/* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2006-2007 Jiri Benc * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015 - 2017 Intel Deutschland GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "sta_info.h" #include "debugfs_sta.h" #include "mesh.h" #include "wme.h" /** * DOC: STA information lifetime rules * * STA info structures (&struct sta_info) are managed in a hash table * for faster lookup and a list for iteration. They are managed using * RCU, i.e. access to the list and hash table is protected by RCU. * * Upon allocating a STA info structure with sta_info_alloc(), the caller * owns that structure. It must then insert it into the hash table using * either sta_info_insert() or sta_info_insert_rcu(); only in the latter * case (which acquires an rcu read section but must not be called from * within one) will the pointer still be valid after the call. Note that * the caller may not do much with the STA info before inserting it, in * particular, it may not start any mesh peer link management or add * encryption keys. * * When the insertion fails (sta_info_insert()) returns non-zero), the * structure will have been freed by sta_info_insert()! * * Station entries are added by mac80211 when you establish a link with a * peer. This means different things for the different type of interfaces * we support. For a regular station this mean we add the AP sta when we * receive an association response from the AP. For IBSS this occurs when * get to know about a peer on the same IBSS. For WDS we add the sta for * the peer immediately upon device open. When using AP mode we add stations * for each respective station upon request from userspace through nl80211. * * In order to remove a STA info structure, various sta_info_destroy_*() * calls are available. * * There is no concept of ownership on a STA entry, each structure is * owned by the global hash table/list until it is removed. All users of * the structure need to be RCU protected so that the structure won't be * freed before they are done using it. */ static const struct rhashtable_params sta_rht_params = { .nelem_hint = 3, /* start small */ .automatic_shrinking = true, .head_offset = offsetof(struct sta_info, hash_node), .key_offset = offsetof(struct sta_info, addr), .key_len = ETH_ALEN, .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, }; /* Caller must hold local->sta_mtx */ static int sta_info_hash_del(struct ieee80211_local *local, struct sta_info *sta) { return rhltable_remove(&local->sta_hash, &sta->hash_node, sta_rht_params); } static void __cleanup_single_sta(struct sta_info *sta) { int ac, i; struct tid_ampdu_tx *tid_tx; struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct fq *fq = &local->fq; struct ps_data *ps; if (test_sta_flag(sta, WLAN_STA_PS_STA) || test_sta_flag(sta, WLAN_STA_PS_DRIVER) || test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { if (sta->sdata->vif.type == NL80211_IFTYPE_AP || sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) ps = &sdata->bss->ps; else if (ieee80211_vif_is_mesh(&sdata->vif)) ps = &sdata->u.mesh.ps; else return; clear_sta_flag(sta, WLAN_STA_PS_STA); clear_sta_flag(sta, WLAN_STA_PS_DRIVER); clear_sta_flag(sta, WLAN_STA_PS_DELIVER); atomic_dec(&ps->num_sta_ps); } if (sta->sta.txq[0]) { for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); spin_lock_bh(&fq->lock); ieee80211_txq_purge(local, txqi); spin_unlock_bh(&fq->lock); } } for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); } if (ieee80211_vif_is_mesh(&sdata->vif)) mesh_sta_cleanup(sta); cancel_work_sync(&sta->drv_deliver_wk); /* * Destroy aggregation state here. It would be nice to wait for the * driver to finish aggregation stop and then clean up, but for now * drivers have to handle aggregation stop being requested, followed * directly by station destruction. */ for (i = 0; i < IEEE80211_NUM_TIDS; i++) { kfree(sta->ampdu_mlme.tid_start_tx[i]); tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); if (!tid_tx) continue; ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); kfree(tid_tx); } } static void cleanup_single_sta(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; __cleanup_single_sta(sta); sta_info_free(local, sta); } struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, const u8 *addr) { return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); } /* protected by RCU */ struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct ieee80211_local *local = sdata->local; struct rhlist_head *tmp; struct sta_info *sta; rcu_read_lock(); for_each_sta_info(local, addr, sta, tmp) { if (sta->sdata == sdata) { rcu_read_unlock(); /* this is safe as the caller must already hold * another rcu read section or the mutex */ return sta; } } rcu_read_unlock(); return NULL; } /* * Get sta info either from the specified interface * or from one of its vlans */ struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct ieee80211_local *local = sdata->local; struct rhlist_head *tmp; struct sta_info *sta; rcu_read_lock(); for_each_sta_info(local, addr, sta, tmp) { if (sta->sdata == sdata || (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { rcu_read_unlock(); /* this is safe as the caller must already hold * another rcu read section or the mutex */ return sta; } } rcu_read_unlock(); return NULL; } struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, int idx) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; int i = 0; list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata) continue; if (i < idx) { ++i; continue; } return sta; } return NULL; } /** * sta_info_free - free STA * * @local: pointer to the global information * @sta: STA info to free * * This function must undo everything done by sta_info_alloc() * that may happen before sta_info_insert(). It may only be * called when sta_info_insert() has not been attempted (and * if that fails, the station is freed anyway.) */ void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) { if (sta->rate_ctrl) rate_control_free_sta(sta); sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); if (sta->sta.txq[0]) kfree(to_txq_info(sta->sta.txq[0])); kfree(rcu_dereference_raw(sta->sta.rates)); #ifdef CONFIG_MAC80211_MESH kfree(sta->mesh); #endif free_percpu(sta->pcpu_rx_stats); kfree(sta); } /* Caller must hold local->sta_mtx */ static int sta_info_hash_add(struct ieee80211_local *local, struct sta_info *sta) { return rhltable_insert(&local->sta_hash, &sta->hash_node, sta_rht_params); } static void sta_deliver_ps_frames(struct work_struct *wk) { struct sta_info *sta; sta = container_of(wk, struct sta_info, drv_deliver_wk); if (sta->dead) return; local_bh_disable(); if (!test_sta_flag(sta, WLAN_STA_PS_STA)) ieee80211_sta_ps_deliver_wakeup(sta); else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) ieee80211_sta_ps_deliver_poll_response(sta); else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) ieee80211_sta_ps_deliver_uapsd(sta); local_bh_enable(); } static int sta_prepare_rate_control(struct ieee80211_local *local, struct sta_info *sta, gfp_t gfp) { if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) return 0; sta->rate_ctrl = local->rate_ctrl; sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, sta, gfp); if (!sta->rate_ctrl_priv) return -ENOMEM; return 0; } struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, const u8 *addr, gfp_t gfp) { struct ieee80211_local *local = sdata->local; struct ieee80211_hw *hw = &local->hw; struct sta_info *sta; int i; sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); if (!sta) return NULL; if (ieee80211_hw_check(hw, USES_RSS)) { sta->pcpu_rx_stats = alloc_percpu(struct ieee80211_sta_rx_stats); if (!sta->pcpu_rx_stats) goto free; } spin_lock_init(&sta->lock); spin_lock_init(&sta->ps_lock); INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); mutex_init(&sta->ampdu_mlme.mtx); #ifdef CONFIG_MAC80211_MESH if (ieee80211_vif_is_mesh(&sdata->vif)) { sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); if (!sta->mesh) goto free; spin_lock_init(&sta->mesh->plink_lock); if (ieee80211_vif_is_mesh(&sdata->vif) && !sdata->u.mesh.user_mpm) init_timer(&sta->mesh->plink_timer); sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; } #endif memcpy(sta->addr, addr, ETH_ALEN); memcpy(sta->sta.addr, addr, ETH_ALEN); sta->sta.max_rx_aggregation_subframes = local->hw.max_rx_aggregation_subframes; sta->local = local; sta->sdata = sdata; sta->rx_stats.last_rx = jiffies; u64_stats_init(&sta->rx_stats.syncp); sta->sta_state = IEEE80211_STA_NONE; /* Mark TID as unreserved */ sta->reserved_tid = IEEE80211_TID_UNRESERVED; sta->last_connected = ktime_get_seconds(); ewma_signal_init(&sta->rx_stats_avg.signal); for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); if (local->ops->wake_tx_queue) { void *txq_data; int size = sizeof(struct txq_info) + ALIGN(hw->txq_data_size, sizeof(void *)); txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); if (!txq_data) goto free; for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { struct txq_info *txq = txq_data + i * size; ieee80211_txq_init(sdata, sta, txq, i); } } if (sta_prepare_rate_control(local, sta, gfp)) goto free_txq; for (i = 0; i < IEEE80211_NUM_TIDS; i++) { /* * timer_to_tid must be initialized with identity mapping * to enable session_timer's data differentiation. See * sta_rx_agg_session_timer_expired for usage. */ sta->timer_to_tid[i] = i; } for (i = 0; i < IEEE80211_NUM_ACS; i++) { skb_queue_head_init(&sta->ps_tx_buf[i]); skb_queue_head_init(&sta->tx_filtered[i]); } for (i = 0; i < IEEE80211_NUM_TIDS; i++) sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); sta->sta.smps_mode = IEEE80211_SMPS_OFF; if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { struct ieee80211_supported_band *sband; u8 smps; sband = ieee80211_get_sband(sdata); if (!sband) goto free_txq; smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> IEEE80211_HT_CAP_SM_PS_SHIFT; /* * Assume that hostapd advertises our caps in the beacon and * this is the known_smps_mode for a station that just assciated */ switch (smps) { case WLAN_HT_SMPS_CONTROL_DISABLED: sta->known_smps_mode = IEEE80211_SMPS_OFF; break; case WLAN_HT_SMPS_CONTROL_STATIC: sta->known_smps_mode = IEEE80211_SMPS_STATIC; break; case WLAN_HT_SMPS_CONTROL_DYNAMIC: sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; break; default: WARN_ON(1); } } sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; sta->cparams.target = MS2TIME(20); sta->cparams.interval = MS2TIME(100); sta->cparams.ecn = true; sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); return sta; free_txq: if (sta->sta.txq[0]) kfree(to_txq_info(sta->sta.txq[0])); free: #ifdef CONFIG_MAC80211_MESH kfree(sta->mesh); #endif kfree(sta); return NULL; } static int sta_info_insert_check(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; /* * Can't be a WARN_ON because it can be triggered through a race: * something inserts a STA (on one CPU) without holding the RTNL * and another CPU turns off the net device. */ if (unlikely(!ieee80211_sdata_running(sdata))) return -ENETDOWN; if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || is_multicast_ether_addr(sta->sta.addr))) return -EINVAL; /* The RCU read lock is required by rhashtable due to * asynchronous resize/rehash. We also require the mutex * for correctness. */ rcu_read_lock(); lockdep_assert_held(&sdata->local->sta_mtx); if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { rcu_read_unlock(); return -ENOTUNIQ; } rcu_read_unlock(); return 0; } static int sta_info_insert_drv_state(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { enum ieee80211_sta_state state; int err = 0; for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { err = drv_sta_state(local, sdata, sta, state, state + 1); if (err) break; } if (!err) { /* * Drivers using legacy sta_add/sta_remove callbacks only * get uploaded set to true after sta_add is called. */ if (!local->ops->sta_add) sta->uploaded = true; return 0; } if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { sdata_info(sdata, "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", sta->sta.addr, state + 1, err); err = 0; } /* unwind on error */ for (; state > IEEE80211_STA_NOTEXIST; state--) WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); return err; } /* * should be called with sta_mtx locked * this function replaces the mutex lock * with a RCU lock */ static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) { struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct station_info *sinfo = NULL; int err = 0; lockdep_assert_held(&local->sta_mtx); /* check if STA exists already */ if (sta_info_get_bss(sdata, sta->sta.addr)) { err = -EEXIST; goto out_err; } sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); if (!sinfo) { err = -ENOMEM; goto out_err; } local->num_sta++; local->sta_generation++; smp_mb(); /* simplify things and don't accept BA sessions yet */ set_sta_flag(sta, WLAN_STA_BLOCK_BA); /* make the station visible */ err = sta_info_hash_add(local, sta); if (err) goto out_drop_sta; list_add_tail_rcu(&sta->list, &local->sta_list); /* notify driver */ err = sta_info_insert_drv_state(local, sdata, sta); if (err) goto out_remove; set_sta_flag(sta, WLAN_STA_INSERTED); /* accept BA sessions now */ clear_sta_flag(sta, WLAN_STA_BLOCK_BA); ieee80211_sta_debugfs_add(sta); rate_control_add_sta_debugfs(sta); sinfo->generation = local->sta_generation; cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); kfree(sinfo); sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); /* move reference to rcu-protected */ rcu_read_lock(); mutex_unlock(&local->sta_mtx); if (ieee80211_vif_is_mesh(&sdata->vif)) mesh_accept_plinks_update(sdata); return 0; out_remove: sta_info_hash_del(local, sta); list_del_rcu(&sta->list); out_drop_sta: local->num_sta--; synchronize_net(); __cleanup_single_sta(sta); out_err: mutex_unlock(&local->sta_mtx); kfree(sinfo); rcu_read_lock(); return err; } int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) { struct ieee80211_local *local = sta->local; int err; might_sleep(); mutex_lock(&local->sta_mtx); err = sta_info_insert_check(sta); if (err) { mutex_unlock(&local->sta_mtx); rcu_read_lock(); goto out_free; } err = sta_info_insert_finish(sta); if (err) goto out_free; return 0; out_free: sta_info_free(local, sta); return err; } int sta_info_insert(struct sta_info *sta) { int err = sta_info_insert_rcu(sta); rcu_read_unlock(); return err; } static inline void __bss_tim_set(u8 *tim, u16 id) { /* * This format has been mandated by the IEEE specifications, * so this line may not be changed to use the __set_bit() format. */ tim[id / 8] |= (1 << (id % 8)); } static inline void __bss_tim_clear(u8 *tim, u16 id) { /* * This format has been mandated by the IEEE specifications, * so this line may not be changed to use the __clear_bit() format. */ tim[id / 8] &= ~(1 << (id % 8)); } static inline bool __bss_tim_get(u8 *tim, u16 id) { /* * This format has been mandated by the IEEE specifications, * so this line may not be changed to use the test_bit() format. */ return tim[id / 8] & (1 << (id % 8)); } static unsigned long ieee80211_tids_for_ac(int ac) { /* If we ever support TIDs > 7, this obviously needs to be adjusted */ switch (ac) { case IEEE80211_AC_VO: return BIT(6) | BIT(7); case IEEE80211_AC_VI: return BIT(4) | BIT(5); case IEEE80211_AC_BE: return BIT(0) | BIT(3); case IEEE80211_AC_BK: return BIT(1) | BIT(2); default: WARN_ON(1); return 0; } } static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) { struct ieee80211_local *local = sta->local; struct ps_data *ps; bool indicate_tim = false; u8 ignore_for_tim = sta->sta.uapsd_queues; int ac; u16 id = sta->sta.aid; if (sta->sdata->vif.type == NL80211_IFTYPE_AP || sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (WARN_ON_ONCE(!sta->sdata->bss)) return; ps = &sta->sdata->bss->ps; #ifdef CONFIG_MAC80211_MESH } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { ps = &sta->sdata->u.mesh.ps; #endif } else { return; } /* No need to do anything if the driver does all */ if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) return; if (sta->dead) goto done; /* * If all ACs are delivery-enabled then we should build * the TIM bit for all ACs anyway; if only some are then * we ignore those and build the TIM bit using only the * non-enabled ones. */ if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) ignore_for_tim = 0; if (ignore_pending) ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { unsigned long tids; if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) continue; indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || !skb_queue_empty(&sta->ps_tx_buf[ac]); if (indicate_tim) break; tids = ieee80211_tids_for_ac(ac); indicate_tim |= sta->driver_buffered_tids & tids; indicate_tim |= sta->txq_buffered_tids & tids; } done: spin_lock_bh(&local->tim_lock); if (indicate_tim == __bss_tim_get(ps->tim, id)) goto out_unlock; if (indicate_tim) __bss_tim_set(ps->tim, id); else __bss_tim_clear(ps->tim, id); if (local->ops->set_tim && !WARN_ON(sta->dead)) { local->tim_in_locked_section = true; drv_set_tim(local, &sta->sta, indicate_tim); local->tim_in_locked_section = false; } out_unlock: spin_unlock_bh(&local->tim_lock); } void sta_info_recalc_tim(struct sta_info *sta) { __sta_info_recalc_tim(sta, false); } static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_tx_info *info; int timeout; if (!skb) return false; info = IEEE80211_SKB_CB(skb); /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ timeout = (sta->listen_interval * sta->sdata->vif.bss_conf.beacon_int * 32 / 15625) * HZ; if (timeout < STA_TX_BUFFER_EXPIRE) timeout = STA_TX_BUFFER_EXPIRE; return time_after(jiffies, info->control.jiffies + timeout); } static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, struct sta_info *sta, int ac) { unsigned long flags; struct sk_buff *skb; /* * First check for frames that should expire on the filtered * queue. Frames here were rejected by the driver and are on * a separate queue to avoid reordering with normal PS-buffered * frames. They also aren't accounted for right now in the * total_ps_buffered counter. */ for (;;) { spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); skb = skb_peek(&sta->tx_filtered[ac]); if (sta_info_buffer_expired(sta, skb)) skb = __skb_dequeue(&sta->tx_filtered[ac]); else skb = NULL; spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); /* * Frames are queued in order, so if this one * hasn't expired yet we can stop testing. If * we actually reached the end of the queue we * also need to stop, of course. */ if (!skb) break; ieee80211_free_txskb(&local->hw, skb); } /* * Now also check the normal PS-buffered queue, this will * only find something if the filtered queue was emptied * since the filtered frames are all before the normal PS * buffered frames. */ for (;;) { spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); skb = skb_peek(&sta->ps_tx_buf[ac]); if (sta_info_buffer_expired(sta, skb)) skb = __skb_dequeue(&sta->ps_tx_buf[ac]); else skb = NULL; spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); /* * frames are queued in order, so if this one * hasn't expired yet (or we reached the end of * the queue) we can stop testing */ if (!skb) break; local->total_ps_buffered--; ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", sta->sta.addr); ieee80211_free_txskb(&local->hw, skb); } /* * Finally, recalculate the TIM bit for this station -- it might * now be clear because the station was too slow to retrieve its * frames. */ sta_info_recalc_tim(sta); /* * Return whether there are any frames still buffered, this is * used to check whether the cleanup timer still needs to run, * if there are no frames we don't need to rearm the timer. */ return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && skb_queue_empty(&sta->tx_filtered[ac])); } static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, struct sta_info *sta) { bool have_buffered = false; int ac; /* This is only necessary for stations on BSS/MBSS interfaces */ if (!sta->sdata->bss && !ieee80211_vif_is_mesh(&sta->sdata->vif)) return false; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) have_buffered |= sta_info_cleanup_expire_buffered_ac(local, sta, ac); return have_buffered; } static int __must_check __sta_info_destroy_part1(struct sta_info *sta) { struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; int ret; might_sleep(); if (!sta) return -ENOENT; local = sta->local; sdata = sta->sdata; lockdep_assert_held(&local->sta_mtx); /* * Before removing the station from the driver and * rate control, it might still start new aggregation * sessions -- block that to make sure the tear-down * will be sufficient. */ set_sta_flag(sta, WLAN_STA_BLOCK_BA); ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); /* * Before removing the station from the driver there might be pending * rx frames on RSS queues sent prior to the disassociation - wait for * all such frames to be processed. */ drv_sync_rx_queues(local, sta); ret = sta_info_hash_del(local, sta); if (WARN_ON(ret)) return ret; /* * for TDLS peers, make sure to return to the base channel before * removal. */ if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); } list_del_rcu(&sta->list); sta->removed = true; drv_sta_pre_rcu_remove(local, sta->sdata, sta); if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && rcu_access_pointer(sdata->u.vlan.sta) == sta) RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); return 0; } static void __sta_info_destroy_part2(struct sta_info *sta) { struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct station_info *sinfo; int ret; /* * NOTE: This assumes at least synchronize_net() was done * after _part1 and before _part2! */ might_sleep(); lockdep_assert_held(&local->sta_mtx); /* now keys can no longer be reached */ ieee80211_free_sta_keys(local, sta); /* disable TIM bit - last chance to tell driver */ __sta_info_recalc_tim(sta, true); sta->dead = true; local->num_sta--; local->sta_generation++; while (sta->sta_state > IEEE80211_STA_NONE) { ret = sta_info_move_state(sta, sta->sta_state - 1); if (ret) { WARN_ON_ONCE(1); break; } } if (sta->uploaded) { ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, IEEE80211_STA_NOTEXIST); WARN_ON_ONCE(ret != 0); } sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); if (sinfo) sta_set_sinfo(sta, sinfo); cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); kfree(sinfo); rate_control_remove_sta_debugfs(sta); ieee80211_sta_debugfs_remove(sta); cleanup_single_sta(sta); } int __must_check __sta_info_destroy(struct sta_info *sta) { int err = __sta_info_destroy_part1(sta); if (err) return err; synchronize_net(); __sta_info_destroy_part2(sta); return 0; } int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct sta_info *sta; int ret; mutex_lock(&sdata->local->sta_mtx); sta = sta_info_get(sdata, addr); ret = __sta_info_destroy(sta); mutex_unlock(&sdata->local->sta_mtx); return ret; } int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct sta_info *sta; int ret; mutex_lock(&sdata->local->sta_mtx); sta = sta_info_get_bss(sdata, addr); ret = __sta_info_destroy(sta); mutex_unlock(&sdata->local->sta_mtx); return ret; } static void sta_info_cleanup(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *) data; struct sta_info *sta; bool timer_needed = false; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) if (sta_info_cleanup_expire_buffered(local, sta)) timer_needed = true; rcu_read_unlock(); if (local->quiescing) return; if (!timer_needed) return; mod_timer(&local->sta_cleanup, round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); } int sta_info_init(struct ieee80211_local *local) { int err; err = rhltable_init(&local->sta_hash, &sta_rht_params); if (err) return err; spin_lock_init(&local->tim_lock); mutex_init(&local->sta_mtx); INIT_LIST_HEAD(&local->sta_list); setup_timer(&local->sta_cleanup, sta_info_cleanup, (unsigned long)local); return 0; } void sta_info_stop(struct ieee80211_local *local) { del_timer_sync(&local->sta_cleanup); rhltable_destroy(&local->sta_hash); } int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) { struct ieee80211_local *local = sdata->local; struct sta_info *sta, *tmp; LIST_HEAD(free_list); int ret = 0; might_sleep(); WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); WARN_ON(vlans && !sdata->bss); mutex_lock(&local->sta_mtx); list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { if (sdata == sta->sdata || (vlans && sdata->bss == sta->sdata->bss)) { if (!WARN_ON(__sta_info_destroy_part1(sta))) list_add(&sta->free_list, &free_list); ret++; } } if (!list_empty(&free_list)) { synchronize_net(); list_for_each_entry_safe(sta, tmp, &free_list, free_list) __sta_info_destroy_part2(sta); } mutex_unlock(&local->sta_mtx); return ret; } void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, unsigned long exp_time) { struct ieee80211_local *local = sdata->local; struct sta_info *sta, *tmp; mutex_lock(&local->sta_mtx); list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { unsigned long last_active = ieee80211_sta_last_active(sta); if (sdata != sta->sdata) continue; if (time_is_before_jiffies(last_active + exp_time)) { sta_dbg(sta->sdata, "expiring inactive STA %pM\n", sta->sta.addr); if (ieee80211_vif_is_mesh(&sdata->vif) && test_sta_flag(sta, WLAN_STA_PS_STA)) atomic_dec(&sdata->u.mesh.ps.num_sta_ps); WARN_ON(__sta_info_destroy(sta)); } } mutex_unlock(&local->sta_mtx); } struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, const u8 *addr, const u8 *localaddr) { struct ieee80211_local *local = hw_to_local(hw); struct rhlist_head *tmp; struct sta_info *sta; /* * Just return a random station if localaddr is NULL * ... first in list. */ for_each_sta_info(local, addr, sta, tmp) { if (localaddr && !ether_addr_equal(sta->sdata->vif.addr, localaddr)) continue; if (!sta->uploaded) return NULL; return &sta->sta; } return NULL; } EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, const u8 *addr) { struct sta_info *sta; if (!vif) return NULL; sta = sta_info_get_bss(vif_to_sdata(vif), addr); if (!sta) return NULL; if (!sta->uploaded) return NULL; return &sta->sta; } EXPORT_SYMBOL(ieee80211_find_sta); /* powersave support code */ void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct sk_buff_head pending; int filtered = 0, buffered = 0, ac, i; unsigned long flags; struct ps_data *ps; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); if (sdata->vif.type == NL80211_IFTYPE_AP) ps = &sdata->bss->ps; else if (ieee80211_vif_is_mesh(&sdata->vif)) ps = &sdata->u.mesh.ps; else return; clear_sta_flag(sta, WLAN_STA_SP); BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); sta->driver_buffered_tids = 0; sta->txq_buffered_tids = 0; if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); if (sta->sta.txq[0]) { for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { if (!txq_has_queue(sta->sta.txq[i])) continue; drv_wake_tx_queue(local, to_txq_info(sta->sta.txq[i])); } } skb_queue_head_init(&pending); /* sync with ieee80211_tx_h_unicast_ps_buf */ spin_lock(&sta->ps_lock); /* Send all buffered frames to the station */ for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { int count = skb_queue_len(&pending), tmp; spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); tmp = skb_queue_len(&pending); filtered += tmp - count; count = tmp; spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); tmp = skb_queue_len(&pending); buffered += tmp - count; } ieee80211_add_pending_skbs(local, &pending); /* now we're no longer in the deliver code */ clear_sta_flag(sta, WLAN_STA_PS_DELIVER); /* The station might have polled and then woken up before we responded, * so clear these flags now to avoid them sticking around. */ clear_sta_flag(sta, WLAN_STA_PSPOLL); clear_sta_flag(sta, WLAN_STA_UAPSD); spin_unlock(&sta->ps_lock); atomic_dec(&ps->num_sta_ps); /* This station just woke up and isn't aware of our SMPS state */ if (!ieee80211_vif_is_mesh(&sdata->vif) && !ieee80211_smps_is_restrictive(sta->known_smps_mode, sdata->smps_mode) && sta->known_smps_mode != sdata->bss->req_smps && sta_info_tx_streams(sta) != 1) { ht_dbg(sdata, "%pM just woke up and MIMO capable - update SMPS\n", sta->sta.addr); ieee80211_send_smps_action(sdata, sdata->bss->req_smps, sta->sta.addr, sdata->vif.bss_conf.bssid); } local->total_ps_buffered -= buffered; sta_info_recalc_tim(sta); ps_dbg(sdata, "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", sta->sta.addr, sta->sta.aid, filtered, buffered); ieee80211_check_fast_xmit(sta); } static void ieee80211_send_null_response(struct sta_info *sta, int tid, enum ieee80211_frame_release_type reason, bool call_driver, bool more_data) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_qos_hdr *nullfunc; struct sk_buff *skb; int size = sizeof(*nullfunc); __le16 fc; bool qos = sta->sta.wme; struct ieee80211_tx_info *info; struct ieee80211_chanctx_conf *chanctx_conf; if (qos) { fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC | IEEE80211_FCTL_FROMDS); } else { size -= 2; fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_FROMDS); } skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = (void *) skb_put(skb, size); nullfunc->frame_control = fc; nullfunc->duration_id = 0; memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); nullfunc->seq_ctrl = 0; skb->priority = tid; skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); if (qos) { nullfunc->qos_ctrl = cpu_to_le16(tid); if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { nullfunc->qos_ctrl |= cpu_to_le16(IEEE80211_QOS_CTL_EOSP); if (more_data) nullfunc->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); } } info = IEEE80211_SKB_CB(skb); /* * Tell TX path to send this frame even though the * STA may still remain is PS mode after this frame * exchange. Also set EOSP to indicate this packet * ends the poll/service period. */ info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | IEEE80211_TX_STATUS_EOSP | IEEE80211_TX_CTL_REQ_TX_STATUS; info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; if (call_driver) drv_allow_buffered_frames(local, sta, BIT(tid), 1, reason, false); skb->dev = sdata->dev; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); kfree_skb(skb); return; } info->band = chanctx_conf->def.chan->band; ieee80211_xmit(sdata, sta, skb); rcu_read_unlock(); } static int find_highest_prio_tid(unsigned long tids) { /* lower 3 TIDs aren't ordered perfectly */ if (tids & 0xF8) return fls(tids) - 1; /* TID 0 is BE just like TID 3 */ if (tids & BIT(0)) return 0; return fls(tids) - 1; } /* Indicates if the MORE_DATA bit should be set in the last * frame obtained by ieee80211_sta_ps_get_frames. * Note that driver_release_tids is relevant only if * reason = IEEE80211_FRAME_RELEASE_PSPOLL */ static bool ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, enum ieee80211_frame_release_type reason, unsigned long driver_release_tids) { int ac; /* If the driver has data on more than one TID then * certainly there's more data if we release just a * single frame now (from a single TID). This will * only happen for PS-Poll. */ if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && hweight16(driver_release_tids) > 1) return true; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) continue; if (!skb_queue_empty(&sta->tx_filtered[ac]) || !skb_queue_empty(&sta->ps_tx_buf[ac])) return true; } return false; } static void ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, enum ieee80211_frame_release_type reason, struct sk_buff_head *frames, unsigned long *driver_release_tids) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; int ac; /* Get response frame(s) and more data bit for the last one. */ for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { unsigned long tids; if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) continue; tids = ieee80211_tids_for_ac(ac); /* if we already have frames from software, then we can't also * release from hardware queues */ if (skb_queue_empty(frames)) { *driver_release_tids |= sta->driver_buffered_tids & tids; *driver_release_tids |= sta->txq_buffered_tids & tids; } if (!*driver_release_tids) { struct sk_buff *skb; while (n_frames > 0) { skb = skb_dequeue(&sta->tx_filtered[ac]); if (!skb) { skb = skb_dequeue( &sta->ps_tx_buf[ac]); if (skb) local->total_ps_buffered--; } if (!skb) break; n_frames--; __skb_queue_tail(frames, skb); } } /* If we have more frames buffered on this AC, then abort the * loop since we can't send more data from other ACs before * the buffered frames from this. */ if (!skb_queue_empty(&sta->tx_filtered[ac]) || !skb_queue_empty(&sta->ps_tx_buf[ac])) break; } } static void ieee80211_sta_ps_deliver_response(struct sta_info *sta, int n_frames, u8 ignored_acs, enum ieee80211_frame_release_type reason) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; unsigned long driver_release_tids = 0; struct sk_buff_head frames; bool more_data; /* Service or PS-Poll period starts */ set_sta_flag(sta, WLAN_STA_SP); __skb_queue_head_init(&frames); ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, &frames, &driver_release_tids); more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) driver_release_tids = BIT(find_highest_prio_tid(driver_release_tids)); if (skb_queue_empty(&frames) && !driver_release_tids) { int tid, ac; /* * For PS-Poll, this can only happen due to a race condition * when we set the TIM bit and the station notices it, but * before it can poll for the frame we expire it. * * For uAPSD, this is said in the standard (11.2.1.5 h): * At each unscheduled SP for a non-AP STA, the AP shall * attempt to transmit at least one MSDU or MMPDU, but no * more than the value specified in the Max SP Length field * in the QoS Capability element from delivery-enabled ACs, * that are destined for the non-AP STA. * * Since we have no other MSDU/MMPDU, transmit a QoS null frame. */ /* This will evaluate to 1, 3, 5 or 7. */ for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) break; tid = 7 - 2 * ac; ieee80211_send_null_response(sta, tid, reason, true, false); } else if (!driver_release_tids) { struct sk_buff_head pending; struct sk_buff *skb; int num = 0; u16 tids = 0; bool need_null = false; skb_queue_head_init(&pending); while ((skb = __skb_dequeue(&frames))) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *) skb->data; u8 *qoshdr = NULL; num++; /* * Tell TX path to send this frame even though the * STA may still remain is PS mode after this frame * exchange. */ info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; /* * Use MoreData flag to indicate whether there are * more buffered frames for this STA */ if (more_data || !skb_queue_empty(&frames)) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); else hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA); if (ieee80211_is_data_qos(hdr->frame_control) || ieee80211_is_qos_nullfunc(hdr->frame_control)) qoshdr = ieee80211_get_qos_ctl(hdr); tids |= BIT(skb->priority); __skb_queue_tail(&pending, skb); /* end service period after last frame or add one */ if (!skb_queue_empty(&frames)) continue; if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { /* for PS-Poll, there's only one frame */ info->flags |= IEEE80211_TX_STATUS_EOSP | IEEE80211_TX_CTL_REQ_TX_STATUS; break; } /* For uAPSD, things are a bit more complicated. If the * last frame has a QoS header (i.e. is a QoS-data or * QoS-nulldata frame) then just set the EOSP bit there * and be done. * If the frame doesn't have a QoS header (which means * it should be a bufferable MMPDU) then we can't set * the EOSP bit in the QoS header; add a QoS-nulldata * frame to the list to send it after the MMPDU. * * Note that this code is only in the mac80211-release * code path, we assume that the driver will not buffer * anything but QoS-data frames, or if it does, will * create the QoS-nulldata frame by itself if needed. * * Cf. 802.11-2012 10.2.1.10 (c). */ if (qoshdr) { *qoshdr |= IEEE80211_QOS_CTL_EOSP; info->flags |= IEEE80211_TX_STATUS_EOSP | IEEE80211_TX_CTL_REQ_TX_STATUS; } else { /* The standard isn't completely clear on this * as it says the more-data bit should be set * if there are more BUs. The QoS-Null frame * we're about to send isn't buffered yet, we * only create it below, but let's pretend it * was buffered just in case some clients only * expect more-data=0 when eosp=1. */ hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); need_null = true; num++; } break; } drv_allow_buffered_frames(local, sta, tids, num, reason, more_data); ieee80211_add_pending_skbs(local, &pending); if (need_null) ieee80211_send_null_response( sta, find_highest_prio_tid(tids), reason, false, false); sta_info_recalc_tim(sta); } else { int tid; /* * We need to release a frame that is buffered somewhere in the * driver ... it'll have to handle that. * Note that the driver also has to check the number of frames * on the TIDs we're releasing from - if there are more than * n_frames it has to set the more-data bit (if we didn't ask * it to set it anyway due to other buffered frames); if there * are fewer than n_frames it has to make sure to adjust that * to allow the service period to end properly. */ drv_release_buffered_frames(local, sta, driver_release_tids, n_frames, reason, more_data); /* * Note that we don't recalculate the TIM bit here as it would * most likely have no effect at all unless the driver told us * that the TID(s) became empty before returning here from the * release function. * Either way, however, when the driver tells us that the TID(s) * became empty or we find that a txq became empty, we'll do the * TIM recalculation. */ if (!sta->sta.txq[0]) return; for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { if (!(driver_release_tids & BIT(tid)) || txq_has_queue(sta->sta.txq[tid])) continue; sta_info_recalc_tim(sta); break; } } } void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) { u8 ignore_for_response = sta->sta.uapsd_queues; /* * If all ACs are delivery-enabled then we should reply * from any of them, if only some are enabled we reply * only from the non-enabled ones. */ if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) ignore_for_response = 0; ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, IEEE80211_FRAME_RELEASE_PSPOLL); } void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) { int n_frames = sta->sta.max_sp; u8 delivery_enabled = sta->sta.uapsd_queues; /* * If we ever grow support for TSPEC this might happen if * the TSPEC update from hostapd comes in between a trigger * frame setting WLAN_STA_UAPSD in the RX path and this * actually getting called. */ if (!delivery_enabled) return; switch (sta->sta.max_sp) { case 1: n_frames = 2; break; case 2: n_frames = 4; break; case 3: n_frames = 6; break; case 0: /* XXX: what is a good value? */ n_frames = 128; break; } ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, IEEE80211_FRAME_RELEASE_UAPSD); } void ieee80211_sta_block_awake(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, bool block) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); trace_api_sta_block_awake(sta->local, pubsta, block); if (block) { set_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_clear_fast_xmit(sta); return; } if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) return; if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { set_sta_flag(sta, WLAN_STA_PS_DELIVER); clear_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_queue_work(hw, &sta->drv_deliver_wk); } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || test_sta_flag(sta, WLAN_STA_UAPSD)) { /* must be asleep in this case */ clear_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_queue_work(hw, &sta->drv_deliver_wk); } else { clear_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_check_fast_xmit(sta); } } EXPORT_SYMBOL(ieee80211_sta_block_awake); void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_local *local = sta->local; trace_api_eosp(local, pubsta); clear_sta_flag(sta, WLAN_STA_SP); } EXPORT_SYMBOL(ieee80211_sta_eosp); void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); enum ieee80211_frame_release_type reason; bool more_data; trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); reason = IEEE80211_FRAME_RELEASE_UAPSD; more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, reason, 0); ieee80211_send_null_response(sta, tid, reason, false, more_data); } EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, u8 tid, bool buffered) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) return; trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); if (buffered) set_bit(tid, &sta->driver_buffered_tids); else clear_bit(tid, &sta->driver_buffered_tids); sta_info_recalc_tim(sta); } EXPORT_SYMBOL(ieee80211_sta_set_buffered); static void ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; bool allow_p2p_go_ps = sdata->vif.p2p; struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata || !test_sta_flag(sta, WLAN_STA_ASSOC)) continue; if (!sta->sta.support_p2p_ps) { allow_p2p_go_ps = false; break; } } rcu_read_unlock(); if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); } } int sta_info_move_state(struct sta_info *sta, enum ieee80211_sta_state new_state) { might_sleep(); if (sta->sta_state == new_state) return 0; /* check allowed transitions first */ switch (new_state) { case IEEE80211_STA_NONE: if (sta->sta_state != IEEE80211_STA_AUTH) return -EINVAL; break; case IEEE80211_STA_AUTH: if (sta->sta_state != IEEE80211_STA_NONE && sta->sta_state != IEEE80211_STA_ASSOC) return -EINVAL; break; case IEEE80211_STA_ASSOC: if (sta->sta_state != IEEE80211_STA_AUTH && sta->sta_state != IEEE80211_STA_AUTHORIZED) return -EINVAL; break; case IEEE80211_STA_AUTHORIZED: if (sta->sta_state != IEEE80211_STA_ASSOC) return -EINVAL; break; default: WARN(1, "invalid state %d", new_state); return -EINVAL; } sta_dbg(sta->sdata, "moving STA %pM to state %d\n", sta->sta.addr, new_state); /* * notify the driver before the actual changes so it can * fail the transition */ if (test_sta_flag(sta, WLAN_STA_INSERTED)) { int err = drv_sta_state(sta->local, sta->sdata, sta, sta->sta_state, new_state); if (err) return err; } /* reflect the change in all state variables */ switch (new_state) { case IEEE80211_STA_NONE: if (sta->sta_state == IEEE80211_STA_AUTH) clear_bit(WLAN_STA_AUTH, &sta->_flags); break; case IEEE80211_STA_AUTH: if (sta->sta_state == IEEE80211_STA_NONE) { set_bit(WLAN_STA_AUTH, &sta->_flags); } else if (sta->sta_state == IEEE80211_STA_ASSOC) { clear_bit(WLAN_STA_ASSOC, &sta->_flags); ieee80211_recalc_min_chandef(sta->sdata); if (!sta->sta.support_p2p_ps) ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); } break; case IEEE80211_STA_ASSOC: if (sta->sta_state == IEEE80211_STA_AUTH) { set_bit(WLAN_STA_ASSOC, &sta->_flags); ieee80211_recalc_min_chandef(sta->sdata); if (!sta->sta.support_p2p_ps) ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { ieee80211_vif_dec_num_mcast(sta->sdata); clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); ieee80211_clear_fast_xmit(sta); ieee80211_clear_fast_rx(sta); } break; case IEEE80211_STA_AUTHORIZED: if (sta->sta_state == IEEE80211_STA_ASSOC) { ieee80211_vif_inc_num_mcast(sta->sdata); set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); ieee80211_check_fast_xmit(sta); ieee80211_check_fast_rx(sta); } break; default: break; } sta->sta_state = new_state; return 0; } u8 sta_info_tx_streams(struct sta_info *sta) { struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; u8 rx_streams; if (!sta->sta.ht_cap.ht_supported) return 1; if (sta->sta.vht_cap.vht_supported) { int i; u16 tx_mcs_map = le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); for (i = 7; i >= 0; i--) if ((tx_mcs_map & (0x3 << (i * 2))) != IEEE80211_VHT_MCS_NOT_SUPPORTED) return i + 1; } if (ht_cap->mcs.rx_mask[3]) rx_streams = 4; else if (ht_cap->mcs.rx_mask[2]) rx_streams = 3; else if (ht_cap->mcs.rx_mask[1]) rx_streams = 2; else rx_streams = 1; if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) return rx_streams; return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; } static struct ieee80211_sta_rx_stats * sta_get_last_rx_stats(struct sta_info *sta) { struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; struct ieee80211_local *local = sta->local; int cpu; if (!ieee80211_hw_check(&local->hw, USES_RSS)) return stats; for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpustats; cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); if (time_after(cpustats->last_rx, stats->last_rx)) stats = cpustats; } return stats; } static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate, struct rate_info *rinfo) { rinfo->bw = STA_STATS_GET(BW, rate); switch (STA_STATS_GET(TYPE, rate)) { case STA_STATS_RATE_TYPE_VHT: rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); rinfo->nss = STA_STATS_GET(VHT_NSS, rate); if (STA_STATS_GET(SGI, rate)) rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; break; case STA_STATS_RATE_TYPE_HT: rinfo->flags = RATE_INFO_FLAGS_MCS; rinfo->mcs = STA_STATS_GET(HT_MCS, rate); if (STA_STATS_GET(SGI, rate)) rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; break; case STA_STATS_RATE_TYPE_LEGACY: { struct ieee80211_supported_band *sband; u16 brate; unsigned int shift; int band = STA_STATS_GET(LEGACY_BAND, rate); int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); rinfo->flags = 0; sband = local->hw.wiphy->bands[band]; brate = sband->bitrates[rate_idx].bitrate; if (rinfo->bw == RATE_INFO_BW_5) shift = 2; else if (rinfo->bw == RATE_INFO_BW_10) shift = 1; else shift = 0; rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); break; } } } static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) { u16 rate = ACCESS_ONCE(sta_get_last_rx_stats(sta)->last_rate); if (rate == STA_STATS_RATE_INVALID) return -EINVAL; sta_stats_decode_rate(sta->local, rate, rinfo); return 0; } static void sta_set_tidstats(struct sta_info *sta, struct cfg80211_tid_stats *tidstats, int tid) { struct ieee80211_local *local = sta->local; if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { unsigned int start; do { start = u64_stats_fetch_begin(&sta->rx_stats.syncp); tidstats->rx_msdu = sta->rx_stats.msdu[tid]; } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start)); tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); } if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); tidstats->tx_msdu = sta->tx_stats.msdu[tid]; } if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; } if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; } } static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) { unsigned int start; u64 value; do { start = u64_stats_fetch_begin(&rxstats->syncp); value = rxstats->bytes; } while (u64_stats_fetch_retry(&rxstats->syncp, start)); return value; } void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; u32 thr = 0; int i, ac, cpu; struct ieee80211_sta_rx_stats *last_rxstats; last_rxstats = sta_get_last_rx_stats(sta); sinfo->generation = sdata->local->sta_generation; /* do before driver, so beacon filtering drivers have a * chance to e.g. just add the number of filtered beacons * (or just modify the value entirely, of course) */ if (sdata->vif.type == NL80211_IFTYPE_STATION) sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; drv_sta_statistics(local, sdata, &sta->sta, sinfo); sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) | BIT(NL80211_STA_INFO_STA_FLAGS) | BIT(NL80211_STA_INFO_BSS_PARAM) | BIT(NL80211_STA_INFO_CONNECTED_TIME) | BIT(NL80211_STA_INFO_RX_DROP_MISC); if (sdata->vif.type == NL80211_IFTYPE_STATION) { sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS); } sinfo->connected_time = ktime_get_seconds() - sta->last_connected; sinfo->inactive_time = jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) | BIT(NL80211_STA_INFO_TX_BYTES)))) { sinfo->tx_bytes = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) sinfo->tx_bytes += sta->tx_stats.bytes[ac]; sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64); } if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) { sinfo->tx_packets = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) sinfo->tx_packets += sta->tx_stats.packets[ac]; sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS); } if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) | BIT(NL80211_STA_INFO_RX_BYTES)))) { sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); if (sta->pcpu_rx_stats) { for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpurxs; cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); } } sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64); } if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) { sinfo->rx_packets = sta->rx_stats.packets; if (sta->pcpu_rx_stats) { for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpurxs; cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); sinfo->rx_packets += cpurxs->packets; } } sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS); } if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) { sinfo->tx_retries = sta->status_stats.retry_count; sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES); } if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) { sinfo->tx_failed = sta->status_stats.retry_failed; sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED); } sinfo->rx_dropped_misc = sta->rx_stats.dropped; if (sta->pcpu_rx_stats) { for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpurxs; cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); sinfo->rx_dropped_misc += cpurxs->dropped; } } if (sdata->vif.type == NL80211_IFTYPE_STATION && !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) | BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG); sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); } if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) { sinfo->signal = (s8)last_rxstats->last_signal; sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); } if (!sta->pcpu_rx_stats && !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) { sinfo->signal_avg = -ewma_signal_read(&sta->rx_stats_avg.signal); sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG); } } /* for the average - if pcpu_rx_stats isn't set - rxstats must point to * the sta->rx_stats struct, so the check here is fine with and without * pcpu statistics */ if (last_rxstats->chains && !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL); if (!sta->pcpu_rx_stats) sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); sinfo->chains = last_rxstats->chains; for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { sinfo->chain_signal[i] = last_rxstats->chain_signal_last[i]; sinfo->chain_signal_avg[i] = -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); } } if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) { sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, &sinfo->txrate); sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); } if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) { if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE); } sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS); for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i]; sta_set_tidstats(sta, tidstats, i); } if (ieee80211_vif_is_mesh(&sdata->vif)) { #ifdef CONFIG_MAC80211_MESH sinfo->filled |= BIT(NL80211_STA_INFO_LLID) | BIT(NL80211_STA_INFO_PLID) | BIT(NL80211_STA_INFO_PLINK_STATE) | BIT(NL80211_STA_INFO_LOCAL_PM) | BIT(NL80211_STA_INFO_PEER_PM) | BIT(NL80211_STA_INFO_NONPEER_PM); sinfo->llid = sta->mesh->llid; sinfo->plid = sta->mesh->plid; sinfo->plink_state = sta->mesh->plink_state; if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET); sinfo->t_offset = sta->mesh->t_offset; } sinfo->local_pm = sta->mesh->local_pm; sinfo->peer_pm = sta->mesh->peer_pm; sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; #endif } sinfo->bss_param.flags = 0; if (sdata->vif.bss_conf.use_cts_prot) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; if (sdata->vif.bss_conf.use_short_preamble) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; if (sdata->vif.bss_conf.use_short_slot) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; sinfo->sta_flags.set = 0; sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | BIT(NL80211_STA_FLAG_WME) | BIT(NL80211_STA_FLAG_MFP) | BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED) | BIT(NL80211_STA_FLAG_TDLS_PEER); if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); if (sta->sta.wme) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); if (test_sta_flag(sta, WLAN_STA_MFP)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); if (test_sta_flag(sta, WLAN_STA_AUTH)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); if (test_sta_flag(sta, WLAN_STA_ASSOC)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); thr = sta_get_expected_throughput(sta); if (thr != 0) { sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT); sinfo->expected_throughput = thr; } } u32 sta_get_expected_throughput(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct rate_control_ref *ref = NULL; u32 thr = 0; if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) ref = local->rate_ctrl; /* check if the driver has a SW RC implementation */ if (ref && ref->ops->get_expected_throughput) thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); else thr = drv_get_expected_throughput(local, sta); return thr; } unsigned long ieee80211_sta_last_active(struct sta_info *sta) { struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); if (time_after(stats->last_rx, sta->status_stats.last_ack)) return stats->last_rx; return sta->status_stats.last_ack; } static void sta_update_codel_params(struct sta_info *sta, u32 thr) { if (!sta->sdata->local->ops->wake_tx_queue) return; if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { sta->cparams.target = MS2TIME(50); sta->cparams.interval = MS2TIME(300); sta->cparams.ecn = false; } else { sta->cparams.target = MS2TIME(20); sta->cparams.interval = MS2TIME(100); sta->cparams.ecn = true; } } void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, u32 thr) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); sta_update_codel_params(sta, thr); }