// SPDX-License-Identifier: GPL-2.0 /* net/sched/sch_taprio.c Time Aware Priority Scheduler * * Authors: Vinicius Costa Gomes * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include static LIST_HEAD(taprio_list); static DEFINE_SPINLOCK(taprio_list_lock); #define TAPRIO_ALL_GATES_OPEN -1 struct sched_entry { struct list_head list; /* The instant that this entry "closes" and the next one * should open, the qdisc will make some effort so that no * packet leaves after this time. */ ktime_t close_time; atomic_t budget; int index; u32 gate_mask; u32 interval; u8 command; }; struct taprio_sched { struct Qdisc **qdiscs; struct Qdisc *root; s64 base_time; int clockid; atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ * speeds it's sub-nanoseconds per byte */ size_t num_entries; /* Protects the update side of the RCU protected current_entry */ spinlock_t current_entry_lock; struct sched_entry __rcu *current_entry; struct list_head entries; ktime_t (*get_time)(void); struct hrtimer advance_timer; struct list_head taprio_list; }; static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct taprio_sched *q = qdisc_priv(sch); struct Qdisc *child; int queue; queue = skb_get_queue_mapping(skb); child = q->qdiscs[queue]; if (unlikely(!child)) return qdisc_drop(skb, sch, to_free); qdisc_qstats_backlog_inc(sch, skb); sch->q.qlen++; return qdisc_enqueue(skb, child, to_free); } static struct sk_buff *taprio_peek(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_entry *entry; struct sk_buff *skb; u32 gate_mask; int i; rcu_read_lock(); entry = rcu_dereference(q->current_entry); gate_mask = entry ? entry->gate_mask : -1; rcu_read_unlock(); if (!gate_mask) return NULL; for (i = 0; i < dev->num_tx_queues; i++) { struct Qdisc *child = q->qdiscs[i]; int prio; u8 tc; if (unlikely(!child)) continue; skb = child->ops->peek(child); if (!skb) continue; prio = skb->priority; tc = netdev_get_prio_tc_map(dev, prio); if (!(gate_mask & BIT(tc))) return NULL; return skb; } return NULL; } static inline int length_to_duration(struct taprio_sched *q, int len) { return div_u64(len * atomic64_read(&q->picos_per_byte), 1000); } static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) { atomic_set(&entry->budget, div64_u64((u64)entry->interval * 1000, atomic64_read(&q->picos_per_byte))); } static struct sk_buff *taprio_dequeue(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_entry *entry; struct sk_buff *skb; u32 gate_mask; int i; if (atomic64_read(&q->picos_per_byte) == -1) { WARN_ONCE(1, "taprio: dequeue() called with unknown picos per byte."); return NULL; } rcu_read_lock(); entry = rcu_dereference(q->current_entry); /* if there's no entry, it means that the schedule didn't * start yet, so force all gates to be open, this is in * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 * "AdminGateSates" */ gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; rcu_read_unlock(); if (!gate_mask) return NULL; for (i = 0; i < dev->num_tx_queues; i++) { struct Qdisc *child = q->qdiscs[i]; ktime_t guard; int prio; int len; u8 tc; if (unlikely(!child)) continue; skb = child->ops->peek(child); if (!skb) continue; prio = skb->priority; tc = netdev_get_prio_tc_map(dev, prio); if (!(gate_mask & BIT(tc))) continue; len = qdisc_pkt_len(skb); guard = ktime_add_ns(q->get_time(), length_to_duration(q, len)); /* In the case that there's no gate entry, there's no * guard band ... */ if (gate_mask != TAPRIO_ALL_GATES_OPEN && ktime_after(guard, entry->close_time)) return NULL; /* ... and no budget. */ if (gate_mask != TAPRIO_ALL_GATES_OPEN && atomic_sub_return(len, &entry->budget) < 0) return NULL; skb = child->ops->dequeue(child); if (unlikely(!skb)) return NULL; qdisc_bstats_update(sch, skb); qdisc_qstats_backlog_dec(sch, skb); sch->q.qlen--; return skb; } return NULL; } static bool should_restart_cycle(const struct taprio_sched *q, const struct sched_entry *entry) { WARN_ON(!entry); return list_is_last(&entry->list, &q->entries); } static enum hrtimer_restart advance_sched(struct hrtimer *timer) { struct taprio_sched *q = container_of(timer, struct taprio_sched, advance_timer); struct sched_entry *entry, *next; struct Qdisc *sch = q->root; ktime_t close_time; spin_lock(&q->current_entry_lock); entry = rcu_dereference_protected(q->current_entry, lockdep_is_held(&q->current_entry_lock)); /* This is the case that it's the first time that the schedule * runs, so it only happens once per schedule. The first entry * is pre-calculated during the schedule initialization. */ if (unlikely(!entry)) { next = list_first_entry(&q->entries, struct sched_entry, list); close_time = next->close_time; goto first_run; } if (should_restart_cycle(q, entry)) next = list_first_entry(&q->entries, struct sched_entry, list); else next = list_next_entry(entry, list); close_time = ktime_add_ns(entry->close_time, next->interval); next->close_time = close_time; taprio_set_budget(q, next); first_run: rcu_assign_pointer(q->current_entry, next); spin_unlock(&q->current_entry_lock); hrtimer_set_expires(&q->advance_timer, close_time); rcu_read_lock(); __netif_schedule(sch); rcu_read_unlock(); return HRTIMER_RESTART; } static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, }; static const struct nla_policy entry_list_policy[TCA_TAPRIO_SCHED_MAX + 1] = { [TCA_TAPRIO_SCHED_ENTRY] = { .type = NLA_NESTED }, }; static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { [TCA_TAPRIO_ATTR_PRIOMAP] = { .len = sizeof(struct tc_mqprio_qopt) }, [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, }; static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry, struct netlink_ext_ack *extack) { u32 interval = 0; if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) entry->command = nla_get_u8( tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) entry->gate_mask = nla_get_u32( tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) interval = nla_get_u32( tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); if (interval == 0) { NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); return -EINVAL; } entry->interval = interval; return 0; } static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry, int index, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; int err; err = nla_parse_nested(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, entry_policy, NULL); if (err < 0) { NL_SET_ERR_MSG(extack, "Could not parse nested entry"); return -EINVAL; } entry->index = index; return fill_sched_entry(tb, entry, extack); } /* Returns the number of entries in case of success */ static int parse_sched_single_entry(struct nlattr *n, struct taprio_sched *q, struct netlink_ext_ack *extack) { struct nlattr *tb_entry[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; struct nlattr *tb_list[TCA_TAPRIO_SCHED_MAX + 1] = { }; struct sched_entry *entry; bool found = false; u32 index; int err; err = nla_parse_nested(tb_list, TCA_TAPRIO_SCHED_MAX, n, entry_list_policy, NULL); if (err < 0) { NL_SET_ERR_MSG(extack, "Could not parse nested entry"); return -EINVAL; } if (!tb_list[TCA_TAPRIO_SCHED_ENTRY]) { NL_SET_ERR_MSG(extack, "Single-entry must include an entry"); return -EINVAL; } err = nla_parse_nested(tb_entry, TCA_TAPRIO_SCHED_ENTRY_MAX, tb_list[TCA_TAPRIO_SCHED_ENTRY], entry_policy, NULL); if (err < 0) { NL_SET_ERR_MSG(extack, "Could not parse nested entry"); return -EINVAL; } if (!tb_entry[TCA_TAPRIO_SCHED_ENTRY_INDEX]) { NL_SET_ERR_MSG(extack, "Entry must specify an index\n"); return -EINVAL; } index = nla_get_u32(tb_entry[TCA_TAPRIO_SCHED_ENTRY_INDEX]); if (index >= q->num_entries) { NL_SET_ERR_MSG(extack, "Index for single entry exceeds number of entries in schedule"); return -EINVAL; } list_for_each_entry(entry, &q->entries, list) { if (entry->index == index) { found = true; break; } } if (!found) { NL_SET_ERR_MSG(extack, "Could not find entry"); return -ENOENT; } err = fill_sched_entry(tb_entry, entry, extack); if (err < 0) return err; return q->num_entries; } static int parse_sched_list(struct nlattr *list, struct taprio_sched *q, struct netlink_ext_ack *extack) { struct nlattr *n; int err, rem; int i = 0; if (!list) return -EINVAL; nla_for_each_nested(n, list, rem) { struct sched_entry *entry; if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); continue; } entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { NL_SET_ERR_MSG(extack, "Not enough memory for entry"); return -ENOMEM; } err = parse_sched_entry(n, entry, i, extack); if (err < 0) { kfree(entry); return err; } list_add_tail(&entry->list, &q->entries); i++; } q->num_entries = i; return i; } /* Returns the number of entries in case of success */ static int parse_taprio_opt(struct nlattr **tb, struct taprio_sched *q, struct netlink_ext_ack *extack) { int err = 0; int clockid; if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] && tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) return -EINVAL; if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] && q->num_entries == 0) return -EINVAL; if (q->clockid == -1 && !tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) return -EINVAL; if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) q->base_time = nla_get_s64( tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); /* We only support static clockids and we don't allow * for it to be modified after the first init. */ if (clockid < 0 || (q->clockid != -1 && q->clockid != clockid)) return -EINVAL; q->clockid = clockid; } if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) err = parse_sched_list( tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], q, extack); else if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) err = parse_sched_single_entry( tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY], q, extack); /* parse_sched_* return the number of entries in the schedule, * a schedule with zero entries is an error. */ if (err == 0) { NL_SET_ERR_MSG(extack, "The schedule should contain at least one entry"); return -EINVAL; } return err; } static int taprio_parse_mqprio_opt(struct net_device *dev, struct tc_mqprio_qopt *qopt, struct netlink_ext_ack *extack) { int i, j; if (!qopt) { NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); return -EINVAL; } /* Verify num_tc is not out of max range */ if (qopt->num_tc > TC_MAX_QUEUE) { NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); return -EINVAL; } /* taprio imposes that traffic classes map 1:n to tx queues */ if (qopt->num_tc > dev->num_tx_queues) { NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); return -EINVAL; } /* Verify priority mapping uses valid tcs */ for (i = 0; i < TC_BITMASK + 1; i++) { if (qopt->prio_tc_map[i] >= qopt->num_tc) { NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); return -EINVAL; } } for (i = 0; i < qopt->num_tc; i++) { unsigned int last = qopt->offset[i] + qopt->count[i]; /* Verify the queue count is in tx range being equal to the * real_num_tx_queues indicates the last queue is in use. */ if (qopt->offset[i] >= dev->num_tx_queues || !qopt->count[i] || last > dev->real_num_tx_queues) { NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); return -EINVAL; } /* Verify that the offset and counts do not overlap */ for (j = i + 1; j < qopt->num_tc; j++) { if (last > qopt->offset[j]) { NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); return -EINVAL; } } } return 0; } static ktime_t taprio_get_start_time(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct sched_entry *entry; ktime_t now, base, cycle; s64 n; base = ns_to_ktime(q->base_time); cycle = 0; /* Calculate the cycle_time, by summing all the intervals. */ list_for_each_entry(entry, &q->entries, list) cycle = ktime_add_ns(cycle, entry->interval); if (!cycle) return base; now = q->get_time(); if (ktime_after(base, now)) return base; /* Schedule the start time for the beginning of the next * cycle. */ n = div64_s64(ktime_sub_ns(now, base), cycle); return ktime_add_ns(base, (n + 1) * cycle); } static void taprio_start_sched(struct Qdisc *sch, ktime_t start) { struct taprio_sched *q = qdisc_priv(sch); struct sched_entry *first; unsigned long flags; spin_lock_irqsave(&q->current_entry_lock, flags); first = list_first_entry(&q->entries, struct sched_entry, list); first->close_time = ktime_add_ns(start, first->interval); taprio_set_budget(q, first); rcu_assign_pointer(q->current_entry, NULL); spin_unlock_irqrestore(&q->current_entry_lock, flags); hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); } static void taprio_set_picos_per_byte(struct net_device *dev, struct taprio_sched *q) { struct ethtool_link_ksettings ecmd; int picos_per_byte = -1; if (!__ethtool_get_link_ksettings(dev, &ecmd) && ecmd.base.speed != SPEED_UNKNOWN) picos_per_byte = div64_s64(NSEC_PER_SEC * 1000LL * 8, ecmd.base.speed * 1000 * 1000); atomic64_set(&q->picos_per_byte, picos_per_byte); netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", dev->name, (long long)atomic64_read(&q->picos_per_byte), ecmd.base.speed); } static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct net_device *qdev; struct taprio_sched *q; bool found = false; ASSERT_RTNL(); if (event != NETDEV_UP && event != NETDEV_CHANGE) return NOTIFY_DONE; spin_lock(&taprio_list_lock); list_for_each_entry(q, &taprio_list, taprio_list) { qdev = qdisc_dev(q->root); if (qdev == dev) { found = true; break; } } spin_unlock(&taprio_list_lock); if (found) taprio_set_picos_per_byte(dev, q); return NOTIFY_DONE; } static int taprio_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct tc_mqprio_qopt *mqprio = NULL; int i, err, size; ktime_t start; err = nla_parse_nested(tb, TCA_TAPRIO_ATTR_MAX, opt, taprio_policy, extack); if (err < 0) return err; if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); err = taprio_parse_mqprio_opt(dev, mqprio, extack); if (err < 0) return err; /* A schedule with less than one entry is an error */ size = parse_taprio_opt(tb, q, extack); if (size < 0) return size; hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); q->advance_timer.function = advance_sched; switch (q->clockid) { case CLOCK_REALTIME: q->get_time = ktime_get_real; break; case CLOCK_MONOTONIC: q->get_time = ktime_get; break; case CLOCK_BOOTTIME: q->get_time = ktime_get_boottime; break; case CLOCK_TAI: q->get_time = ktime_get_clocktai; break; default: return -ENOTSUPP; } for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *dev_queue; struct Qdisc *qdisc; dev_queue = netdev_get_tx_queue(dev, i); qdisc = qdisc_create_dflt(dev_queue, &pfifo_qdisc_ops, TC_H_MAKE(TC_H_MAJ(sch->handle), TC_H_MIN(i + 1)), extack); if (!qdisc) return -ENOMEM; if (i < dev->real_num_tx_queues) qdisc_hash_add(qdisc, false); q->qdiscs[i] = qdisc; } if (mqprio) { netdev_set_num_tc(dev, mqprio->num_tc); for (i = 0; i < mqprio->num_tc; i++) netdev_set_tc_queue(dev, i, mqprio->count[i], mqprio->offset[i]); /* Always use supplied priority mappings */ for (i = 0; i < TC_BITMASK + 1; i++) netdev_set_prio_tc_map(dev, i, mqprio->prio_tc_map[i]); } taprio_set_picos_per_byte(dev, q); start = taprio_get_start_time(sch); if (!start) return 0; taprio_start_sched(sch, start); return 0; } static void taprio_destroy(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_entry *entry, *n; unsigned int i; spin_lock(&taprio_list_lock); list_del(&q->taprio_list); spin_unlock(&taprio_list_lock); hrtimer_cancel(&q->advance_timer); if (q->qdiscs) { for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++) qdisc_put(q->qdiscs[i]); kfree(q->qdiscs); } q->qdiscs = NULL; netdev_set_num_tc(dev, 0); list_for_each_entry_safe(entry, n, &q->entries, list) { list_del(&entry->list); kfree(entry); } } static int taprio_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); INIT_LIST_HEAD(&q->entries); spin_lock_init(&q->current_entry_lock); /* We may overwrite the configuration later */ hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); q->root = sch; /* We only support static clockids. Use an invalid value as default * and get the valid one on taprio_change(). */ q->clockid = -1; if (sch->parent != TC_H_ROOT) return -EOPNOTSUPP; if (!netif_is_multiqueue(dev)) return -EOPNOTSUPP; /* pre-allocate qdisc, attachment can't fail */ q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]), GFP_KERNEL); if (!q->qdiscs) return -ENOMEM; if (!opt) return -EINVAL; spin_lock(&taprio_list_lock); list_add(&q->taprio_list, &taprio_list); spin_unlock(&taprio_list_lock); return taprio_change(sch, opt, extack); } static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, unsigned long cl) { struct net_device *dev = qdisc_dev(sch); unsigned long ntx = cl - 1; if (ntx >= dev->num_tx_queues) return NULL; return netdev_get_tx_queue(dev, ntx); } static int taprio_graft(struct Qdisc *sch, unsigned long cl, struct Qdisc *new, struct Qdisc **old, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); if (!dev_queue) return -EINVAL; if (dev->flags & IFF_UP) dev_deactivate(dev); *old = q->qdiscs[cl - 1]; q->qdiscs[cl - 1] = new; if (new) new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; if (dev->flags & IFF_UP) dev_activate(dev); return 0; } static int dump_entry(struct sk_buff *msg, const struct sched_entry *entry) { struct nlattr *item; item = nla_nest_start(msg, TCA_TAPRIO_SCHED_ENTRY); if (!item) return -ENOSPC; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) goto nla_put_failure; if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) goto nla_put_failure; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, entry->gate_mask)) goto nla_put_failure; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, entry->interval)) goto nla_put_failure; return nla_nest_end(msg, item); nla_put_failure: nla_nest_cancel(msg, item); return -1; } static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct tc_mqprio_qopt opt = { 0 }; struct nlattr *nest, *entry_list; struct sched_entry *entry; unsigned int i; opt.num_tc = netdev_get_num_tc(dev); memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); for (i = 0; i < netdev_get_num_tc(dev); i++) { opt.count[i] = dev->tc_to_txq[i].count; opt.offset[i] = dev->tc_to_txq[i].offset; } nest = nla_nest_start(skb, TCA_OPTIONS); if (!nest) return -ENOSPC; if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) goto options_error; if (nla_put_s64(skb, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, q->base_time, TCA_TAPRIO_PAD)) goto options_error; if (nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) goto options_error; entry_list = nla_nest_start(skb, TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); if (!entry_list) goto options_error; list_for_each_entry(entry, &q->entries, list) { if (dump_entry(skb, entry) < 0) goto options_error; } nla_nest_end(skb, entry_list); return nla_nest_end(skb, nest); options_error: nla_nest_cancel(skb, nest); return -1; } static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) { struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); if (!dev_queue) return NULL; return dev_queue->qdisc_sleeping; } static unsigned long taprio_find(struct Qdisc *sch, u32 classid) { unsigned int ntx = TC_H_MIN(classid); if (!taprio_queue_get(sch, ntx)) return 0; return ntx; } static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm) { struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); tcm->tcm_parent = TC_H_ROOT; tcm->tcm_handle |= TC_H_MIN(cl); tcm->tcm_info = dev_queue->qdisc_sleeping->handle; return 0; } static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, struct gnet_dump *d) __releases(d->lock) __acquires(d->lock) { struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); sch = dev_queue->qdisc_sleeping; if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 || qdisc_qstats_copy(d, sch) < 0) return -1; return 0; } static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) { struct net_device *dev = qdisc_dev(sch); unsigned long ntx; if (arg->stop) return; arg->count = arg->skip; for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { if (arg->fn(sch, ntx + 1, arg) < 0) { arg->stop = 1; break; } arg->count++; } } static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, struct tcmsg *tcm) { return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); } static const struct Qdisc_class_ops taprio_class_ops = { .graft = taprio_graft, .leaf = taprio_leaf, .find = taprio_find, .walk = taprio_walk, .dump = taprio_dump_class, .dump_stats = taprio_dump_class_stats, .select_queue = taprio_select_queue, }; static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { .cl_ops = &taprio_class_ops, .id = "taprio", .priv_size = sizeof(struct taprio_sched), .init = taprio_init, .destroy = taprio_destroy, .peek = taprio_peek, .dequeue = taprio_dequeue, .enqueue = taprio_enqueue, .dump = taprio_dump, .owner = THIS_MODULE, }; static struct notifier_block taprio_device_notifier = { .notifier_call = taprio_dev_notifier, }; static int __init taprio_module_init(void) { int err = register_netdevice_notifier(&taprio_device_notifier); if (err) return err; return register_qdisc(&taprio_qdisc_ops); } static void __exit taprio_module_exit(void) { unregister_qdisc(&taprio_qdisc_ops); unregister_netdevice_notifier(&taprio_device_notifier); } module_init(taprio_module_init); module_exit(taprio_module_exit); MODULE_LICENSE("GPL");