0], IC0_SRCSET); au_sync(); au_writel(0xffffffff, IC0_ASSIGNCLR); au_sync(); au_writel(sleep_intctl_assign[0], IC0_ASSIGNSET); au_sync(); au_writel(0xffffffff, IC0_WAKECLR); au_sync(); au_writel(sleep_intctl_wake[0], IC0_WAKESET); au_sync(); au_writel(0xffffffff, IC0_RISINGCLR); au_sync(); au_writel(0xffffffff, IC0_FALLINGCLR); au_sync(); au_writel(0x00000000, IC0_TESTBIT); au_sync(); au_writel(0xffffffff, IC1_MASKCLR); au_sync(); au_writel(0xffffffff, IC1_CFG0CLR); au_sync(); au_writel(sleep_intctl_config0[1], IC1_CFG0SET); au_sync(); au_writel(0xffffffff, IC1_CFG1CLR); au_sync(); au_writel(sleep_intctl_config1[1], IC1_CFG1SET); au_sync(); au_writel(0xffffffff, IC1_CFG2CLR); au_sync(); au_writel(sleep_intctl_config2[1], IC1_CFG2SET); au_sync(); au_writel(0xffffffff, IC1_SRCCLR); au_sync(); au_writel(sleep_intctl_src[1], IC1_SRCSET); au_sync(); au_writel(0xffffffff, IC1_ASSIGNCLR); au_sync(); au_writel(sleep_intctl_assign[1], IC1_ASSIGNSET); au_sync(); au_writel(0xffffffff, IC1_WAKECLR); au_sync(); au_writel(sleep_intctl_wake[1], IC1_WAKESET); au_sync(); au_writel(0xffffffff, IC1_RISINGCLR); au_sync(); au_writel(0xffffffff, IC1_FALLINGCLR); au_sync(); au_writel(0x00000000, IC1_TESTBIT); au_sync(); au_writel(sleep_intctl_mask[1], IC1_MASKSET); au_sync(); au_writel(sleep_intctl_mask[0], IC0_MASKSET); au_sync(); } #endif /* CONFIG_PM */ static void au1x_ic0_unmask(unsigned int irq_nr) { unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE; au_writel(1 << bit, IC0_MASKSET); au_writel(1 << bit, IC0_WAKESET); au_sync(); } static void au1x_ic1_unmask(unsigned int irq_nr) { unsigned int bit = irq_nr - AU1000_INTC1_INT_BASE; au_writel(1 << bit, IC1_MASKSET); au_writel(1 << bit, IC1_WAKESET); /* very hacky. does the pb1000 cpld auto-disable this int? * nowhere in the current kernel sources is it disabled. --mlau */ #if defined(CONFIG_MIPS_PB1000) if (irq_nr == AU1000_GPIO15_INT) au_writel(0x4000, PB1000_MDR); /* enable int */ #endif au_sync(); } static void au1x_ic0_mask(unsigned int irq_nr) { unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE; au_writel(1 << bit, IC0_MASKCLR); au_writel(1 << bit, IC0_WAKECLR); au_sync(); } static void au1x_ic1_mask(unsigned int irq_nr) { unsigned int bit = irq_nr - AU1000_INTC1_INT_BASE; au_writel(1 << bit, IC1_MASKCLR); au_writel(1 << bit, IC1_WAKECLR); au_sync(); } static void au1x_ic0_ack(unsigned int irq_nr) { unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE; /* * This may assume that we don't get interrupts from * both edges at once, or if we do, that we don't care. */ au_writel(1 << bit, IC0_FALLINGCLR); au_writel(1 << bit, IC0_RISINGCLR); au_sync(); } static void au1x_ic1_ack(unsigned int irq_nr) { unsigned int bit = irq_nr - AU1000_INTC1_INT_BASE; /* * This may assume that we don't get interrupts from * both edges at once, or if we do, that we don't care. */ au_writel(1 << bit, IC1_FALLINGCLR); au_writel(1 << bit, IC1_RISINGCLR); au_sync(); } static void au1x_ic0_maskack(unsigned int irq_nr) { unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE; au_writel(1 << bit, IC0_WAKECLR); au_writel(1 << bit, IC0_MASKCLR); au_writel(1 << bit, IC0_RISINGCLR); au_writel(1 << bit, IC0_FALLINGCLR); au_sync(); } static void au1x_ic1_maskack(unsigned int irq_nr) { unsigned int bit = irq_nr - AU1000_INTC1_INT_BASE; au_writel(1 << bit, IC1_WAKECLR); au_writel(1 << bit, IC1_MASKCLR); au_writel(1 << bit, IC1_RISINGCLR); au_writel(1 << bit, IC1_FALLINGCLR); au_sync(); } static int au1x_ic1_setwake(unsigned int irq, unsigned int on) { int bit = irq - AU1000_INTC1_INT_BASE; unsigned long wakemsk, flags; /* only GPIO 0-7 can act as wakeup source. Fortunately these * are wired up identically on all supported variants. */ if ((bit < 0) || (bit > 7)) return -EINVAL; local_irq_save(flags); wakemsk = au_readl(SYS_WAKEMSK); if (on) wakemsk |= 1 << bit; else wakemsk &= ~(1 << bit); au_writel(wakemsk, SYS_WAKEMSK); au_sync(); local_irq_restore(flags); return 0; } /* * irq_chips for both ICs; this way the mask handlers can be * as short as possible. */ static struct irq_chip au1x_ic0_chip = { .name = "Alchemy-IC0", .ack = au1x_ic0_ack, .mask = au1x_ic0_mask, .mask_ack = au1x_ic0_maskack, .unmask = au1x_ic0_unmask, .set_type = au1x_ic_settype, }; static struct irq_chip au1x_ic1_chip = { .name = "Alchemy-IC1", .ack = au1x_ic1_ack, .mask = au1x_ic1_mask, .mask_ack = au1x_ic1_maskack, .unmask = au1x_ic1_unmask, .set_type = au1x_ic_settype, .set_wake = au1x_ic1_setwake, }; static int au1x_ic_settype(unsigned int irq, unsigned int flow_type) { struct irq_chip *chip; unsigned long icr[6]; unsigned int bit, ic; int ret; if (irq >= AU1000_INTC1_INT_BASE) { bit = irq - AU1000_INTC1_INT_BASE; chip = &au1x_ic1_chip; ic = 1; } else { bit = irq - AU1000_INTC0_INT_BASE; chip = &au1x_ic0_chip; ic = 0; } if (bit > 31) return -EINVAL; icr[0] = ic ? IC1_CFG0SET : IC0_CFG0SET; icr[1] = ic ? IC1_CFG1SET : IC0_CFG1SET; icr[2] = ic ? IC1_CFG2SET : IC0_CFG2SET; icr[3] = ic ? IC1_CFG0CLR : IC0_CFG0CLR; icr[4] = ic ? IC1_CFG1CLR : IC0_CFG1CLR; icr[5] = ic ? IC1_CFG2CLR : IC0_CFG2CLR; ret = 0; switch (flow_type) { /* cfgregs 2:1:0 */ case IRQ_TYPE_EDGE_RISING: /* 0:0:1 */ au_writel(1 << bit, icr[5]); au_writel(1 << bit, icr[4]); au_writel(1 << bit, icr[0]); set_irq_chip_and_handler_name(irq, chip, handle_edge_irq, "riseedge"); break; case IRQ_TYPE_EDGE_FALLING: /* 0:1:0 */ au_writel(1 << bit, icr[5]); au_writel(1 << bit, icr[1]); au_writel(1 << bit, icr[3]); set_irq_chip_and_handler_name(irq, chip, handle_edge_irq, "falledge"); break; case IRQ_TYPE_EDGE_BOTH: /* 0:1:1 */ au_writel(1 << bit, icr[5]); au_writel(1 << bit, icr[1]); au_writel(1 << bit, icr[0]); set_irq_chip_and_handler_name(irq, chip, handle_edge_irq, "bothedge"); break; case IRQ_TYPE_LEVEL_HIGH: /* 1:0:1 */ au_writel(1 << bit, icr[2]); au_writel(1 << bit, icr[4]); au_writel(1 << bit, icr[0]); set_irq_chip_and_handler_name(irq, chip, handle_level_irq, "hilevel"); break; case IRQ_TYPE_LEVEL_LOW: /* 1:1:0 */ au_writel(1 << bit, icr[2]); au_writel(1 << bit, icr[1]); au_writel(1 << bit, icr[3]); set_irq_chip_and_handler_name(irq, chip, handle_level_irq, "lowlevel"); break; case IRQ_TYPE_NONE: /* 0:0:0 */ au_writel(1 << bit, icr[5]); au_writel(1 << bit, icr[4]); au_writel(1 << bit, icr[3]); /* set at least chip so we can call set_irq_type() on it */ set_irq_chip(irq, chip); break; default: ret = -EINVAL; } au_sync(); return ret; } asmlinkage void plat_irq_dispatch(void) { unsigned int pending = read_c0_status() & read_c0_cause(); unsigned long s, off; if (pending & CAUSEF_IP7) { off = MIPS_CPU_IRQ_BASE + 7; goto handle; } else if (pending & CAUSEF_IP2) { s = IC0_REQ0INT; off = AU1000_INTC0_INT_BASE; } else if (pending & CAUSEF_IP3) { s = IC0_REQ1INT; off = AU1000_INTC0_INT_BASE; } else if (pending & CAUSEF_IP4) { s = IC1_REQ0INT; off = AU1000_INTC1_INT_BASE; } else if (pending & CAUSEF_IP5) { s = IC1_REQ1INT; off = AU1000_INTC1_INT_BASE; } else goto spurious; s = au_readl(s); if (unlikely(!s)) { spurious: spurious_interrupt(); return; } off += __ffs(s); handle: do_IRQ(off); } /* setup edge/level and assign request 0/1 */ static void __init setup_irqmap(struct au1xxx_irqmap *map, int count) { unsigned int bit, irq_nr; while (count--) { irq_nr = map[count].im_irq; if (((irq_nr < AU1000_INTC0_INT_BASE) || (irq_nr >= AU1000_INTC0_INT_BASE + 32)) && ((irq_nr < AU1000_INTC1_INT_BASE) || (irq_nr >= AU1000_INTC1_INT_BASE + 32))) continue; if (irq_nr >= AU1000_INTC1_INT_BASE) { bit = irq_nr - AU1000_INTC1_INT_BASE; if (map[count].im_request) au_writel(1 << bit, IC1_ASSIGNSET); } else { bit = irq_nr - AU1000_INTC0_INT_BASE; if (map[count].im_request) au_writel(1 << bit, IC0_ASSIGNSET); } au1x_ic_settype(irq_nr, map[count].im_type); } } void __init arch_init_irq(void) { int i; /* * Initialize interrupt controllers to a safe state. */ au_writel(0xffffffff, IC0_CFG0CLR); au_writel(0xffffffff, IC0_CFG1CLR); au_writel(0xffffffff, IC0_CFG2CLR); au_writel(0xffffffff, IC0_MASKCLR); au_writel(0xffffffff, IC0_ASSIGNCLR); au_writel(0xffffffff, IC0_WAKECLR); au_writel(0xffffffff, IC0_SRCSET); au_writel(0xffffffff, IC0_FALLINGCLR); au_writel(0xffffffff, IC0_RISINGCLR); au_writel(0x00000000, IC0_TESTBIT); au_writel(0xffffffff, IC1_CFG0CLR); au_writel(0xffffffff, IC1_CFG1CLR); au_writel(0xffffffff, IC1_CFG2CLR); au_writel(0xffffffff, IC1_MASKCLR); au_writel(0xffffffff, IC1_ASSIGNCLR); au_writel(0xffffffff, IC1_WAKECLR); au_writel(0xffffffff, IC1_SRCSET); au_writel(0xffffffff, IC1_FALLINGCLR); au_writel(0xffffffff, IC1_RISINGCLR); au_writel(0x00000000, IC1_TESTBIT); mips_cpu_irq_init(); /* register all 64 possible IC0+IC1 irq sources as type "none". * Use set_irq_type() to set edge/level behaviour at runtime. */ for (i = AU1000_INTC0_INT_BASE; (i < AU1000_INTC0_INT_BASE + 32); i++) au1x_ic_settype(i, IRQ_TYPE_NONE); for (i = AU1000_INTC1_INT_BASE; (i < AU1000_INTC1_INT_BASE + 32); i++) au1x_ic_settype(i, IRQ_TYPE_NONE); /* * Initialize IC0, which is fixed per processor. */ setup_irqmap(au1xxx_ic0_map, ARRAY_SIZE(au1xxx_ic0_map)); set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3); }