// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2018 Intel Corporation. */ /****************************************************************************** Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code ******************************************************************************/ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ixgbevf.h" const char ixgbevf_driver_name[] = "ixgbevf"; static const char ixgbevf_driver_string[] = "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; #define DRV_VERSION "4.1.0-k" const char ixgbevf_driver_version[] = DRV_VERSION; static char ixgbevf_copyright[] = "Copyright (c) 2009 - 2018 Intel Corporation."; static const struct ixgbevf_info *ixgbevf_info_tbl[] = { [board_82599_vf] = &ixgbevf_82599_vf_info, [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, [board_X540_vf] = &ixgbevf_X540_vf_info, [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, [board_X550_vf] = &ixgbevf_X550_vf_info, [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, }; /* ixgbevf_pci_tbl - PCI Device ID Table * * Wildcard entries (PCI_ANY_ID) should come last * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static const struct pci_device_id ixgbevf_pci_tbl[] = { {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); MODULE_AUTHOR("Intel Corporation, "); MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRV_VERSION); #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) static int debug = -1; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); static struct workqueue_struct *ixgbevf_wq; static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) { if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && !test_bit(__IXGBEVF_REMOVING, &adapter->state) && !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) queue_work(ixgbevf_wq, &adapter->service_task); } static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) { BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); /* flush memory to make sure state is correct before next watchdog */ smp_mb__before_atomic(); clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); } /* forward decls */ static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, struct ixgbevf_rx_buffer *old_buff); static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) { struct ixgbevf_adapter *adapter = hw->back; if (!hw->hw_addr) return; hw->hw_addr = NULL; dev_err(&adapter->pdev->dev, "Adapter removed\n"); if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) ixgbevf_service_event_schedule(adapter); } static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) { u32 value; /* The following check not only optimizes a bit by not * performing a read on the status register when the * register just read was a status register read that * returned IXGBE_FAILED_READ_REG. It also blocks any * potential recursion. */ if (reg == IXGBE_VFSTATUS) { ixgbevf_remove_adapter(hw); return; } value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); if (value == IXGBE_FAILED_READ_REG) ixgbevf_remove_adapter(hw); } u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) { u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); u32 value; if (IXGBE_REMOVED(reg_addr)) return IXGBE_FAILED_READ_REG; value = readl(reg_addr + reg); if (unlikely(value == IXGBE_FAILED_READ_REG)) ixgbevf_check_remove(hw, reg); return value; } /** * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors * @adapter: pointer to adapter struct * @direction: 0 for Rx, 1 for Tx, -1 for other causes * @queue: queue to map the corresponding interrupt to * @msix_vector: the vector to map to the corresponding queue **/ static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, u8 queue, u8 msix_vector) { u32 ivar, index; struct ixgbe_hw *hw = &adapter->hw; if (direction == -1) { /* other causes */ msix_vector |= IXGBE_IVAR_ALLOC_VAL; ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); ivar &= ~0xFF; ivar |= msix_vector; IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); } else { /* Tx or Rx causes */ msix_vector |= IXGBE_IVAR_ALLOC_VAL; index = ((16 * (queue & 1)) + (8 * direction)); ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); ivar &= ~(0xFF << index); ivar |= (msix_vector << index); IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); } } static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) { return ring->stats.packets; } static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) { struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); struct ixgbe_hw *hw = &adapter->hw; u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); if (head != tail) return (head < tail) ? tail - head : (tail + ring->count - head); return 0; } static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) { u32 tx_done = ixgbevf_get_tx_completed(tx_ring); u32 tx_done_old = tx_ring->tx_stats.tx_done_old; u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); clear_check_for_tx_hang(tx_ring); /* Check for a hung queue, but be thorough. This verifies * that a transmit has been completed since the previous * check AND there is at least one packet pending. The * ARMED bit is set to indicate a potential hang. */ if ((tx_done_old == tx_done) && tx_pending) { /* make sure it is true for two checks in a row */ return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); } /* reset the countdown */ clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); /* update completed stats and continue */ tx_ring->tx_stats.tx_done_old = tx_done; return false; } static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) { /* Do the reset outside of interrupt context */ if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); ixgbevf_service_event_schedule(adapter); } } /** * ixgbevf_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure **/ static void ixgbevf_tx_timeout(struct net_device *netdev) { struct ixgbevf_adapter *adapter = netdev_priv(netdev); ixgbevf_tx_timeout_reset(adapter); } /** * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes * @q_vector: board private structure * @tx_ring: tx ring to clean * @napi_budget: Used to determine if we are in netpoll **/ static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, struct ixgbevf_ring *tx_ring, int napi_budget) { struct ixgbevf_adapter *adapter = q_vector->adapter; struct ixgbevf_tx_buffer *tx_buffer; union ixgbe_adv_tx_desc *tx_desc; unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; unsigned int budget = tx_ring->count / 2; unsigned int i = tx_ring->next_to_clean; if (test_bit(__IXGBEVF_DOWN, &adapter->state)) return true; tx_buffer = &tx_ring->tx_buffer_info[i]; tx_desc = IXGBEVF_TX_DESC(tx_ring, i); i -= tx_ring->count; do { union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; /* if next_to_watch is not set then there is no work pending */ if (!eop_desc) break; /* prevent any other reads prior to eop_desc */ smp_rmb(); /* if DD is not set pending work has not been completed */ if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) break; /* clear next_to_watch to prevent false hangs */ tx_buffer->next_to_watch = NULL; /* update the statistics for this packet */ total_bytes += tx_buffer->bytecount; total_packets += tx_buffer->gso_segs; if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) total_ipsec++; /* free the skb */ if (ring_is_xdp(tx_ring)) page_frag_free(tx_buffer->data); else napi_consume_skb(tx_buffer->skb, napi_budget); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); /* clear tx_buffer data */ dma_unmap_len_set(tx_buffer, len, 0); /* unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) { dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); } } /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); } /* issue prefetch for next Tx descriptor */ prefetch(tx_desc); /* update budget accounting */ budget--; } while (likely(budget)); i += tx_ring->count; tx_ring->next_to_clean = i; u64_stats_update_begin(&tx_ring->syncp); tx_ring->stats.bytes += total_bytes; tx_ring->stats.packets += total_packets; u64_stats_update_end(&tx_ring->syncp); q_vector->tx.total_bytes += total_bytes; q_vector->tx.total_packets += total_packets; adapter->tx_ipsec += total_ipsec; if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { struct ixgbe_hw *hw = &adapter->hw; union ixgbe_adv_tx_desc *eop_desc; eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; pr_err("Detected Tx Unit Hang%s\n" " Tx Queue <%d>\n" " TDH, TDT <%x>, <%x>\n" " next_to_use <%x>\n" " next_to_clean <%x>\n" "tx_buffer_info[next_to_clean]\n" " next_to_watch <%p>\n" " eop_desc->wb.status <%x>\n" " time_stamp <%lx>\n" " jiffies <%lx>\n", ring_is_xdp(tx_ring) ? " XDP" : "", tx_ring->queue_index, IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), tx_ring->next_to_use, i, eop_desc, (eop_desc ? eop_desc->wb.status : 0), tx_ring->tx_buffer_info[i].time_stamp, jiffies); if (!ring_is_xdp(tx_ring)) netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); /* schedule immediate reset if we believe we hung */ ixgbevf_tx_timeout_reset(adapter); return true; } if (ring_is_xdp(tx_ring)) return !!budget; #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (__netif_subqueue_stopped(tx_ring->netdev, tx_ring->queue_index) && !test_bit(__IXGBEVF_DOWN, &adapter->state)) { netif_wake_subqueue(tx_ring->netdev, tx_ring->queue_index); ++tx_ring->tx_stats.restart_queue; } } return !!budget; } /** * ixgbevf_rx_skb - Helper function to determine proper Rx method * @q_vector: structure containing interrupt and ring information * @skb: packet to send up **/ static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, struct sk_buff *skb) { napi_gro_receive(&q_vector->napi, skb); } #define IXGBE_RSS_L4_TYPES_MASK \ ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, union ixgbe_adv_rx_desc *rx_desc, struct sk_buff *skb) { u16 rss_type; if (!(ring->netdev->features & NETIF_F_RXHASH)) return; rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & IXGBE_RXDADV_RSSTYPE_MASK; if (!rss_type) return; skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); } /** * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum * @ring: structure containig ring specific data * @rx_desc: current Rx descriptor being processed * @skb: skb currently being received and modified **/ static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, union ixgbe_adv_rx_desc *rx_desc, struct sk_buff *skb) { skb_checksum_none_assert(skb); /* Rx csum disabled */ if (!(ring->netdev->features & NETIF_F_RXCSUM)) return; /* if IP and error */ if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { ring->rx_stats.csum_err++; return; } if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) return; if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { ring->rx_stats.csum_err++; return; } /* It must be a TCP or UDP packet with a valid checksum */ skb->ip_summed = CHECKSUM_UNNECESSARY; } /** * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being populated * * This function checks the ring, descriptor, and packet information in * order to populate the checksum, VLAN, protocol, and other fields within * the skb. **/ static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, union ixgbe_adv_rx_desc *rx_desc, struct sk_buff *skb) { ixgbevf_rx_hash(rx_ring, rx_desc, skb); ixgbevf_rx_checksum(rx_ring, rx_desc, skb); if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); unsigned long *active_vlans = netdev_priv(rx_ring->netdev); if (test_bit(vid & VLAN_VID_MASK, active_vlans)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); } if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); skb->protocol = eth_type_trans(skb, rx_ring->netdev); } static struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, const unsigned int size) { struct ixgbevf_rx_buffer *rx_buffer; rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; prefetchw(rx_buffer->page); /* we are reusing so sync this buffer for CPU use */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, size, DMA_FROM_DEVICE); rx_buffer->pagecnt_bias--; return rx_buffer; } static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, struct ixgbevf_rx_buffer *rx_buffer, struct sk_buff *skb) { if (ixgbevf_can_reuse_rx_page(rx_buffer)) { /* hand second half of page back to the ring */ ixgbevf_reuse_rx_page(rx_ring, rx_buffer); } else { if (IS_ERR(skb)) /* We are not reusing the buffer so unmap it and free * any references we are holding to it */ dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, ixgbevf_rx_pg_size(rx_ring), DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); __page_frag_cache_drain(rx_buffer->page, rx_buffer->pagecnt_bias); } /* clear contents of rx_buffer */ rx_buffer->page = NULL; } /** * ixgbevf_is_non_eop - process handling of non-EOP buffers * @rx_ring: Rx ring being processed * @rx_desc: Rx descriptor for current buffer * * This function updates next to clean. If the buffer is an EOP buffer * this function exits returning false, otherwise it will place the * sk_buff in the next buffer to be chained and return true indicating * that this is in fact a non-EOP buffer. **/ static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, union ixgbe_adv_rx_desc *rx_desc) { u32 ntc = rx_ring->next_to_clean + 1; /* fetch, update, and store next to clean */ ntc = (ntc < rx_ring->count) ? ntc : 0; rx_ring->next_to_clean = ntc; prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) return false; return true; } static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) { return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; } static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, struct ixgbevf_rx_buffer *bi) { struct page *page = bi->page; dma_addr_t dma; /* since we are recycling buffers we should seldom need to alloc */ if (likely(page)) return true; /* alloc new page for storage */ page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); if (unlikely(!page)) { rx_ring->rx_stats.alloc_rx_page_failed++; return false; } /* map page for use */ dma = dma_map_page_attrs(rx_ring->dev, page, 0, ixgbevf_rx_pg_size(rx_ring), DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); /* if mapping failed free memory back to system since * there isn't much point in holding memory we can't use */ if (dma_mapping_error(rx_ring->dev, dma)) { __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); rx_ring->rx_stats.alloc_rx_page_failed++; return false; } bi->dma = dma; bi->page = page; bi->page_offset = ixgbevf_rx_offset(rx_ring); bi->pagecnt_bias = 1; rx_ring->rx_stats.alloc_rx_page++; return true; } /** * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on * @cleaned_count: number of buffers to replace **/ static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, u16 cleaned_count) { union ixgbe_adv_rx_desc *rx_desc; struct ixgbevf_rx_buffer *bi; unsigned int i = rx_ring->next_to_use; /* nothing to do or no valid netdev defined */ if (!cleaned_count || !rx_ring->netdev) return; rx_desc = IXGBEVF_RX_DESC(rx_ring, i); bi = &rx_ring->rx_buffer_info[i]; i -= rx_ring->count; do { if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) break; /* sync the buffer for use by the device */ dma_sync_single_range_for_device(rx_ring->dev, bi->dma, bi->page_offset, ixgbevf_rx_bufsz(rx_ring), DMA_FROM_DEVICE); /* Refresh the desc even if pkt_addr didn't change * because each write-back erases this info. */ rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); rx_desc++; bi++; i++; if (unlikely(!i)) { rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); bi = rx_ring->rx_buffer_info; i -= rx_ring->count; } /* clear the length for the next_to_use descriptor */ rx_desc->wb.upper.length = 0; cleaned_count--; } while (cleaned_count); i += rx_ring->count; if (rx_ring->next_to_use != i) { /* record the next descriptor to use */ rx_ring->next_to_use = i; /* update next to alloc since we have filled the ring */ rx_ring->next_to_alloc = i; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); ixgbevf_write_tail(rx_ring, i); } } /** * ixgbevf_cleanup_headers - Correct corrupted or empty headers * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being fixed * * Check for corrupted packet headers caused by senders on the local L2 * embedded NIC switch not setting up their Tx Descriptors right. These * should be very rare. * * Also address the case where we are pulling data in on pages only * and as such no data is present in the skb header. * * In addition if skb is not at least 60 bytes we need to pad it so that * it is large enough to qualify as a valid Ethernet frame. * * Returns true if an error was encountered and skb was freed. **/ static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, union ixgbe_adv_rx_desc *rx_desc, struct sk_buff *skb) { /* XDP packets use error pointer so abort at this point */ if (IS_ERR(skb)) return true; /* verify that the packet does not have any known errors */ if (unlikely(ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { struct net_device *netdev = rx_ring->netdev; if (!(netdev->features & NETIF_F_RXALL)) { dev_kfree_skb_any(skb); return true; } } /* if eth_skb_pad returns an error the skb was freed */ if (eth_skb_pad(skb)) return true; return false; } /** * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring * @rx_ring: rx descriptor ring to store buffers on * @old_buff: donor buffer to have page reused * * Synchronizes page for reuse by the adapter **/ static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, struct ixgbevf_rx_buffer *old_buff) { struct ixgbevf_rx_buffer *new_buff; u16 nta = rx_ring->next_to_alloc; new_buff = &rx_ring->rx_buffer_info[nta]; /* update, and store next to alloc */ nta++; rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; /* transfer page from old buffer to new buffer */ new_buff->page = old_buff->page; new_buff->dma = old_buff->dma; new_buff->page_offset = old_buff->page_offset; new_buff->pagecnt_bias = old_buff->pagecnt_bias; } static inline bool ixgbevf_page_is_reserved(struct page *page) { return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); } static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) { unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; struct page *page = rx_buffer->page; /* avoid re-using remote pages */ if (unlikely(ixgbevf_page_is_reserved(page))) return false; #if (PAGE_SIZE < 8192) /* if we are only owner of page we can reuse it */ if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) return false; #else #define IXGBEVF_LAST_OFFSET \ (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) return false; #endif /* If we have drained the page fragment pool we need to update * the pagecnt_bias and page count so that we fully restock the * number of references the driver holds. */ if (unlikely(!pagecnt_bias)) { page_ref_add(page, USHRT_MAX); rx_buffer->pagecnt_bias = USHRT_MAX; } return true; } /** * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff * @rx_ring: rx descriptor ring to transact packets on * @rx_buffer: buffer containing page to add * @skb: sk_buff to place the data into * @size: size of buffer to be added * * This function will add the data contained in rx_buffer->page to the skb. **/ static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, struct ixgbevf_rx_buffer *rx_buffer, struct sk_buff *skb, unsigned int size) { #if (PAGE_SIZE < 8192) unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; #else unsigned int truesize = ring_uses_build_skb(rx_ring) ? SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : SKB_DATA_ALIGN(size); #endif skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, rx_buffer->page_offset, size, truesize); #if (PAGE_SIZE < 8192) rx_buffer->page_offset ^= truesize; #else rx_buffer->page_offset += truesize; #endif } static struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, struct ixgbevf_rx_buffer *rx_buffer, struct xdp_buff *xdp, union ixgbe_adv_rx_desc *rx_desc) { unsigned int size = xdp->data_end - xdp->data; #if (PAGE_SIZE < 8192) unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; #else unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - xdp->data_hard_start); #endif unsigned int headlen; struct sk_buff *skb; /* prefetch first cache line of first page */ prefetch(xdp->data); #if L1_CACHE_BYTES < 128 prefetch(xdp->data + L1_CACHE_BYTES); #endif /* Note, we get here by enabling legacy-rx via: * * ethtool --set-priv-flags legacy-rx on * * In this mode, we currently get 0 extra XDP headroom as * opposed to having legacy-rx off, where we process XDP * packets going to stack via ixgbevf_build_skb(). * * For ixgbevf_construct_skb() mode it means that the * xdp->data_meta will always point to xdp->data, since * the helper cannot expand the head. Should this ever * changed in future for legacy-rx mode on, then lets also * add xdp->data_meta handling here. */ /* allocate a skb to store the frags */ skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); if (unlikely(!skb)) return NULL; /* Determine available headroom for copy */ headlen = size; if (headlen > IXGBEVF_RX_HDR_SIZE) headlen = eth_get_headlen(xdp->data, IXGBEVF_RX_HDR_SIZE); /* align pull length to size of long to optimize memcpy performance */ memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long))); /* update all of the pointers */ size -= headlen; if (size) { skb_add_rx_frag(skb, 0, rx_buffer->page, (xdp->data + headlen) - page_address(rx_buffer->page), size, truesize); #if (PAGE_SIZE < 8192) rx_buffer->page_offset ^= truesize; #else rx_buffer->page_offset += truesize; #endif } else { rx_buffer->pagecnt_bias++; } return skb; } static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, u32 qmask) { struct ixgbe_hw *hw = &adapter->hw; IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); } static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, struct ixgbevf_rx_buffer *rx_buffer, struct xdp_buff *xdp, union ixgbe_adv_rx_desc *rx_desc) { unsigned int metasize = xdp->data - xdp->data_meta; #if (PAGE_SIZE < 8192) unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; #else unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + SKB_DATA_ALIGN(xdp->data_end - xdp->data_hard_start); #endif struct sk_buff *skb; /* Prefetch first cache line of first page. If xdp->data_meta * is unused, this points to xdp->data, otherwise, we likely * have a consumer accessing first few bytes of meta data, * and then actual data. */ prefetch(xdp->data_meta); #if L1_CACHE_BYTES < 128 prefetch(xdp->data_meta + L1_CACHE_BYTES); #endif /* build an skb around the page buffer */ skb = build_skb(xdp->data_hard_start, truesize); if (unlikely(!skb)) return NULL; /* update pointers within the skb to store the data */ skb_reserve(skb, xdp->data - xdp->data_hard_start); __skb_put(skb, xdp->data_end - xdp->data); if (metasize) skb_metadata_set(skb, metasize); /* update buffer offset */ #if (PAGE_SIZE < 8192) rx_buffer->page_offset ^= truesize; #else rx_buffer->page_offset += truesize; #endif return skb; } #define IXGBEVF_XDP_PASS 0 #define IXGBEVF_XDP_CONSUMED 1 #define IXGBEVF_XDP_TX 2 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, struct xdp_buff *xdp) { struct ixgbevf_tx_buffer *tx_buffer; union ixgbe_adv_tx_desc *tx_desc; u32 len, cmd_type; dma_addr_t dma; u16 i; len = xdp->data_end - xdp->data; if (unlikely(!ixgbevf_desc_unused(ring))) return IXGBEVF_XDP_CONSUMED; dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); if (dma_mapping_error(ring->dev, dma)) return IXGBEVF_XDP_CONSUMED; /* record the location of the first descriptor for this packet */ i = ring->next_to_use; tx_buffer = &ring->tx_buffer_info[i]; dma_unmap_len_set(tx_buffer, len, len); dma_unmap_addr_set(tx_buffer, dma, dma); tx_buffer->data = xdp->data; tx_buffer->bytecount = len; tx_buffer->gso_segs = 1; tx_buffer->protocol = 0; /* Populate minimal context descriptor that will provide for the * fact that we are expected to process Ethernet frames. */ if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { struct ixgbe_adv_tx_context_desc *context_desc; set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); context_desc->vlan_macip_lens = cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); context_desc->fceof_saidx = 0; context_desc->type_tucmd_mlhl = cpu_to_le32(IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT); context_desc->mss_l4len_idx = 0; i = 1; } /* put descriptor type bits */ cmd_type = IXGBE_ADVTXD_DTYP_DATA | IXGBE_ADVTXD_DCMD_DEXT | IXGBE_ADVTXD_DCMD_IFCS; cmd_type |= len | IXGBE_TXD_CMD; tx_desc = IXGBEVF_TX_DESC(ring, i); tx_desc->read.buffer_addr = cpu_to_le64(dma); tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); tx_desc->read.olinfo_status = cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | IXGBE_ADVTXD_CC); /* Avoid any potential race with cleanup */ smp_wmb(); /* set next_to_watch value indicating a packet is present */ i++; if (i == ring->count) i = 0; tx_buffer->next_to_watch = tx_desc; ring->next_to_use = i; return IXGBEVF_XDP_TX; } static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, struct ixgbevf_ring *rx_ring, struct xdp_buff *xdp) { int result = IXGBEVF_XDP_PASS; struct ixgbevf_ring *xdp_ring; struct bpf_prog *xdp_prog; u32 act; rcu_read_lock(); xdp_prog = READ_ONCE(rx_ring->xdp_prog); if (!xdp_prog) goto xdp_out; act = bpf_prog_run_xdp(xdp_prog, xdp); switch (act) { case XDP_PASS: break; case XDP_TX: xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); break; default: bpf_warn_invalid_xdp_action(act); /* fallthrough */ case XDP_ABORTED: trace_xdp_exception(rx_ring->netdev, xdp_prog, act); /* fallthrough -- handle aborts by dropping packet */ case XDP_DROP: result = IXGBEVF_XDP_CONSUMED; break; } xdp_out: rcu_read_unlock(); return ERR_PTR(-result); } static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, struct ixgbevf_rx_buffer *rx_buffer, unsigned int size) { #if (PAGE_SIZE < 8192) unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; rx_buffer->page_offset ^= truesize; #else unsigned int truesize = ring_uses_build_skb(rx_ring) ? SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : SKB_DATA_ALIGN(size); rx_buffer->page_offset += truesize; #endif } static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, struct ixgbevf_ring *rx_ring, int budget) { unsigned int total_rx_bytes = 0, total_rx_packets = 0; struct ixgbevf_adapter *adapter = q_vector->adapter; u16 cleaned_count = ixgbevf_desc_unused(rx_ring); struct sk_buff *skb = rx_ring->skb; bool xdp_xmit = false; struct xdp_buff xdp; xdp.rxq = &rx_ring->xdp_rxq; while (likely(total_rx_packets < budget)) { struct ixgbevf_rx_buffer *rx_buffer; union ixgbe_adv_rx_desc *rx_desc; unsigned int size; /* return some buffers to hardware, one at a time is too slow */ if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); cleaned_count = 0; } rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); size = le16_to_cpu(rx_desc->wb.upper.length); if (!size) break; /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we know the * RXD_STAT_DD bit is set */ rmb(); rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); /* retrieve a buffer from the ring */ if (!skb) { xdp.data = page_address(rx_buffer->page) + rx_buffer->page_offset; xdp.data_meta = xdp.data; xdp.data_hard_start = xdp.data - ixgbevf_rx_offset(rx_ring); xdp.data_end = xdp.data + size; skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); } if (IS_ERR(skb)) { if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { xdp_xmit = true; ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, size); } else { rx_buffer->pagecnt_bias++; } total_rx_packets++; total_rx_bytes += size; } else if (skb) { ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); } else if (ring_uses_build_skb(rx_ring)) { skb = ixgbevf_build_skb(rx_ring, rx_buffer, &xdp, rx_desc); } else { skb = ixgbevf_construct_skb(rx_ring, rx_buffer, &xdp, rx_desc); } /* exit if we failed to retrieve a buffer */ if (!skb) { rx_ring->rx_stats.alloc_rx_buff_failed++; rx_buffer->pagecnt_bias++; break; } ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); cleaned_count++; /* fetch next buffer in frame if non-eop */ if (ixgbevf_is_non_eop(rx_ring, rx_desc)) continue; /* verify the packet layout is correct */ if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { skb = NULL; continue; } /* probably a little skewed due to removing CRC */ total_rx_bytes += skb->len; /* Workaround hardware that can't do proper VEPA multicast * source pruning. */ if ((skb->pkt_type == PACKET_BROADCAST || skb->pkt_type == PACKET_MULTICAST) && ether_addr_equal(rx_ring->netdev->dev_addr, eth_hdr(skb)->h_source)) { dev_kfree_skb_irq(skb); continue; } /* populate checksum, VLAN, and protocol */ ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); ixgbevf_rx_skb(q_vector, skb); /* reset skb pointer */ skb = NULL; /* update budget accounting */ total_rx_packets++; } /* place incomplete frames back on ring for completion */ rx_ring->skb = skb; if (xdp_xmit) { struct ixgbevf_ring *xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. */ wmb(); ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); } u64_stats_update_begin(&rx_ring->syncp); rx_ring->stats.packets += total_rx_packets; rx_ring->stats.bytes += total_rx_bytes; u64_stats_update_end(&rx_ring->syncp); q_vector->rx.total_packets += total_rx_packets; q_vector->rx.total_bytes += total_rx_bytes; return total_rx_packets; } /** * ixgbevf_poll - NAPI polling calback * @napi: napi struct with our devices info in it * @budget: amount of work driver is allowed to do this pass, in packets * * This function will clean more than one or more rings associated with a * q_vector. **/ static int ixgbevf_poll(struct napi_struct *napi, int budget) { struct ixgbevf_q_vector *q_vector = container_of(napi, struct ixgbevf_q_vector, napi); struct ixgbevf_adapter *adapter = q_vector->adapter; struct ixgbevf_ring *ring; int per_ring_budget, work_done = 0; bool clean_complete = true; ixgbevf_for_each_ring(ring, q_vector->tx) { if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) clean_complete = false; } if (budget <= 0) return budget; /* attempt to distribute budget to each queue fairly, but don't allow * the budget to go below 1 because we'll exit polling */ if (q_vector->rx.count > 1) per_ring_budget = max(budget/q_vector->rx.count, 1); else per_ring_budget = budget; ixgbevf_for_each_ring(ring, q_vector->rx) { int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, per_ring_budget); work_done += cleaned; if (cleaned >= per_ring_budget) clean_complete = false; } /* If all work not completed, return budget and keep polling */ if (!clean_complete) return budget; /* all work done, exit the polling mode */ napi_complete_done(napi, work_done); if (adapter->rx_itr_setting == 1) ixgbevf_set_itr(q_vector); if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && !test_bit(__IXGBEVF_REMOVING, &adapter->state)) ixgbevf_irq_enable_queues(adapter, BIT(q_vector->v_idx)); return 0; } /** * ixgbevf_write_eitr - write VTEITR register in hardware specific way * @q_vector: structure containing interrupt and ring information **/ void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) { struct ixgbevf_adapter *adapter = q_vector->adapter; struct ixgbe_hw *hw = &adapter->hw; int v_idx = q_vector->v_idx; u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; /* set the WDIS bit to not clear the timer bits and cause an * immediate assertion of the interrupt */ itr_reg |= IXGBE_EITR_CNT_WDIS; IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); } /** * ixgbevf_configure_msix - Configure MSI-X hardware * @adapter: board private structure * * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X * interrupts. **/ static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) { struct ixgbevf_q_vector *q_vector; int q_vectors, v_idx; q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; adapter->eims_enable_mask = 0; /* Populate the IVAR table and set the ITR values to the * corresponding register. */ for (v_idx = 0; v_idx < q_vectors; v_idx++) { struct ixgbevf_ring *ring; q_vector = adapter->q_vector[v_idx]; ixgbevf_for_each_ring(ring, q_vector->rx) ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); ixgbevf_for_each_ring(ring, q_vector->tx) ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); if (q_vector->tx.ring && !q_vector->rx.ring) { /* Tx only vector */ if (adapter->tx_itr_setting == 1) q_vector->itr = IXGBE_12K_ITR; else q_vector->itr = adapter->tx_itr_setting; } else { /* Rx or Rx/Tx vector */ if (adapter->rx_itr_setting == 1) q_vector->itr = IXGBE_20K_ITR; else q_vector->itr = adapter->rx_itr_setting; } /* add q_vector eims value to global eims_enable_mask */ adapter->eims_enable_mask |= BIT(v_idx); ixgbevf_write_eitr(q_vector); } ixgbevf_set_ivar(adapter, -1, 1, v_idx); /* setup eims_other and add value to global eims_enable_mask */ adapter->eims_other = BIT(v_idx); adapter->eims_enable_mask |= adapter->eims_other; } enum latency_range { lowest_latency = 0, low_latency = 1, bulk_latency = 2, latency_invalid = 255 }; /** * ixgbevf_update_itr - update the dynamic ITR value based on statistics * @q_vector: structure containing interrupt and ring information * @ring_container: structure containing ring performance data * * Stores a new ITR value based on packets and byte * counts during the last interrupt. The advantage of per interrupt * computation is faster updates and more accurate ITR for the current * traffic pattern. Constants in this function were computed * based on theoretical maximum wire speed and thresholds were set based * on testing data as well as attempting to minimize response time * while increasing bulk throughput. **/ static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, struct ixgbevf_ring_container *ring_container) { int bytes = ring_container->total_bytes; int packets = ring_container->total_packets; u32 timepassed_us; u64 bytes_perint; u8 itr_setting = ring_container->itr; if (packets == 0) return; /* simple throttle rate management * 0-20MB/s lowest (100000 ints/s) * 20-100MB/s low (20000 ints/s) * 100-1249MB/s bulk (12000 ints/s) */ /* what was last interrupt timeslice? */ timepassed_us = q_vector->itr >> 2; bytes_perint = bytes / timepassed_us; /* bytes/usec */ switch (itr_setting) { case lowest_latency: if (bytes_perint > 10) itr_setting = low_latency; break; case low_latency: if (bytes_perint > 20) itr_setting = bulk_latency; else if (bytes_perint <= 10) itr_setting = lowest_latency; break; case bulk_latency: if (bytes_perint <= 20) itr_setting = low_latency; break; } /* clear work counters since we have the values we need */ ring_container->total_bytes = 0; ring_container->total_packets = 0; /* write updated itr to ring container */ ring_container->itr = itr_setting; } static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) { u32 new_itr = q_vector->itr; u8 current_itr; ixgbevf_update_itr(q_vector, &q_vector->tx); ixgbevf_update_itr(q_vector, &q_vector->rx); current_itr = max(q_vector->rx.itr, q_vector->tx.itr); switch (current_itr) { /* counts and packets in update_itr are dependent on these numbers */ case lowest_latency: new_itr = IXGBE_100K_ITR; break; case low_latency: new_itr = IXGBE_20K_ITR; break; case bulk_latency: new_itr = IXGBE_12K_ITR; break; default: break; } if (new_itr != q_vector->itr) { /* do an exponential smoothing */ new_itr = (10 * new_itr * q_vector->itr) / ((9 * new_itr) + q_vector->itr); /* save the algorithm value here */ q_vector->itr = new_itr; ixgbevf_write_eitr(q_vector); } } static irqreturn_t ixgbevf_msix_other(int irq, void *data) { struct ixgbevf_adapter *adapter = data; struct ixgbe_hw *hw = &adapter->hw; hw->mac.get_link_status = 1; ixgbevf_service_event_schedule(adapter); IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); return IRQ_HANDLED; } /** * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) * @irq: unused * @data: pointer to our q_vector struct for this interrupt vector **/ static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) { struct ixgbevf_q_vector *q_vector = data; /* EIAM disabled interrupts (on this vector) for us */ if (q_vector->rx.ring || q_vector->tx.ring) napi_schedule_irqoff(&q_vector->napi); return IRQ_HANDLED; } /** * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts * @adapter: board private structure * * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests * interrupts from the kernel. **/ static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) { struct net_device *netdev = adapter->netdev; int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; unsigned int ri = 0, ti = 0; int vector, err; for (vector = 0; vector < q_vectors; vector++) { struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; struct msix_entry *entry = &adapter->msix_entries[vector]; if (q_vector->tx.ring && q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name), "%s-TxRx-%u", netdev->name, ri++); ti++; } else if (q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name), "%s-rx-%u", netdev->name, ri++); } else if (q_vector->tx.ring) { snprintf(q_vector->name, sizeof(q_vector->name), "%s-tx-%u", netdev->name, ti++); } else { /* skip this unused q_vector */ continue; } err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, q_vector->name, q_vector); if (err) { hw_dbg(&adapter->hw, "request_irq failed for MSIX interrupt Error: %d\n", err); goto free_queue_irqs; } } err = request_irq(adapter->msix_entries[vector].vector, &ixgbevf_msix_other, 0, netdev->name, adapter); if (err) { hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", err); goto free_queue_irqs; } return 0; free_queue_irqs: while (vector) { vector--; free_irq(adapter->msix_entries[vector].vector, adapter->q_vector[vector]); } /* This failure is non-recoverable - it indicates the system is * out of MSIX vector resources and the VF driver cannot run * without them. Set the number of msix vectors to zero * indicating that not enough can be allocated. The error * will be returned to the user indicating device open failed. * Any further attempts to force the driver to open will also * fail. The only way to recover is to unload the driver and * reload it again. If the system has recovered some MSIX * vectors then it may succeed. */ adapter->num_msix_vectors = 0; return err; } /** * ixgbevf_request_irq - initialize interrupts * @adapter: board private structure * * Attempts to configure interrupts using the best available * capabilities of the hardware and kernel. **/ static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) { int err = ixgbevf_request_msix_irqs(adapter); if (err) hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); return err; } static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) { int i, q_vectors; if (!adapter->msix_entries) return; q_vectors = adapter->num_msix_vectors; i = q_vectors - 1; free_irq(adapter->msix_entries[i].vector, adapter); i--; for (; i >= 0; i--) { /* free only the irqs that were actually requested */ if (!adapter->q_vector[i]->rx.ring && !adapter->q_vector[i]->tx.ring) continue; free_irq(adapter->msix_entries[i].vector, adapter->q_vector[i]); } } /** * ixgbevf_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; int i; IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); IXGBE_WRITE_FLUSH(hw); for (i = 0; i < adapter->num_msix_vectors; i++) synchronize_irq(adapter->msix_entries[i].vector); } /** * ixgbevf_irq_enable - Enable default interrupt generation settings * @adapter: board private structure **/ static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); } /** * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset * @adapter: board private structure * @ring: structure containing ring specific data * * Configure the Tx descriptor ring after a reset. **/ static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, struct ixgbevf_ring *ring) { struct ixgbe_hw *hw = &adapter->hw; u64 tdba = ring->dma; int wait_loop = 10; u32 txdctl = IXGBE_TXDCTL_ENABLE; u8 reg_idx = ring->reg_idx; /* disable queue to avoid issues while updating state */ IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); IXGBE_WRITE_FLUSH(hw); IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), ring->count * sizeof(union ixgbe_adv_tx_desc)); /* disable head writeback */ IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); /* enable relaxed ordering */ IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), (IXGBE_DCA_TXCTRL_DESC_RRO_EN | IXGBE_DCA_TXCTRL_DATA_RRO_EN)); /* reset head and tail pointers */ IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); /* reset ntu and ntc to place SW in sync with hardwdare */ ring->next_to_clean = 0; ring->next_to_use = 0; /* In order to avoid issues WTHRESH + PTHRESH should always be equal * to or less than the number of on chip descriptors, which is * currently 40. */ txdctl |= (8 << 16); /* WTHRESH = 8 */ /* Setting PTHRESH to 32 both improves performance */ txdctl |= (1u << 8) | /* HTHRESH = 1 */ 32; /* PTHRESH = 32 */ /* reinitialize tx_buffer_info */ memset(ring->tx_buffer_info, 0, sizeof(struct ixgbevf_tx_buffer) * ring->count); clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); /* poll to verify queue is enabled */ do { usleep_range(1000, 2000); txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); if (!wait_loop) hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); } /** * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset * @adapter: board private structure * * Configure the Tx unit of the MAC after a reset. **/ static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) { u32 i; /* Setup the HW Tx Head and Tail descriptor pointers */ for (i = 0; i < adapter->num_tx_queues; i++) ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); for (i = 0; i < adapter->num_xdp_queues; i++) ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); } #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, struct ixgbevf_ring *ring, int index) { struct ixgbe_hw *hw = &adapter->hw; u32 srrctl; srrctl = IXGBE_SRRCTL_DROP_EN; srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; if (ring_uses_large_buffer(ring)) srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; else srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); } static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; /* PSRTYPE must be initialized in 82599 */ u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | IXGBE_PSRTYPE_L2HDR; if (adapter->num_rx_queues > 1) psrtype |= BIT(29); IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); } #define IXGBEVF_MAX_RX_DESC_POLL 10 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, struct ixgbevf_ring *ring) { struct ixgbe_hw *hw = &adapter->hw; int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; u32 rxdctl; u8 reg_idx = ring->reg_idx; if (IXGBE_REMOVED(hw->hw_addr)) return; rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); rxdctl &= ~IXGBE_RXDCTL_ENABLE; /* write value back with RXDCTL.ENABLE bit cleared */ IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); /* the hardware may take up to 100us to really disable the Rx queue */ do { udelay(10); rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); if (!wait_loop) pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", reg_idx); } static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, struct ixgbevf_ring *ring) { struct ixgbe_hw *hw = &adapter->hw; int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; u32 rxdctl; u8 reg_idx = ring->reg_idx; if (IXGBE_REMOVED(hw->hw_addr)) return; do { usleep_range(1000, 2000); rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); if (!wait_loop) pr_err("RXDCTL.ENABLE queue %d not set while polling\n", reg_idx); } /** * ixgbevf_init_rss_key - Initialize adapter RSS key * @adapter: device handle * * Allocates and initializes the RSS key if it is not allocated. **/ static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) { u32 *rss_key; if (!adapter->rss_key) { rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); if (unlikely(!rss_key)) return -ENOMEM; netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); adapter->rss_key = rss_key; } return 0; } static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; u32 vfmrqc = 0, vfreta = 0; u16 rss_i = adapter->num_rx_queues; u8 i, j; /* Fill out hash function seeds */ for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { if (j == rss_i) j = 0; adapter->rss_indir_tbl[i] = j; vfreta |= j << (i & 0x3) * 8; if ((i & 3) == 3) { IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); vfreta = 0; } } /* Perform hash on these packet types */ vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | IXGBE_VFMRQC_RSS_FIELD_IPV6 | IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; vfmrqc |= IXGBE_VFMRQC_RSSEN; IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); } static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, struct ixgbevf_ring *ring) { struct ixgbe_hw *hw = &adapter->hw; union ixgbe_adv_rx_desc *rx_desc; u64 rdba = ring->dma; u32 rxdctl; u8 reg_idx = ring->reg_idx; /* disable queue to avoid issues while updating state */ rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); ixgbevf_disable_rx_queue(adapter, ring); IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), ring->count * sizeof(union ixgbe_adv_rx_desc)); #ifndef CONFIG_SPARC /* enable relaxed ordering */ IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), IXGBE_DCA_RXCTRL_DESC_RRO_EN); #else IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), IXGBE_DCA_RXCTRL_DESC_RRO_EN | IXGBE_DCA_RXCTRL_DATA_WRO_EN); #endif /* reset head and tail pointers */ IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); /* initialize rx_buffer_info */ memset(ring->rx_buffer_info, 0, sizeof(struct ixgbevf_rx_buffer) * ring->count); /* initialize Rx descriptor 0 */ rx_desc = IXGBEVF_RX_DESC(ring, 0); rx_desc->wb.upper.length = 0; /* reset ntu and ntc to place SW in sync with hardwdare */ ring->next_to_clean = 0; ring->next_to_use = 0; ring->next_to_alloc = 0; ixgbevf_configure_srrctl(adapter, ring, reg_idx); /* RXDCTL.RLPML does not work on 82599 */ if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | IXGBE_RXDCTL_RLPML_EN); #if (PAGE_SIZE < 8192) /* Limit the maximum frame size so we don't overrun the skb */ if (ring_uses_build_skb(ring) && !ring_uses_large_buffer(ring)) rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | IXGBE_RXDCTL_RLPML_EN; #endif } rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); ixgbevf_rx_desc_queue_enable(adapter, ring); ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); } static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, struct ixgbevf_ring *rx_ring) { struct net_device *netdev = adapter->netdev; unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; /* set build_skb and buffer size flags */ clear_ring_build_skb_enabled(rx_ring); clear_ring_uses_large_buffer(rx_ring); if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) return; set_ring_build_skb_enabled(rx_ring); if (PAGE_SIZE < 8192) { if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) return; set_ring_uses_large_buffer(rx_ring); } } /** * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset * @adapter: board private structure * * Configure the Rx unit of the MAC after a reset. **/ static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; int i, ret; ixgbevf_setup_psrtype(adapter); if (hw->mac.type >= ixgbe_mac_X550_vf) ixgbevf_setup_vfmrqc(adapter); spin_lock_bh(&adapter->mbx_lock); /* notify the PF of our intent to use this size of frame */ ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); spin_unlock_bh(&adapter->mbx_lock); if (ret) dev_err(&adapter->pdev->dev, "Failed to set MTU at %d\n", netdev->mtu); /* Setup the HW Rx Head and Tail Descriptor Pointers and * the Base and Length of the Rx Descriptor Ring */ for (i = 0; i < adapter->num_rx_queues; i++) { struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; ixgbevf_set_rx_buffer_len(adapter, rx_ring); ixgbevf_configure_rx_ring(adapter, rx_ring); } } static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct ixgbevf_adapter *adapter = netdev_priv(netdev); struct ixgbe_hw *hw = &adapter->hw; int err; spin_lock_bh(&adapter->mbx_lock); /* add VID to filter table */ err = hw->mac.ops.set_vfta(hw, vid, 0, true); spin_unlock_bh(&adapter->mbx_lock); /* translate error return types so error makes sense */ if (err == IXGBE_ERR_MBX) return -EIO; if (err == IXGBE_ERR_INVALID_ARGUMENT) return -EACCES; set_bit(vid, adapter->active_vlans); return err; } static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct ixgbevf_adapter *adapter = netdev_priv(netdev); struct ixgbe_hw *hw = &adapter->hw; int err; spin_lock_bh(&adapter->mbx_lock); /* remove VID from filter table */ err = hw->mac.ops.set_vfta(hw, vid, 0, false); spin_unlock_bh(&adapter->mbx_lock); clear_bit(vid, adapter->active_vlans); return err; } static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) { u16 vid; for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) ixgbevf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); } static int ixgbevf_write_uc_addr_list(struct net_device *netdev) { struct ixgbevf_adapter *adapter = netdev_priv(netdev); struct ixgbe_hw *hw = &adapter->hw; int count = 0; if ((netdev_uc_count(netdev)) > 10) { pr_err("Too many unicast filters - No Space\n"); return -ENOSPC; } if (!netdev_uc_empty(netdev)) { struct netdev_hw_addr *ha; netdev_for_each_uc_addr(ha, netdev) { hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); udelay(200); } } else { /* If the list is empty then send message to PF driver to * clear all MAC VLANs on this VF. */ hw->mac.ops.set_uc_addr(hw, 0, NULL); } return count; } /** * ixgbevf_set_rx_mode - Multicast and unicast set * @netdev: network interface device structure * * The set_rx_method entry point is called whenever the multicast address * list, unicast address list or the network interface flags are updated. * This routine is responsible for configuring the hardware for proper * multicast mode and configuring requested unicast filters. **/ static void ixgbevf_set_rx_mode(struct net_device *netdev) { struct ixgbevf_adapter *adapter = netdev_priv(netdev); struct ixgbe_hw *hw = &adapter->hw; unsigned int flags = netdev->flags; int xcast_mode; /* request the most inclusive mode we need */ if (flags & IFF_PROMISC) xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; else if (flags & IFF_ALLMULTI) xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) xcast_mode = IXGBEVF_XCAST_MODE_MULTI; else xcast_mode = IXGBEVF_XCAST_MODE_NONE; spin_lock_bh(&adapter->mbx_lock); hw->mac.ops.update_xcast_mode(hw, xcast_mode); /* reprogram multicast list */ hw->mac.ops.update_mc_addr_list(hw, netdev); ixgbevf_write_uc_addr_list(netdev); spin_unlock_bh(&adapter->mbx_lock); } static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) { int q_idx; struct ixgbevf_q_vector *q_vector; int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; for (q_idx = 0; q_idx < q_vectors; q_idx++) { q_vector = adapter->q_vector[q_idx]; napi_enable(&q_vector->napi); } } static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) { int q_idx; struct ixgbevf_q_vector *q_vector; int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; for (q_idx = 0; q_idx < q_vectors; q_idx++) { q_vector = adapter->q_vector[q_idx]; napi_disable(&q_vector->napi); } } static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; unsigned int def_q = 0; unsigned int num_tcs = 0; unsigned int num_rx_queues = adapter->num_rx_queues; unsigned int num_tx_queues = adapter->num_tx_queues; int err; spin_lock_bh(&adapter->mbx_lock); /* fetch queue configuration from the PF */ err = ixgbevf_get_queues(hw, &num_tcs, &def_q); spin_unlock_bh(&adapter->mbx_lock); if (err) return err; if (num_tcs > 1) { /* we need only one Tx queue */ num_tx_queues = 1; /* update default Tx ring register index */ adapter->tx_ring[0]->reg_idx = def_q; /* we need as many queues as traffic classes */ num_rx_queues = num_tcs; } /* if we have a bad config abort request queue reset */ if ((adapter->num_rx_queues != num_rx_queues) || (adapter->num_tx_queues != num_tx_queues)) { /* force mailbox timeout to prevent further messages */ hw->mbx.timeout = 0; /* wait for watchdog to come around and bail us out */ set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); } return 0; } static void ixgbevf_configure(struct ixgbevf_adapter *adapter) { ixgbevf_configure_dcb(adapter); ixgbevf_set_rx_mode(adapter->netdev); ixgbevf_restore_vlan(adapter); ixgbevf_ipsec_restore(adapter); ixgbevf_configure_tx(adapter); ixgbevf_configure_rx(adapter); } static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) { /* Only save pre-reset stats if there are some */ if (adapter->stats.vfgprc || adapter->stats.vfgptc) { adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - adapter->stats.base_vfgprc; adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - adapter->stats.base_vfgptc; adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - adapter->stats.base_vfgorc; adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - adapter->stats.base_vfgotc; adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - adapter->stats.base_vfmprc; } } static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); adapter->stats.last_vfgorc |= (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); adapter->stats.last_vfgotc |= (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; } static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; int api[] = { ixgbe_mbox_api_14, ixgbe_mbox_api_13, ixgbe_mbox_api_12, ixgbe_mbox_api_11, ixgbe_mbox_api_10, ixgbe_mbox_api_unknown }; int err, idx = 0; spin_lock_bh(&adapter->mbx_lock); while (api[idx] != ixgbe_mbox_api_unknown) { err = hw->mac.ops.negotiate_api_version(hw, api[idx]); if (!err) break; idx++; } spin_unlock_bh(&adapter->mbx_lock); } static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct ixgbe_hw *hw = &adapter->hw; ixgbevf_configure_msix(adapter); spin_lock_bh(&adapter->mbx_lock); if (is_valid_ether_addr(hw->mac.addr)) hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); else hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); spin_unlock_bh(&adapter->mbx_lock); smp_mb__before_atomic(); clear_bit(__IXGBEVF_DOWN, &adapter->state); ixgbevf_napi_enable_all(adapter); /* clear any pending interrupts, may auto mask */ IXGBE_READ_REG(hw, IXGBE_VTEICR); ixgbevf_irq_enable(adapter); /* enable transmits */ netif_tx_start_all_queues(netdev); ixgbevf_save_reset_stats(adapter); ixgbevf_init_last_counter_stats(adapter); hw->mac.get_link_status = 1; mod_timer(&adapter->service_timer, jiffies); } void ixgbevf_up(struct ixgbevf_adapter *adapter) { ixgbevf_configure(adapter); ixgbevf_up_complete(adapter); } /** * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue * @rx_ring: ring to free buffers from **/ static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) { u16 i = rx_ring->next_to_clean; /* Free Rx ring sk_buff */ if (rx_ring->skb) { dev_kfree_skb(rx_ring->skb); rx_ring->skb = NULL; } /* Free all the Rx ring pages */ while (i != rx_ring->next_to_alloc) { struct ixgbevf_rx_buffer *rx_buffer; rx_buffer = &rx_ring->rx_buffer_info[i]; /* Invalidate cache lines that may have been written to by * device so that we avoid corrupting memory. */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, ixgbevf_rx_bufsz(rx_ring), DMA_FROM_DEVICE); /* free resources associated with mapping */ dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, ixgbevf_rx_pg_size(rx_ring), DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); __page_frag_cache_drain(rx_buffer->page, rx_buffer->pagecnt_bias); i++; if (i == rx_ring->count) i = 0; } rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; } /** * ixgbevf_clean_tx_ring - Free Tx Buffers * @tx_ring: ring to be cleaned **/ static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) { u16 i = tx_ring->next_to_clean; struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; while (i != tx_ring->next_to_use) { union ixgbe_adv_tx_desc *eop_desc, *tx_desc; /* Free all the Tx ring sk_buffs */ if (ring_is_xdp(tx_ring)) page_frag_free(tx_buffer->data); else dev_kfree_skb_any(tx_buffer->skb); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); /* check for eop_desc to determine the end of the packet */ eop_desc = tx_buffer->next_to_watch; tx_desc = IXGBEVF_TX_DESC(tx_ring, i); /* unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(i == tx_ring->count)) { i = 0; tx_buffer = tx_ring->tx_buffer_info; tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); } /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; i++; if (unlikely(i == tx_ring->count)) { i = 0; tx_buffer = tx_ring->tx_buffer_info; } } /* reset next_to_use and next_to_clean */ tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; } /** * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues * @adapter: board private structure **/ static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) ixgbevf_clean_rx_ring(adapter->rx_ring[i]); } /** * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues * @adapter: board private structure **/ static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) ixgbevf_clean_tx_ring(adapter->tx_ring[i]); for (i = 0; i < adapter->num_xdp_queues; i++) ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); } void ixgbevf_down(struct ixgbevf_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct ixgbe_hw *hw = &adapter->hw; int i; /* signal that we are down to the interrupt handler */ if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) return; /* do nothing if already down */ /* disable all enabled Rx queues */ for (i = 0; i < adapter->num_rx_queues; i++) ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); usleep_range(10000, 20000); netif_tx_stop_all_queues(netdev); /* call carrier off first to avoid false dev_watchdog timeouts */ netif_carrier_off(netdev); netif_tx_disable(netdev); ixgbevf_irq_disable(adapter); ixgbevf_napi_disable_all(adapter); del_timer_sync(&adapter->service_timer); /* disable transmits in the hardware now that interrupts are off */ for (i = 0; i < adapter->num_tx_queues; i++) { u8 reg_idx = adapter->tx_ring[i]->reg_idx; IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); } for (i = 0; i < adapter->num_xdp_queues; i++) { u8 reg_idx = adapter->xdp_ring[i]->reg_idx; IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); } if (!pci_channel_offline(adapter->pdev)) ixgbevf_reset(adapter); ixgbevf_clean_all_tx_rings(adapter); ixgbevf_clean_all_rx_rings(adapter); } void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) { WARN_ON(in_interrupt()); while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) msleep(1); ixgbevf_down(adapter); ixgbevf_up(adapter); clear_bit(__IXGBEVF_RESETTING, &adapter->state); } void ixgbevf_reset(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; if (hw->mac.ops.reset_hw(hw)) { hw_dbg(hw, "PF still resetting\n"); } else { hw->mac.ops.init_hw(hw); ixgbevf_negotiate_api(adapter); } if (is_valid_ether_addr(adapter->hw.mac.addr)) { ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); } adapter->last_reset = jiffies; } static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, int vectors) { int vector_threshold; /* We'll want at least 2 (vector_threshold): * 1) TxQ[0] + RxQ[0] handler * 2) Other (Link Status Change, etc.) */ vector_threshold = MIN_MSIX_COUNT; /* The more we get, the more we will assign to Tx/Rx Cleanup * for the separate queues...where Rx Cleanup >= Tx Cleanup. * Right now, we simply care about how many we'll get; we'll * set them up later while requesting irq's. */ vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, vector_threshold, vectors); if (vectors < 0) { dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); kfree(adapter->msix_entries); adapter->msix_entries = NULL; return vectors; } /* Adjust for only the vectors we'll use, which is minimum * of max_msix_q_vectors + NON_Q_VECTORS, or the number of * vectors we were allocated. */ adapter->num_msix_vectors = vectors; return 0; } /** * ixgbevf_set_num_queues - Allocate queues for device, feature dependent * @adapter: board private structure to initialize * * This is the top level queue allocation routine. The order here is very * important, starting with the "most" number of features turned on at once, * and ending with the smallest set of features. This way large combinations * can be allocated if they're turned on, and smaller combinations are the * fallthrough conditions. * **/ static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; unsigned int def_q = 0; unsigned int num_tcs = 0; int err; /* Start with base case */ adapter->num_rx_queues = 1; adapter->num_tx_queues = 1; adapter->num_xdp_queues = 0; spin_lock_bh(&adapter->mbx_lock); /* fetch queue configuration from the PF */ err = ixgbevf_get_queues(hw, &num_tcs, &def_q); spin_unlock_bh(&adapter->mbx_lock); if (err) return; /* we need as many queues as traffic classes */ if (num_tcs > 1) { adapter->num_rx_queues = num_tcs; } else { u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); switch (hw->api_version) { case ixgbe_mbox_api_11: case ixgbe_mbox_api_12: case ixgbe_mbox_api_13: case ixgbe_mbox_api_14: if (adapter->xdp_prog && hw->mac.max_tx_queues == rss) rss = rss > 3 ? 2 : 1; adapter->num_rx_queues = rss; adapter->num_tx_queues = rss; adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; default: break; } } } /** * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported * @adapter: board private structure to initialize * * Attempt to configure the interrupts using the best available * capabilities of the hardware and the kernel. **/ static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) { int vector, v_budget; /* It's easy to be greedy for MSI-X vectors, but it really * doesn't do us much good if we have a lot more vectors * than CPU's. So let's be conservative and only ask for * (roughly) the same number of vectors as there are CPU's. * The default is to use pairs of vectors. */ v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); v_budget = min_t(int, v_budget, num_online_cpus()); v_budget += NON_Q_VECTORS; adapter->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), GFP_KERNEL); if (!adapter->msix_entries) return -ENOMEM; for (vector = 0; vector < v_budget; vector++) adapter->msix_entries[vector].entry = vector; /* A failure in MSI-X entry allocation isn't fatal, but the VF driver * does not support any other modes, so we will simply fail here. Note * that we clean up the msix_entries pointer else-where. */ return ixgbevf_acquire_msix_vectors(adapter, v_budget); } static void ixgbevf_add_ring(struct ixgbevf_ring *ring, struct ixgbevf_ring_container *head) { ring->next = head->ring; head->ring = ring; head->count++; } /** * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector * @adapter: board private structure to initialize * @v_idx: index of vector in adapter struct * @txr_count: number of Tx rings for q vector * @txr_idx: index of first Tx ring to assign * @xdp_count: total number of XDP rings to allocate * @xdp_idx: index of first XDP ring to allocate * @rxr_count: number of Rx rings for q vector * @rxr_idx: index of first Rx ring to assign * * We allocate one q_vector. If allocation fails we return -ENOMEM. **/ static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, int txr_count, int txr_idx, int xdp_count, int xdp_idx, int rxr_count, int rxr_idx) { struct ixgbevf_q_vector *q_vector; int reg_idx = txr_idx + xdp_idx; struct ixgbevf_ring *ring; int ring_count, size; ring_count = txr_count + xdp_count + rxr_count; size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); /* allocate q_vector and rings */ q_vector = kzalloc(size, GFP_KERNEL); if (!q_vector) return -ENOMEM; /* initialize NAPI */ netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); /* tie q_vector and adapter together */ adapter->q_vector[v_idx] = q_vector; q_vector->adapter = adapter; q_vector->v_idx = v_idx; /* initialize pointer to rings */ ring = q_vector->ring; while (txr_count) { /* assign generic ring traits */ ring->dev = &adapter->pdev->dev; ring->netdev = adapter->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Tx values */ ixgbevf_add_ring(ring, &q_vector->tx); /* apply Tx specific ring traits */ ring->count = adapter->tx_ring_count; ring->queue_index = txr_idx; ring->reg_idx = reg_idx; /* assign ring to adapter */ adapter->tx_ring[txr_idx] = ring; /* update count and index */ txr_count--; txr_idx++; reg_idx++; /* push pointer to next ring */ ring++; } while (xdp_count) { /* assign generic ring traits */ ring->dev = &adapter->pdev->dev; ring->netdev = adapter->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Tx values */ ixgbevf_add_ring(ring, &q_vector->tx); /* apply Tx specific ring traits */ ring->count = adapter->tx_ring_count; ring->queue_index = xdp_idx; ring->reg_idx = reg_idx; set_ring_xdp(ring); /* assign ring to adapter */ adapter->xdp_ring[xdp_idx] = ring; /* update count and index */ xdp_count--; xdp_idx++; reg_idx++; /* push pointer to next ring */ ring++; } while (rxr_count) { /* assign generic ring traits */ ring->dev = &adapter->pdev->dev; ring->netdev = adapter->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Rx values */ ixgbevf_add_ring(ring, &q_vector->rx); /* apply Rx specific ring traits */ ring->count = adapter->rx_ring_count; ring->queue_index = rxr_idx; ring->reg_idx = rxr_idx; /* assign ring to adapter */ adapter->rx_ring[rxr_idx] = ring; /* update count and index */ rxr_count--; rxr_idx++; /* push pointer to next ring */ ring++; } return 0; } /** * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector * @adapter: board private structure to initialize * @v_idx: index of vector in adapter struct * * This function frees the memory allocated to the q_vector. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) { struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; struct ixgbevf_ring *ring; ixgbevf_for_each_ring(ring, q_vector->tx) { if (ring_is_xdp(ring)) adapter->xdp_ring[ring->queue_index] = NULL; else adapter->tx_ring[ring->queue_index] = NULL; } ixgbevf_for_each_ring(ring, q_vector->rx) adapter->rx_ring[ring->queue_index] = NULL; adapter->q_vector[v_idx] = NULL; netif_napi_del(&q_vector->napi); /* ixgbevf_get_stats() might access the rings on this vector, * we must wait a grace period before freeing it. */ kfree_rcu(q_vector, rcu); } /** * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors * @adapter: board private structure to initialize * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. **/ static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) { int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; int rxr_remaining = adapter->num_rx_queues; int txr_remaining = adapter->num_tx_queues; int xdp_remaining = adapter->num_xdp_queues; int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; int err; if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { for (; rxr_remaining; v_idx++, q_vectors--) { int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); err = ixgbevf_alloc_q_vector(adapter, v_idx, 0, 0, 0, 0, rqpv, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining -= rqpv; rxr_idx += rqpv; } } for (; q_vectors; v_idx++, q_vectors--) { int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); err = ixgbevf_alloc_q_vector(adapter, v_idx, tqpv, txr_idx, xqpv, xdp_idx, rqpv, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining -= rqpv; rxr_idx += rqpv; txr_remaining -= tqpv; txr_idx += tqpv; xdp_remaining -= xqpv; xdp_idx += xqpv; } return 0; err_out: while (v_idx) { v_idx--; ixgbevf_free_q_vector(adapter, v_idx); } return -ENOMEM; } /** * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors * @adapter: board private structure to initialize * * This function frees the memory allocated to the q_vectors. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) { int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; while (q_vectors) { q_vectors--; ixgbevf_free_q_vector(adapter, q_vectors); } } /** * ixgbevf_reset_interrupt_capability - Reset MSIX setup * @adapter: board private structure * **/ static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) { if (!adapter->msix_entries) return; pci_disable_msix(adapter->pdev); kfree(adapter->msix_entries); adapter->msix_entries = NULL; } /** * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init * @adapter: board private structure to initialize * **/ static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) { int err; /* Number of supported queues */ ixgbevf_set_num_queues(adapter); err = ixgbevf_set_interrupt_capability(adapter); if (err) { hw_dbg(&adapter->hw, "Unable to setup interrupt capabilities\n"); goto err_set_interrupt; } err = ixgbevf_alloc_q_vectors(adapter); if (err) { hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); goto err_alloc_q_vectors; } hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", adapter->num_rx_queues, adapter->num_tx_queues, adapter->num_xdp_queues); set_bit(__IXGBEVF_DOWN, &adapter->state); return 0; err_alloc_q_vectors: ixgbevf_reset_interrupt_capability(adapter); err_set_interrupt: return err; } /** * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings * @adapter: board private structure to clear interrupt scheme on * * We go through and clear interrupt specific resources and reset the structure * to pre-load conditions **/ static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) { adapter->num_tx_queues = 0; adapter->num_xdp_queues = 0; adapter->num_rx_queues = 0; ixgbevf_free_q_vectors(adapter); ixgbevf_reset_interrupt_capability(adapter); } /** * ixgbevf_sw_init - Initialize general software structures * @adapter: board private structure to initialize * * ixgbevf_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). **/ static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; struct net_device *netdev = adapter->netdev; int err; /* PCI config space info */ hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->revision_id = pdev->revision; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; hw->mbx.ops.init_params(hw); if (hw->mac.type >= ixgbe_mac_X550_vf) { err = ixgbevf_init_rss_key(adapter); if (err) goto out; } /* assume legacy case in which PF would only give VF 2 queues */ hw->mac.max_tx_queues = 2; hw->mac.max_rx_queues = 2; /* lock to protect mailbox accesses */ spin_lock_init(&adapter->mbx_lock); err = hw->mac.ops.reset_hw(hw); if (err) { dev_info(&pdev->dev, "PF still in reset state. Is the PF interface up?\n"); } else { err = hw->mac.ops.init_hw(hw); if (err) { pr_err("init_shared_code failed: %d\n", err); goto out; } ixgbevf_negotiate_api(adapter); err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); if (err) dev_info(&pdev->dev, "Error reading MAC address\n"); else if (is_zero_ether_addr(adapter->hw.mac.addr)) dev_info(&pdev->dev, "MAC address not assigned by administrator.\n"); ether_addr_copy(netdev->dev_addr, hw->mac.addr); } if (!is_valid_ether_addr(netdev->dev_addr)) { dev_info(&pdev->dev, "Assigning random MAC address\n"); eth_hw_addr_random(netdev); ether_addr_copy(hw->mac.addr, netdev->dev_addr); ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); } /* Enable dynamic interrupt throttling rates */ adapter->rx_itr_setting = 1; adapter->tx_itr_setting = 1; /* set default ring sizes */ adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; set_bit(__IXGBEVF_DOWN, &adapter->state); return 0; out: return err; } #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ { \ u32 current_counter = IXGBE_READ_REG(hw, reg); \ if (current_counter < last_counter) \ counter += 0x100000000LL; \ last_counter = current_counter; \ counter &= 0xFFFFFFFF00000000LL; \ counter |= current_counter; \ } #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ { \ u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ u64 current_counter = (current_counter_msb << 32) | \ current_counter_lsb; \ if (current_counter < last_counter) \ counter += 0x1000000000LL; \ last_counter = current_counter; \ counter &= 0xFFFFFFF000000000LL; \ counter |= current_counter; \ } /** * ixgbevf_update_stats - Update the board statistics counters. * @adapter: board private structure **/ void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; u64 alloc_rx_page = 0, hw_csum_rx_error = 0; int i; if (test_bit(__IXGBEVF_DOWN, &adapter->state) || test_bit(__IXGBEVF_RESETTING, &adapter->state)) return; UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, adapter->stats.vfgprc); UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, adapter->stats.vfgptc); UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, adapter->stats.last_vfgorc, adapter->stats.vfgorc); UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, adapter->stats.last_vfgotc, adapter->stats.vfgotc); UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, adapter->stats.vfmprc); for (i = 0; i < adapter->num_rx_queues; i++) { struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; hw_csum_rx_error += rx_ring->rx_stats.csum_err; alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; } adapter->hw_csum_rx_error = hw_csum_rx_error; adapter->alloc_rx_page_failed = alloc_rx_page_failed; adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; adapter->alloc_rx_page = alloc_rx_page; } /** * ixgbevf_service_timer - Timer Call-back * @t: pointer to timer_list struct **/ static void ixgbevf_service_timer(struct timer_list *t) { struct ixgbevf_adapter *adapter = from_timer(adapter, t, service_timer); /* Reset the timer */ mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); ixgbevf_service_event_schedule(adapter); } static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) { if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) return; rtnl_lock(); /* If we're already down or resetting, just bail */ if (test_bit(__IXGBEVF_DOWN, &adapter->state) || test_bit(__IXGBEVF_REMOVING, &adapter->state) || test_bit(__IXGBEVF_RESETTING, &adapter->state)) { rtnl_unlock(); return; } adapter->tx_timeout_count++; ixgbevf_reinit_locked(adapter); rtnl_unlock(); } /** * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts * @adapter: pointer to the device adapter structure * * This function serves two purposes. First it strobes the interrupt lines * in order to make certain interrupts are occurring. Secondly it sets the * bits needed to check for TX hangs. As a result we should immediately * determine if a hang has occurred. **/ static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; u32 eics = 0; int i; /* If we're down or resetting, just bail */ if (test_bit(__IXGBEVF_DOWN, &adapter->state) || test_bit(__IXGBEVF_RESETTING, &adapter->state)) return; /* Force detection of hung controller */ if (netif_carrier_ok(adapter->netdev)) { for (i = 0; i < adapter->num_tx_queues; i++) set_check_for_tx_hang(adapter->tx_ring[i]); for (i = 0; i < adapter->num_xdp_queues; i++) set_check_for_tx_hang(adapter->xdp_ring[i]); } /* get one bit for every active Tx/Rx interrupt vector */ for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { struct ixgbevf_q_vector *qv = adapter->q_vector[i]; if (qv->rx.ring || qv->tx.ring) eics |= BIT(i); } /* Cause software interrupt to ensure rings are cleaned */ IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); } /** * ixgbevf_watchdog_update_link - update the link status * @adapter: pointer to the device adapter structure **/ static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; u32 link_speed = adapter->link_speed; bool link_up = adapter->link_up; s32 err; spin_lock_bh(&adapter->mbx_lock); err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); spin_unlock_bh(&adapter->mbx_lock); /* if check for link returns error we will need to reset */ if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); link_up = false; } adapter->link_up = link_up; adapter->link_speed = link_speed; } /** * ixgbevf_watchdog_link_is_up - update netif_carrier status and * print link up message * @adapter: pointer to the device adapter structure **/ static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) { struct net_device *netdev = adapter->netdev; /* only continue if link was previously down */ if (netif_carrier_ok(netdev)) return; dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? "10 Gbps" : (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? "1 Gbps" : (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? "100 Mbps" : "unknown speed"); netif_carrier_on(netdev); } /** * ixgbevf_watchdog_link_is_down - update netif_carrier status and * print link down message * @adapter: pointer to the adapter structure **/ static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) { struct net_device *netdev = adapter->netdev; adapter->link_speed = 0; /* only continue if link was up previously */ if (!netif_carrier_ok(netdev)) return; dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); netif_carrier_off(netdev); } /** * ixgbevf_watchdog_subtask - worker thread to bring link up * @adapter: board private structure **/ static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) { /* if interface is down do nothing */ if (test_bit(__IXGBEVF_DOWN, &adapter->state) || test_bit(__IXGBEVF_RESETTING, &adapter->state)) return; ixgbevf_watchdog_update_link(adapter); if (adapter->link_up) ixgbevf_watchdog_link_is_up(adapter); else ixgbevf_watchdog_link_is_down(adapter); ixgbevf_update_stats(adapter); } /** * ixgbevf_service_task - manages and runs subtasks * @work: pointer to work_struct containing our data **/ static void ixgbevf_service_task(struct work_struct *work) { struct ixgbevf_adapter *adapter = container_of(work, struct ixgbevf_adapter, service_task); struct ixgbe_hw *hw = &adapter->hw; if (IXGBE_REMOVED(hw->hw_addr)) { if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { rtnl_lock(); ixgbevf_down(adapter); rtnl_unlock(); } return; } ixgbevf_queue_reset_subtask(adapter); ixgbevf_reset_subtask(adapter); ixgbevf_watchdog_subtask(adapter); ixgbevf_check_hang_subtask(adapter); ixgbevf_service_event_complete(adapter); } /** * ixgbevf_free_tx_resources - Free Tx Resources per Queue * @tx_ring: Tx descriptor ring for a specific queue * * Free all transmit software resources **/ void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) { ixgbevf_clean_tx_ring(tx_ring); vfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; /* if not set, then don't free */ if (!tx_ring->desc) return; dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } /** * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues * @adapter: board private structure * * Free all transmit software resources **/ static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) if (adapter->tx_ring[i]->desc) ixgbevf_free_tx_resources(adapter->tx_ring[i]); for (i = 0; i < adapter->num_xdp_queues; i++) if (adapter->xdp_ring[i]->desc) ixgbevf_free_tx_resources(adapter->xdp_ring[i]); } /** * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) * @tx_ring: Tx descriptor ring (for a specific queue) to setup * * Return 0 on success, negative on failure **/ int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) { struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); int size; size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; tx_ring->tx_buffer_info = vmalloc(size); if (!tx_ring->tx_buffer_info) goto err; u64_stats_init(&tx_ring->syncp); /* round up to nearest 4K */ tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); tx_ring->size = ALIGN(tx_ring->size, 4096); tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->desc) goto err; return 0; err: vfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); return -ENOMEM; } /** * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources * @adapter: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) { int i, j = 0, err = 0; for (i = 0; i < adapter->num_tx_queues; i++) { err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); if (!err) continue; hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); goto err_setup_tx; } for (j = 0; j < adapter->num_xdp_queues; j++) { err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); if (!err) continue; hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); goto err_setup_tx; } return 0; err_setup_tx: /* rewind the index freeing the rings as we go */ while (j--) ixgbevf_free_tx_resources(adapter->xdp_ring[j]); while (i--) ixgbevf_free_tx_resources(adapter->tx_ring[i]); return err; } /** * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) * @adapter: board private structure * @rx_ring: Rx descriptor ring (for a specific queue) to setup * * Returns 0 on success, negative on failure **/ int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, struct ixgbevf_ring *rx_ring) { int size; size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; rx_ring->rx_buffer_info = vmalloc(size); if (!rx_ring->rx_buffer_info) goto err; u64_stats_init(&rx_ring->syncp); /* Round up to nearest 4K */ rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); rx_ring->size = ALIGN(rx_ring->size, 4096); rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->desc) goto err; /* XDP RX-queue info */ if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, rx_ring->queue_index) < 0) goto err; rx_ring->xdp_prog = adapter->xdp_prog; return 0; err: vfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); return -ENOMEM; } /** * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources * @adapter: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_rx_queues; i++) { err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); if (!err) continue; hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); goto err_setup_rx; } return 0; err_setup_rx: /* rewind the index freeing the rings as we go */ while (i--) ixgbevf_free_rx_resources(adapter->rx_ring[i]); return err; } /** * ixgbevf_free_rx_resources - Free Rx Resources * @rx_ring: ring to clean the resources from * * Free all receive software resources **/ void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) { ixgbevf_clean_rx_ring(rx_ring); rx_ring->xdp_prog = NULL; xdp_rxq_info_unreg(&rx_ring->xdp_rxq); vfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; } /** * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues * @adapter: board private structure * * Free all receive software resources **/ static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) if (adapter->rx_ring[i]->desc) ixgbevf_free_rx_resources(adapter->rx_ring[i]); } /** * ixgbevf_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. **/ int ixgbevf_open(struct net_device *netdev) { struct ixgbevf_adapter *adapter = netdev_priv(netdev); struct ixgbe_hw *hw = &adapter->hw; int err; /* A previous failure to open the device because of a lack of * available MSIX vector resources may have reset the number * of msix vectors variable to zero. The only way to recover * is to unload/reload the driver and hope that the system has * been able to recover some MSIX vector resources. */ if (!adapter->num_msix_vectors) return -ENOMEM; if (hw->adapter_stopped) { ixgbevf_reset(adapter); /* if adapter is still stopped then PF isn't up and * the VF can't start. */ if (hw->adapter_stopped) { err = IXGBE_ERR_MBX; pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); goto err_setup_reset; } } /* disallow open during test */ if (test_bit(__IXGBEVF_TESTING, &adapter->state)) return -EBUSY; netif_carrier_off(netdev); /* allocate transmit descriptors */ err = ixgbevf_setup_all_tx_resources(adapter); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = ixgbevf_setup_all_rx_resources(adapter); if (err) goto err_setup_rx; ixgbevf_configure(adapter); err = ixgbevf_request_irq(adapter); if (err) goto err_req_irq; /* Notify the stack of the actual queue counts. */ err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); if (err) goto err_set_queues; err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); if (err) goto err_set_queues; ixgbevf_up_complete(adapter); return 0; err_set_queues: ixgbevf_free_irq(adapter); err_req_irq: ixgbevf_free_all_rx_resources(adapter); err_setup_rx: ixgbevf_free_all_tx_resources(adapter); err_setup_tx: ixgbevf_reset(adapter); err_setup_reset: return err; } /** * ixgbevf_close_suspend - actions necessary to both suspend and close flows * @adapter: the private adapter struct * * This function should contain the necessary work common to both suspending * and closing of the device. */ static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) { ixgbevf_down(adapter); ixgbevf_free_irq(adapter); ixgbevf_free_all_tx_resources(adapter); ixgbevf_free_all_rx_resources(adapter); } /** * ixgbevf_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. **/ int ixgbevf_close(struct net_device *netdev) { struct ixgbevf_adapter *adapter = netdev_priv(netdev); if (netif_device_present(netdev)) ixgbevf_close_suspend(adapter); return 0; } static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) { struct net_device *dev = adapter->netdev; if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state)) return; /* if interface is down do nothing */ if (test_bit(__IXGBEVF_DOWN, &adapter->state) || test_bit(__IXGBEVF_RESETTING, &adapter->state)) return; /* Hardware has to reinitialize queues and interrupts to * match packet buffer alignment. Unfortunately, the * hardware is not flexible enough to do this dynamically. */ rtnl_lock(); if (netif_running(dev)) ixgbevf_close(dev); ixgbevf_clear_interrupt_scheme(adapter); ixgbevf_init_interrupt_scheme(adapter); if (netif_running(dev)) ixgbevf_open(dev); rtnl_unlock(); } static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, u32 vlan_macip_lens, u32 fceof_saidx, u32 type_tucmd, u32 mss_l4len_idx) { struct ixgbe_adv_tx_context_desc *context_desc; u16 i = tx_ring->next_to_use; context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); i++; tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; /* set bits to identify this as an advanced context descriptor */ type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); } static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, struct ixgbevf_tx_buffer *first, u8 *hdr_len, struct ixgbevf_ipsec_tx_data *itd) { u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; struct sk_buff *skb = first->skb; union { struct iphdr *v4; struct ipv6hdr *v6; unsigned char *hdr; } ip; union { struct tcphdr *tcp; unsigned char *hdr; } l4; u32 paylen, l4_offset; u32 fceof_saidx = 0; int err; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; err = skb_cow_head(skb, 0); if (err < 0) return err; if (eth_p_mpls(first->protocol)) ip.hdr = skb_inner_network_header(skb); else ip.hdr = skb_network_header(skb); l4.hdr = skb_checksum_start(skb); /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; /* initialize outer IP header fields */ if (ip.v4->version == 4) { unsigned char *csum_start = skb_checksum_start(skb); unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); int len = csum_start - trans_start; /* IP header will have to cancel out any data that * is not a part of the outer IP header, so set to * a reverse csum if needed, else init check to 0. */ ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? csum_fold(csum_partial(trans_start, len, 0)) : 0; type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; ip.v4->tot_len = 0; first->tx_flags |= IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_CSUM | IXGBE_TX_FLAGS_IPV4; } else { ip.v6->payload_len = 0; first->tx_flags |= IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_CSUM; } /* determine offset of inner transport header */ l4_offset = l4.hdr - skb->data; /* compute length of segmentation header */ *hdr_len = (l4.tcp->doff * 4) + l4_offset; /* remove payload length from inner checksum */ paylen = skb->len - l4_offset; csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); /* update gso size and bytecount with header size */ first->gso_segs = skb_shinfo(skb)->gso_segs; first->bytecount += (first->gso_segs - 1) * *hdr_len; /* mss_l4len_id: use 1 as index for TSO */ mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); fceof_saidx |= itd->pfsa; type_tucmd |= itd->flags | itd->trailer_len; /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ vlan_macip_lens = l4.hdr - ip.hdr; vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, mss_l4len_idx); return 1; } static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) { unsigned int offset = 0; ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); return offset == skb_checksum_start_offset(skb); } static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, struct ixgbevf_tx_buffer *first, struct ixgbevf_ipsec_tx_data *itd) { struct sk_buff *skb = first->skb; u32 vlan_macip_lens = 0; u32 fceof_saidx = 0; u32 type_tucmd = 0; if (skb->ip_summed != CHECKSUM_PARTIAL) goto no_csum; switch (skb->csum_offset) { case offsetof(struct tcphdr, check): type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; /* fall through */ case offsetof(struct udphdr, check): break; case offsetof(struct sctphdr, checksum): /* validate that this is actually an SCTP request */ if (((first->protocol == htons(ETH_P_IP)) && (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || ((first->protocol == htons(ETH_P_IPV6)) && ixgbevf_ipv6_csum_is_sctp(skb))) { type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; break; } /* fall through */ default: skb_checksum_help(skb); goto no_csum; } if (first->protocol == htons(ETH_P_IP)) type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; /* update TX checksum flag */ first->tx_flags |= IXGBE_TX_FLAGS_CSUM; vlan_macip_lens = skb_checksum_start_offset(skb) - skb_network_offset(skb); no_csum: /* vlan_macip_lens: MACLEN, VLAN tag */ vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; fceof_saidx |= itd->pfsa; type_tucmd |= itd->flags | itd->trailer_len; ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 0); } static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) { /* set type for advanced descriptor with frame checksum insertion */ __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT); /* set HW VLAN bit if VLAN is present */ if (tx_flags & IXGBE_TX_FLAGS_VLAN) cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); /* set segmentation enable bits for TSO/FSO */ if (tx_flags & IXGBE_TX_FLAGS_TSO) cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); return cmd_type; } static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, u32 tx_flags, unsigned int paylen) { __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); /* enable L4 checksum for TSO and TX checksum offload */ if (tx_flags & IXGBE_TX_FLAGS_CSUM) olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); /* enble IPv4 checksum for TSO */ if (tx_flags & IXGBE_TX_FLAGS_IPV4) olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); /* enable IPsec */ if (tx_flags & IXGBE_TX_FLAGS_IPSEC) olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); /* use index 1 context for TSO/FSO/FCOE/IPSEC */ if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); /* Check Context must be set if Tx switch is enabled, which it * always is for case where virtual functions are running */ olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); tx_desc->read.olinfo_status = olinfo_status; } static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, struct ixgbevf_tx_buffer *first, const u8 hdr_len) { struct sk_buff *skb = first->skb; struct ixgbevf_tx_buffer *tx_buffer; union ixgbe_adv_tx_desc *tx_desc; struct skb_frag_struct *frag; dma_addr_t dma; unsigned int data_len, size; u32 tx_flags = first->tx_flags; __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); u16 i = tx_ring->next_to_use; tx_desc = IXGBEVF_TX_DESC(tx_ring, i); ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); size = skb_headlen(skb); data_len = skb->data_len; dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); tx_buffer = first; for (frag = &skb_shinfo(skb)->frags[0];; frag++) { if (dma_mapping_error(tx_ring->dev, dma)) goto dma_error; /* record length, and DMA address */ dma_unmap_len_set(tx_buffer, len, size); dma_unmap_addr_set(tx_buffer, dma, dma); tx_desc->read.buffer_addr = cpu_to_le64(dma); while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; dma += IXGBE_MAX_DATA_PER_TXD; size -= IXGBE_MAX_DATA_PER_TXD; tx_desc->read.buffer_addr = cpu_to_le64(dma); } if (likely(!data_len)) break; tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; size = skb_frag_size(frag); data_len -= size; dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, DMA_TO_DEVICE); tx_buffer = &tx_ring->tx_buffer_info[i]; } /* write last descriptor with RS and EOP bits */ cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); tx_desc->read.cmd_type_len = cmd_type; /* set the timestamp */ first->time_stamp = jiffies; skb_tx_timestamp(skb); /* Force memory writes to complete before letting h/w know there * are new descriptors to fetch. (Only applicable for weak-ordered * memory model archs, such as IA-64). * * We also need this memory barrier (wmb) to make certain all of the * status bits have been updated before next_to_watch is written. */ wmb(); /* set next_to_watch value indicating a packet is present */ first->next_to_watch = tx_desc; i++; if (i == tx_ring->count) i = 0; tx_ring->next_to_use = i; /* notify HW of packet */ ixgbevf_write_tail(tx_ring, i); return; dma_error: dev_err(tx_ring->dev, "TX DMA map failed\n"); tx_buffer = &tx_ring->tx_buffer_info[i]; /* clear dma mappings for failed tx_buffer_info map */ while (tx_buffer != first) { if (dma_unmap_len(tx_buffer, len)) dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); if (i-- == 0) i += tx_ring->count; tx_buffer = &tx_ring->tx_buffer_info[i]; } if (dma_unmap_len(tx_buffer, len)) dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); dev_kfree_skb_any(tx_buffer->skb); tx_buffer->skb = NULL; tx_ring->next_to_use = i; } static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) { netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); /* Herbert's original patch had: * smp_mb__after_netif_stop_queue(); * but since that doesn't exist yet, just open code it. */ smp_mb(); /* We need to check again in a case another CPU has just * made room available. */ if (likely(ixgbevf_desc_unused(tx_ring) < size)) return -EBUSY; /* A reprieve! - use start_queue because it doesn't call schedule */ netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); ++tx_ring->tx_stats.restart_queue; return 0; } static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) { if (likely(ixgbevf_desc_unused(tx_ring) >= size)) return 0; return __ixgbevf_maybe_stop_tx(tx_ring, size); } static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, struct ixgbevf_ring *tx_ring) { struct ixgbevf_tx_buffer *first; int tso; u32 tx_flags = 0; u16 count = TXD_USE_COUNT(skb_headlen(skb)); struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD unsigned short f; #endif u8 hdr_len = 0; u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); if (!dst_mac || is_link_local_ether_addr(dst_mac)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, * + 2 desc gap to keep tail from touching head, * + 1 desc for context descriptor, * otherwise try next time */ #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); #else count += skb_shinfo(skb)->nr_frags; #endif if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { tx_ring->tx_stats.tx_busy++; return NETDEV_TX_BUSY; } /* record the location of the first descriptor for this packet */ first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; first->skb = skb; first->bytecount = skb->len; first->gso_segs = 1; if (skb_vlan_tag_present(skb)) { tx_flags |= skb_vlan_tag_get(skb); tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; tx_flags |= IXGBE_TX_FLAGS_VLAN; } /* record initial flags and protocol */ first->tx_flags = tx_flags; first->protocol = vlan_get_protocol(skb); #ifdef CONFIG_IXGBEVF_IPSEC if (skb->sp && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) goto out_drop; #endif tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); if (tso < 0) goto out_drop; else if (!tso) ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); ixgbevf_tx_map(tx_ring, first, hdr_len); ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); return NETDEV_TX_OK; out_drop: dev_kfree_skb_any(first->skb); first->skb = NULL; return NETDEV_TX_OK; } static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct ixgbevf_adapter *adapter = netdev_priv(netdev); struct ixgbevf_ring *tx_ring; if (skb->len <= 0) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* The minimum packet size for olinfo paylen is 17 so pad the skb * in order to meet this minimum size requirement. */ if (skb->len < 17) { if (skb_padto(skb, 17)) return NETDEV_TX_OK; skb->len = 17; } tx_ring = adapter->tx_ring[skb->queue_mapping]; return ixgbevf_xmit_frame_ring(skb, tx_ring); } /** * ixgbevf_set_mac - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure **/ static int ixgbevf_set_mac(struct net_device *netdev, void *p) { struct ixgbevf_adapter *adapter = netdev_priv(netdev); struct ixgbe_hw *hw = &adapter->hw; struct sockaddr *addr = p; int err; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; spin_lock_bh(&adapter->mbx_lock); err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); spin_unlock_bh(&adapter->mbx_lock); if (err) return -EPERM; ether_addr_copy(hw->mac.addr, addr->sa_data); ether_addr_copy(hw->mac.perm_addr, addr->sa_data); ether_addr_copy(netdev->dev_addr, addr->sa_data); return 0; } /** * ixgbevf_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure **/ static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) { struct ixgbevf_adapter *adapter = netdev_priv(netdev); struct ixgbe_hw *hw = &adapter->hw; int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; int ret; /* prevent MTU being changed to a size unsupported by XDP */ if (adapter->xdp_prog) { dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); return -EPERM; } spin_lock_bh(&adapter->mbx_lock); /* notify the PF of our intent to use this size of frame */ ret = hw->mac.ops.set_rlpml(hw, max_frame); spin_unlock_bh(&adapter->mbx_lock); if (ret) return -EINVAL; hw_dbg(hw, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); /* must set new MTU before calling down or up */ netdev->mtu = new_mtu; if (netif_running(netdev)) ixgbevf_reinit_locked(adapter); return 0; } static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct ixgbevf_adapter *adapter = netdev_priv(netdev); #ifdef CONFIG_PM int retval = 0; #endif rtnl_lock(); netif_device_detach(netdev); if (netif_running(netdev)) ixgbevf_close_suspend(adapter); ixgbevf_clear_interrupt_scheme(adapter); rtnl_unlock(); #ifdef CONFIG_PM retval = pci_save_state(pdev); if (retval) return retval; #endif if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) pci_disable_device(pdev); return 0; } #ifdef CONFIG_PM static int ixgbevf_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct ixgbevf_adapter *adapter = netdev_priv(netdev); u32 err; pci_restore_state(pdev); /* pci_restore_state clears dev->state_saved so call * pci_save_state to restore it. */ pci_save_state(pdev); err = pci_enable_device_mem(pdev); if (err) { dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); return err; } adapter->hw.hw_addr = adapter->io_addr; smp_mb__before_atomic(); clear_bit(__IXGBEVF_DISABLED, &adapter->state); pci_set_master(pdev); ixgbevf_reset(adapter); rtnl_lock(); err = ixgbevf_init_interrupt_scheme(adapter); if (!err && netif_running(netdev)) err = ixgbevf_open(netdev); rtnl_unlock(); if (err) return err; netif_device_attach(netdev); return err; } #endif /* CONFIG_PM */ static void ixgbevf_shutdown(struct pci_dev *pdev) { ixgbevf_suspend(pdev, PMSG_SUSPEND); } static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, const struct ixgbevf_ring *ring) { u64 bytes, packets; unsigned int start; if (ring) { do { start = u64_stats_fetch_begin_irq(&ring->syncp); bytes = ring->stats.bytes; packets = ring->stats.packets; } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); stats->tx_bytes += bytes; stats->tx_packets += packets; } } static void ixgbevf_get_stats(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct ixgbevf_adapter *adapter = netdev_priv(netdev); unsigned int start; u64 bytes, packets; const struct ixgbevf_ring *ring; int i; ixgbevf_update_stats(adapter); stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; rcu_read_lock(); for (i = 0; i < adapter->num_rx_queues; i++) { ring = adapter->rx_ring[i]; do { start = u64_stats_fetch_begin_irq(&ring->syncp); bytes = ring->stats.bytes; packets = ring->stats.packets; } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); stats->rx_bytes += bytes; stats->rx_packets += packets; } for (i = 0; i < adapter->num_tx_queues; i++) { ring = adapter->tx_ring[i]; ixgbevf_get_tx_ring_stats(stats, ring); } for (i = 0; i < adapter->num_xdp_queues; i++) { ring = adapter->xdp_ring[i]; ixgbevf_get_tx_ring_stats(stats, ring); } rcu_read_unlock(); } #define IXGBEVF_MAX_MAC_HDR_LEN 127 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 static netdev_features_t ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { unsigned int network_hdr_len, mac_hdr_len; /* Make certain the headers can be described by a context descriptor */ mac_hdr_len = skb_network_header(skb) - skb->data; if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) return features & ~(NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_TSO | NETIF_F_TSO6); network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) return features & ~(NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC | NETIF_F_TSO | NETIF_F_TSO6); /* We can only support IPV4 TSO in tunnels if we can mangle the * inner IP ID field, so strip TSO if MANGLEID is not supported. */ if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) features &= ~NETIF_F_TSO; return features; } static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) { int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; struct ixgbevf_adapter *adapter = netdev_priv(dev); struct bpf_prog *old_prog; /* verify ixgbevf ring attributes are sufficient for XDP */ for (i = 0; i < adapter->num_rx_queues; i++) { struct ixgbevf_ring *ring = adapter->rx_ring[i]; if (frame_size > ixgbevf_rx_bufsz(ring)) return -EINVAL; } old_prog = xchg(&adapter->xdp_prog, prog); /* If transitioning XDP modes reconfigure rings */ if (!!prog != !!old_prog) { /* Hardware has to reinitialize queues and interrupts to * match packet buffer alignment. Unfortunately, the * hardware is not flexible enough to do this dynamically. */ if (netif_running(dev)) ixgbevf_close(dev); ixgbevf_clear_interrupt_scheme(adapter); ixgbevf_init_interrupt_scheme(adapter); if (netif_running(dev)) ixgbevf_open(dev); } else { for (i = 0; i < adapter->num_rx_queues; i++) xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); } if (old_prog) bpf_prog_put(old_prog); return 0; } static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) { struct ixgbevf_adapter *adapter = netdev_priv(dev); switch (xdp->command) { case XDP_SETUP_PROG: return ixgbevf_xdp_setup(dev, xdp->prog); case XDP_QUERY_PROG: xdp->prog_id = adapter->xdp_prog ? adapter->xdp_prog->aux->id : 0; return 0; default: return -EINVAL; } } static const struct net_device_ops ixgbevf_netdev_ops = { .ndo_open = ixgbevf_open, .ndo_stop = ixgbevf_close, .ndo_start_xmit = ixgbevf_xmit_frame, .ndo_set_rx_mode = ixgbevf_set_rx_mode, .ndo_get_stats64 = ixgbevf_get_stats, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = ixgbevf_set_mac, .ndo_change_mtu = ixgbevf_change_mtu, .ndo_tx_timeout = ixgbevf_tx_timeout, .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, .ndo_features_check = ixgbevf_features_check, .ndo_bpf = ixgbevf_xdp, }; static void ixgbevf_assign_netdev_ops(struct net_device *dev) { dev->netdev_ops = &ixgbevf_netdev_ops; ixgbevf_set_ethtool_ops(dev); dev->watchdog_timeo = 5 * HZ; } /** * ixgbevf_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in ixgbevf_pci_tbl * * Returns 0 on success, negative on failure * * ixgbevf_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. **/ static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct ixgbevf_adapter *adapter = NULL; struct ixgbe_hw *hw = NULL; const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; int err, pci_using_dac; bool disable_dev = false; err = pci_enable_device(pdev); if (err) return err; if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { pci_using_dac = 1; } else { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); goto err_dma; } pci_using_dac = 0; } err = pci_request_regions(pdev, ixgbevf_driver_name); if (err) { dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); goto err_pci_reg; } pci_set_master(pdev); netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), MAX_TX_QUEUES); if (!netdev) { err = -ENOMEM; goto err_alloc_etherdev; } SET_NETDEV_DEV(netdev, &pdev->dev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; hw = &adapter->hw; hw->back = adapter; adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); /* call save state here in standalone driver because it relies on * adapter struct to exist, and needs to call netdev_priv */ pci_save_state(pdev); hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); adapter->io_addr = hw->hw_addr; if (!hw->hw_addr) { err = -EIO; goto err_ioremap; } ixgbevf_assign_netdev_ops(netdev); /* Setup HW API */ memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); hw->mac.type = ii->mac; memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, sizeof(struct ixgbe_mbx_operations)); /* setup the private structure */ err = ixgbevf_sw_init(adapter); if (err) goto err_sw_init; /* The HW MAC address was set and/or determined in sw_init */ if (!is_valid_ether_addr(netdev->dev_addr)) { pr_err("invalid MAC address\n"); err = -EIO; goto err_sw_init; } netdev->hw_features = NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ NETIF_F_GSO_GRE_CSUM | \ NETIF_F_GSO_IPXIP4 | \ NETIF_F_GSO_IPXIP6 | \ NETIF_F_GSO_UDP_TUNNEL | \ NETIF_F_GSO_UDP_TUNNEL_CSUM) netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; netdev->hw_features |= NETIF_F_GSO_PARTIAL | IXGBEVF_GSO_PARTIAL_FEATURES; netdev->features = netdev->hw_features; if (pci_using_dac) netdev->features |= NETIF_F_HIGHDMA; netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; netdev->mpls_features |= NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_CSUM; netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; netdev->hw_enc_features |= netdev->vlan_features; /* set this bit last since it cannot be part of vlan_features */ netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; netdev->priv_flags |= IFF_UNICAST_FLT; /* MTU range: 68 - 1504 or 9710 */ netdev->min_mtu = ETH_MIN_MTU; switch (adapter->hw.api_version) { case ixgbe_mbox_api_11: case ixgbe_mbox_api_12: case ixgbe_mbox_api_13: case ixgbe_mbox_api_14: netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); break; default: if (adapter->hw.mac.type != ixgbe_mac_82599_vf) netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); else netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; break; } if (IXGBE_REMOVED(hw->hw_addr)) { err = -EIO; goto err_sw_init; } timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); INIT_WORK(&adapter->service_task, ixgbevf_service_task); set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); err = ixgbevf_init_interrupt_scheme(adapter); if (err) goto err_sw_init; strcpy(netdev->name, "eth%d"); err = register_netdev(netdev); if (err) goto err_register; pci_set_drvdata(pdev, netdev); netif_carrier_off(netdev); ixgbevf_init_ipsec_offload(adapter); ixgbevf_init_last_counter_stats(adapter); /* print the VF info */ dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); switch (hw->mac.type) { case ixgbe_mac_X550_vf: dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); break; case ixgbe_mac_X540_vf: dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); break; case ixgbe_mac_82599_vf: default: dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); break; } return 0; err_register: ixgbevf_clear_interrupt_scheme(adapter); err_sw_init: ixgbevf_reset_interrupt_capability(adapter); iounmap(adapter->io_addr); kfree(adapter->rss_key); err_ioremap: disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); free_netdev(netdev); err_alloc_etherdev: pci_release_regions(pdev); err_pci_reg: err_dma: if (!adapter || disable_dev) pci_disable_device(pdev); return err; } /** * ixgbevf_remove - Device Removal Routine * @pdev: PCI device information struct * * ixgbevf_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. **/ static void ixgbevf_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct ixgbevf_adapter *adapter; bool disable_dev; if (!netdev) return; adapter = netdev_priv(netdev); set_bit(__IXGBEVF_REMOVING, &adapter->state); cancel_work_sync(&adapter->service_task); if (netdev->reg_state == NETREG_REGISTERED) unregister_netdev(netdev); ixgbevf_stop_ipsec_offload(adapter); ixgbevf_clear_interrupt_scheme(adapter); ixgbevf_reset_interrupt_capability(adapter); iounmap(adapter->io_addr); pci_release_regions(pdev); hw_dbg(&adapter->hw, "Remove complete\n"); kfree(adapter->rss_key); disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); free_netdev(netdev); if (disable_dev) pci_disable_device(pdev); } /** * ixgbevf_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. **/ static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct ixgbevf_adapter *adapter = netdev_priv(netdev); if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) return PCI_ERS_RESULT_DISCONNECT; rtnl_lock(); netif_device_detach(netdev); if (netif_running(netdev)) ixgbevf_close_suspend(adapter); if (state == pci_channel_io_perm_failure) { rtnl_unlock(); return PCI_ERS_RESULT_DISCONNECT; } if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) pci_disable_device(pdev); rtnl_unlock(); /* Request a slot slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /** * ixgbevf_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. Implementation * resembles the first-half of the ixgbevf_resume routine. **/ static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct ixgbevf_adapter *adapter = netdev_priv(netdev); if (pci_enable_device_mem(pdev)) { dev_err(&pdev->dev, "Cannot re-enable PCI device after reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } adapter->hw.hw_addr = adapter->io_addr; smp_mb__before_atomic(); clear_bit(__IXGBEVF_DISABLED, &adapter->state); pci_set_master(pdev); ixgbevf_reset(adapter); return PCI_ERS_RESULT_RECOVERED; } /** * ixgbevf_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells us that * its OK to resume normal operation. Implementation resembles the * second-half of the ixgbevf_resume routine. **/ static void ixgbevf_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); rtnl_lock(); if (netif_running(netdev)) ixgbevf_open(netdev); netif_device_attach(netdev); rtnl_unlock(); } /* PCI Error Recovery (ERS) */ static const struct pci_error_handlers ixgbevf_err_handler = { .error_detected = ixgbevf_io_error_detected, .slot_reset = ixgbevf_io_slot_reset, .resume = ixgbevf_io_resume, }; static struct pci_driver ixgbevf_driver = { .name = ixgbevf_driver_name, .id_table = ixgbevf_pci_tbl, .probe = ixgbevf_probe, .remove = ixgbevf_remove, #ifdef CONFIG_PM /* Power Management Hooks */ .suspend = ixgbevf_suspend, .resume = ixgbevf_resume, #endif .shutdown = ixgbevf_shutdown, .err_handler = &ixgbevf_err_handler }; /** * ixgbevf_init_module - Driver Registration Routine * * ixgbevf_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ static int __init ixgbevf_init_module(void) { pr_info("%s - version %s\n", ixgbevf_driver_string, ixgbevf_driver_version); pr_info("%s\n", ixgbevf_copyright); ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); if (!ixgbevf_wq) { pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); return -ENOMEM; } return pci_register_driver(&ixgbevf_driver); } module_init(ixgbevf_init_module); /** * ixgbevf_exit_module - Driver Exit Cleanup Routine * * ixgbevf_exit_module is called just before the driver is removed * from memory. **/ static void __exit ixgbevf_exit_module(void) { pci_unregister_driver(&ixgbevf_driver); if (ixgbevf_wq) { destroy_workqueue(ixgbevf_wq); ixgbevf_wq = NULL; } } #ifdef DEBUG /** * ixgbevf_get_hw_dev_name - return device name string * used by hardware layer to print debugging information * @hw: pointer to private hardware struct **/ char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) { struct ixgbevf_adapter *adapter = hw->back; return adapter->netdev->name; } #endif module_exit(ixgbevf_exit_module); /* ixgbevf_main.c */