/* * rcar_du_crtc.c -- R-Car Display Unit CRTCs * * Copyright (C) 2013-2014 Renesas Electronics Corporation * * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include "rcar_du_crtc.h" #include "rcar_du_drv.h" #include "rcar_du_kms.h" #include "rcar_du_plane.h" #include "rcar_du_regs.h" static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg) { struct rcar_du_device *rcdu = rcrtc->group->dev; return rcar_du_read(rcdu, rcrtc->mmio_offset + reg); } static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data) { struct rcar_du_device *rcdu = rcrtc->group->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data); } static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr) { struct rcar_du_device *rcdu = rcrtc->group->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr); } static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set) { struct rcar_du_device *rcdu = rcrtc->group->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set); } static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr, u32 set) { struct rcar_du_device *rcdu = rcrtc->group->dev; u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg); rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set); } static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc) { int ret; ret = clk_prepare_enable(rcrtc->clock); if (ret < 0) return ret; ret = clk_prepare_enable(rcrtc->extclock); if (ret < 0) goto error_clock; ret = rcar_du_group_get(rcrtc->group); if (ret < 0) goto error_group; return 0; error_group: clk_disable_unprepare(rcrtc->extclock); error_clock: clk_disable_unprepare(rcrtc->clock); return ret; } static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc) { rcar_du_group_put(rcrtc->group); clk_disable_unprepare(rcrtc->extclock); clk_disable_unprepare(rcrtc->clock); } /* ----------------------------------------------------------------------------- * Hardware Setup */ static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc) { const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode; unsigned long mode_clock = mode->clock * 1000; unsigned long clk; u32 value; u32 escr; u32 div; /* Compute the clock divisor and select the internal or external dot * clock based on the requested frequency. */ clk = clk_get_rate(rcrtc->clock); div = DIV_ROUND_CLOSEST(clk, mode_clock); div = clamp(div, 1U, 64U) - 1; escr = div | ESCR_DCLKSEL_CLKS; if (rcrtc->extclock) { unsigned long extclk; unsigned long extrate; unsigned long rate; u32 extdiv; extclk = clk_get_rate(rcrtc->extclock); extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock); extdiv = clamp(extdiv, 1U, 64U) - 1; rate = clk / (div + 1); extrate = extclk / (extdiv + 1); if (abs((long)extrate - (long)mode_clock) < abs((long)rate - (long)mode_clock)) { dev_dbg(rcrtc->group->dev->dev, "crtc%u: using external clock\n", rcrtc->index); escr = extdiv | ESCR_DCLKSEL_DCLKIN; } } rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR, escr); rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0); /* Signal polarities */ value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL) | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL) | DSMR_DIPM_DE | DSMR_CSPM; rcar_du_crtc_write(rcrtc, DSMR, value); /* Display timings */ rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19); rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start + mode->hdisplay - 19); rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end - mode->hsync_start - 1); rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1); rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal - mode->crtc_vsync_end - 2); rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal - mode->crtc_vsync_end + mode->crtc_vdisplay - 2); rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal - mode->crtc_vsync_end + mode->crtc_vsync_start - 1); rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1); rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start); rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay); } void rcar_du_crtc_route_output(struct drm_crtc *crtc, enum rcar_du_output output) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct rcar_du_device *rcdu = rcrtc->group->dev; /* Store the route from the CRTC output to the DU output. The DU will be * configured when starting the CRTC. */ rcrtc->outputs |= BIT(output); /* Store RGB routing to DPAD0, the hardware will be configured when * starting the CRTC. */ if (output == RCAR_DU_OUTPUT_DPAD0) rcdu->dpad0_source = rcrtc->index; } void rcar_du_crtc_update_planes(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES]; unsigned int num_planes = 0; unsigned int prio = 0; unsigned int i; u32 dptsr = 0; u32 dspr = 0; for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) { struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i]; unsigned int j; if (plane->crtc != &rcrtc->crtc || !plane->enabled) continue; /* Insert the plane in the sorted planes array. */ for (j = num_planes++; j > 0; --j) { if (planes[j-1]->zpos <= plane->zpos) break; planes[j] = planes[j-1]; } planes[j] = plane; prio += plane->format->planes * 4; } for (i = 0; i < num_planes; ++i) { struct rcar_du_plane *plane = planes[i]; unsigned int index = plane->hwindex; prio -= 4; dspr |= (index + 1) << prio; dptsr |= DPTSR_PnDK(index) | DPTSR_PnTS(index); if (plane->format->planes == 2) { index = (index + 1) % 8; prio -= 4; dspr |= (index + 1) << prio; dptsr |= DPTSR_PnDK(index) | DPTSR_PnTS(index); } } /* Select display timing and dot clock generator 2 for planes associated * with superposition controller 2. */ if (rcrtc->index % 2) { u32 value = rcar_du_group_read(rcrtc->group, DPTSR); /* The DPTSR register is updated when the display controller is * stopped. We thus need to restart the DU. Once again, sorry * for the flicker. One way to mitigate the issue would be to * pre-associate planes with CRTCs (either with a fixed 4/4 * split, or through a module parameter). Flicker would then * occur only if we need to break the pre-association. */ if (value != dptsr) { rcar_du_group_write(rcrtc->group, DPTSR, dptsr); if (rcrtc->group->used_crtcs) rcar_du_group_restart(rcrtc->group); } } rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, dspr); } /* ----------------------------------------------------------------------------- * Page Flip */ void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc, struct drm_file *file) { struct drm_pending_vblank_event *event; struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; /* Destroy the pending vertical blanking event associated with the * pending page flip, if any, and disable vertical blanking interrupts. */ spin_lock_irqsave(&dev->event_lock, flags); event = rcrtc->event; if (event && event->base.file_priv == file) { rcrtc->event = NULL; event->base.destroy(&event->base); drm_crtc_vblank_put(&rcrtc->crtc); } spin_unlock_irqrestore(&dev->event_lock, flags); } static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc) { struct drm_pending_vblank_event *event; struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); event = rcrtc->event; rcrtc->event = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); if (event == NULL) return; spin_lock_irqsave(&dev->event_lock, flags); drm_send_vblank_event(dev, rcrtc->index, event); wake_up(&rcrtc->flip_wait); spin_unlock_irqrestore(&dev->event_lock, flags); drm_crtc_vblank_put(&rcrtc->crtc); } static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc) { struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; bool pending; spin_lock_irqsave(&dev->event_lock, flags); pending = rcrtc->event != NULL; spin_unlock_irqrestore(&dev->event_lock, flags); return pending; } static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc) { struct rcar_du_device *rcdu = rcrtc->group->dev; if (wait_event_timeout(rcrtc->flip_wait, !rcar_du_crtc_page_flip_pending(rcrtc), msecs_to_jiffies(50))) return; dev_warn(rcdu->dev, "page flip timeout\n"); rcar_du_crtc_finish_page_flip(rcrtc); } /* ----------------------------------------------------------------------------- * Start/Stop and Suspend/Resume */ static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc) { struct drm_crtc *crtc = &rcrtc->crtc; bool interlaced; unsigned int i; if (rcrtc->started) return; if (WARN_ON(rcrtc->plane->format == NULL)) return; /* Set display off and background to black */ rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0)); rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0)); /* Configure display timings and output routing */ rcar_du_crtc_set_display_timing(rcrtc); rcar_du_group_set_routing(rcrtc->group); /* FIXME: Commit the planes state. This is required here as the CRTC can * be started from the DPMS and system resume handler, which don't go * through .atomic_plane_update() and .atomic_flush() to commit plane * state. Similarly a mode set operation without any update to planes * will not go through atomic plane configuration either. Additionally, * given that the plane state atomic commit occurs between CRTC disable * and enable, the hardware state could also be lost due to runtime PM, * requiring a full commit here. This will be fixed later after * switching to atomic updates completely. */ mutex_lock(&rcrtc->group->planes.lock); rcar_du_crtc_update_planes(crtc); mutex_unlock(&rcrtc->group->planes.lock); for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) { struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i]; if (plane->crtc != crtc || !plane->enabled) continue; rcar_du_plane_setup(plane); } /* Select master sync mode. This enables display operation in master * sync mode (with the HSYNC and VSYNC signals configured as outputs and * actively driven). */ interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE; rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK, (interlaced ? DSYSR_SCM_INT_VIDEO : 0) | DSYSR_TVM_MASTER); rcar_du_group_start_stop(rcrtc->group, true); /* Turn vertical blanking interrupt reporting back on. */ drm_crtc_vblank_on(crtc); rcrtc->started = true; } static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc) { struct drm_crtc *crtc = &rcrtc->crtc; if (!rcrtc->started) return; /* Disable vertical blanking interrupt reporting. We first need to wait * for page flip completion before stopping the CRTC as userspace * expects page flips to eventually complete. */ rcar_du_crtc_wait_page_flip(rcrtc); drm_crtc_vblank_off(crtc); /* Select switch sync mode. This stops display operation and configures * the HSYNC and VSYNC signals as inputs. */ rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH); rcar_du_group_start_stop(rcrtc->group, false); rcrtc->started = false; } void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc) { rcar_du_crtc_stop(rcrtc); rcar_du_crtc_put(rcrtc); } void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc) { if (rcrtc->dpms != DRM_MODE_DPMS_ON) return; rcar_du_crtc_get(rcrtc); rcar_du_crtc_start(rcrtc); } static void rcar_du_crtc_update_base(struct rcar_du_crtc *rcrtc) { struct drm_crtc *crtc = &rcrtc->crtc; rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb); rcar_du_plane_update_base(rcrtc->plane); } /* ----------------------------------------------------------------------------- * CRTC Functions */ static void rcar_du_crtc_dpms(struct drm_crtc *crtc, int mode) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); if (mode != DRM_MODE_DPMS_ON) mode = DRM_MODE_DPMS_OFF; if (rcrtc->dpms == mode) return; if (mode == DRM_MODE_DPMS_ON) { rcar_du_crtc_get(rcrtc); rcar_du_crtc_start(rcrtc); } else { rcar_du_crtc_stop(rcrtc); rcar_du_crtc_put(rcrtc); } rcrtc->dpms = mode; } static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { /* TODO Fixup modes */ return true; } static void rcar_du_crtc_mode_prepare(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); /* We need to access the hardware during mode set, acquire a reference * to the CRTC. */ rcar_du_crtc_get(rcrtc); /* Stop the CRTC, force the DPMS mode to off as a result. */ rcar_du_crtc_stop(rcrtc); rcrtc->dpms = DRM_MODE_DPMS_OFF; rcrtc->outputs = 0; } static void rcar_du_crtc_mode_set_nofb(struct drm_crtc *crtc) { /* No-op. We should configure the display timings here, but as we're * called with the CRTC disabled clocks might be off, and we thus can't * access the hardware. Let's just configure everything when enabling * the CRTC. */ } static void rcar_du_crtc_mode_commit(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); /* We're done, restart the CRTC and set the DPMS mode to on. The * reference to the DU acquired at prepare() time will thus be released * by the DPMS handler (possibly called by the disable() handler). */ rcar_du_crtc_start(rcrtc); rcrtc->dpms = DRM_MODE_DPMS_ON; } static void rcar_du_crtc_disable(struct drm_crtc *crtc) { rcar_du_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); } static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); /* We need to access the hardware during atomic update, acquire a * reference to the CRTC. */ rcar_du_crtc_get(rcrtc); } static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); /* We're done, apply the configuration and drop the reference acquired * in .atomic_begin(). */ mutex_lock(&rcrtc->group->planes.lock); rcar_du_crtc_update_planes(crtc); mutex_unlock(&rcrtc->group->planes.lock); rcar_du_crtc_put(rcrtc); } static const struct drm_crtc_helper_funcs crtc_helper_funcs = { .dpms = rcar_du_crtc_dpms, .mode_fixup = rcar_du_crtc_mode_fixup, .prepare = rcar_du_crtc_mode_prepare, .commit = rcar_du_crtc_mode_commit, .mode_set = drm_helper_crtc_mode_set, .mode_set_nofb = rcar_du_crtc_mode_set_nofb, .mode_set_base = drm_helper_crtc_mode_set_base, .disable = rcar_du_crtc_disable, .atomic_begin = rcar_du_crtc_atomic_begin, .atomic_flush = rcar_du_crtc_atomic_flush, }; static int rcar_du_crtc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t page_flip_flags) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (rcrtc->event != NULL) { spin_unlock_irqrestore(&dev->event_lock, flags); return -EBUSY; } spin_unlock_irqrestore(&dev->event_lock, flags); drm_atomic_set_fb_for_plane(crtc->primary->state, fb); crtc->primary->fb = fb; rcar_du_crtc_update_base(rcrtc); if (event) { event->pipe = rcrtc->index; drm_crtc_vblank_get(crtc); spin_lock_irqsave(&dev->event_lock, flags); rcrtc->event = event; spin_unlock_irqrestore(&dev->event_lock, flags); } return 0; } static const struct drm_crtc_funcs crtc_funcs = { .reset = drm_atomic_helper_crtc_reset, .destroy = drm_crtc_cleanup, .set_config = drm_crtc_helper_set_config, .page_flip = rcar_du_crtc_page_flip, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, }; /* ----------------------------------------------------------------------------- * Interrupt Handling */ static irqreturn_t rcar_du_crtc_irq(int irq, void *arg) { struct rcar_du_crtc *rcrtc = arg; irqreturn_t ret = IRQ_NONE; u32 status; status = rcar_du_crtc_read(rcrtc, DSSR); rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK); if (status & DSSR_FRM) { drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index); rcar_du_crtc_finish_page_flip(rcrtc); ret = IRQ_HANDLED; } return ret; } /* ----------------------------------------------------------------------------- * Initialization */ int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index) { static const unsigned int mmio_offsets[] = { DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET }; struct rcar_du_device *rcdu = rgrp->dev; struct platform_device *pdev = to_platform_device(rcdu->dev); struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index]; struct drm_crtc *crtc = &rcrtc->crtc; unsigned int irqflags; struct clk *clk; char clk_name[9]; char *name; int irq; int ret; /* Get the CRTC clock and the optional external clock. */ if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) { sprintf(clk_name, "du.%u", index); name = clk_name; } else { name = NULL; } rcrtc->clock = devm_clk_get(rcdu->dev, name); if (IS_ERR(rcrtc->clock)) { dev_err(rcdu->dev, "no clock for CRTC %u\n", index); return PTR_ERR(rcrtc->clock); } sprintf(clk_name, "dclkin.%u", index); clk = devm_clk_get(rcdu->dev, clk_name); if (!IS_ERR(clk)) { rcrtc->extclock = clk; } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) { dev_info(rcdu->dev, "can't get external clock %u\n", index); return -EPROBE_DEFER; } init_waitqueue_head(&rcrtc->flip_wait); rcrtc->group = rgrp; rcrtc->mmio_offset = mmio_offsets[index]; rcrtc->index = index; rcrtc->dpms = DRM_MODE_DPMS_OFF; rcrtc->plane = &rgrp->planes.planes[index % 2]; rcrtc->plane->crtc = crtc; ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, &rcrtc->plane->plane, NULL, &crtc_funcs); if (ret < 0) return ret; drm_crtc_helper_add(crtc, &crtc_helper_funcs); /* Start with vertical blanking interrupt reporting disabled. */ drm_crtc_vblank_off(crtc); /* Register the interrupt handler. */ if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) { irq = platform_get_irq(pdev, index); irqflags = 0; } else { irq = platform_get_irq(pdev, 0); irqflags = IRQF_SHARED; } if (irq < 0) { dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index); return irq; } ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags, dev_name(rcdu->dev), rcrtc); if (ret < 0) { dev_err(rcdu->dev, "failed to register IRQ for CRTC %u\n", index); return ret; } return 0; } void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable) { if (enable) { rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL); rcar_du_crtc_set(rcrtc, DIER, DIER_VBE); } else { rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE); } }