/* * Copyright © 2006-2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt */ #include #include #include #include #include #include #include #include #include #include "intel_drv.h" #include #include "i915_drv.h" #include "i915_trace.h" #include #include #include bool intel_pipe_has_type(struct drm_crtc *crtc, int type); static void intel_increase_pllclock(struct drm_crtc *crtc); static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on); typedef struct { /* given values */ int n; int m1, m2; int p1, p2; /* derived values */ int dot; int vco; int m; int p; } intel_clock_t; typedef struct { int min, max; } intel_range_t; typedef struct { int dot_limit; int p2_slow, p2_fast; } intel_p2_t; #define INTEL_P2_NUM 2 typedef struct intel_limit intel_limit_t; struct intel_limit { intel_range_t dot, vco, n, m, m1, m2, p, p1; intel_p2_t p2; bool (* find_pll)(const intel_limit_t *, struct drm_crtc *, int, int, intel_clock_t *, intel_clock_t *); }; /* FDI */ #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */ int intel_pch_rawclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; WARN_ON(!HAS_PCH_SPLIT(dev)); return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK; } static bool intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock); static bool intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock); static bool intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock); static bool intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock); static bool intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock); static inline u32 /* units of 100MHz */ intel_fdi_link_freq(struct drm_device *dev) { if (IS_GEN5(dev)) { struct drm_i915_private *dev_priv = dev->dev_private; return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2; } else return 27; } static const intel_limit_t intel_limits_i8xx_dvo = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 930000, .max = 1400000 }, .n = { .min = 3, .max = 16 }, .m = { .min = 96, .max = 140 }, .m1 = { .min = 18, .max = 26 }, .m2 = { .min = 6, .max = 16 }, .p = { .min = 4, .max = 128 }, .p1 = { .min = 2, .max = 33 }, .p2 = { .dot_limit = 165000, .p2_slow = 4, .p2_fast = 2 }, .find_pll = intel_find_best_PLL, }; static const intel_limit_t intel_limits_i8xx_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 930000, .max = 1400000 }, .n = { .min = 3, .max = 16 }, .m = { .min = 96, .max = 140 }, .m1 = { .min = 18, .max = 26 }, .m2 = { .min = 6, .max = 16 }, .p = { .min = 4, .max = 128 }, .p1 = { .min = 1, .max = 6 }, .p2 = { .dot_limit = 165000, .p2_slow = 14, .p2_fast = 7 }, .find_pll = intel_find_best_PLL, }; static const intel_limit_t intel_limits_i9xx_sdvo = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1400000, .max = 2800000 }, .n = { .min = 1, .max = 6 }, .m = { .min = 70, .max = 120 }, .m1 = { .min = 10, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 200000, .p2_slow = 10, .p2_fast = 5 }, .find_pll = intel_find_best_PLL, }; static const intel_limit_t intel_limits_i9xx_lvds = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1400000, .max = 2800000 }, .n = { .min = 1, .max = 6 }, .m = { .min = 70, .max = 120 }, .m1 = { .min = 10, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 7, .max = 98 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 112000, .p2_slow = 14, .p2_fast = 7 }, .find_pll = intel_find_best_PLL, }; static const intel_limit_t intel_limits_g4x_sdvo = { .dot = { .min = 25000, .max = 270000 }, .vco = { .min = 1750000, .max = 3500000}, .n = { .min = 1, .max = 4 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 10, .max = 30 }, .p1 = { .min = 1, .max = 3}, .p2 = { .dot_limit = 270000, .p2_slow = 10, .p2_fast = 10 }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_g4x_hdmi = { .dot = { .min = 22000, .max = 400000 }, .vco = { .min = 1750000, .max = 3500000}, .n = { .min = 1, .max = 4 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 16, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8}, .p2 = { .dot_limit = 165000, .p2_slow = 10, .p2_fast = 5 }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_g4x_single_channel_lvds = { .dot = { .min = 20000, .max = 115000 }, .vco = { .min = 1750000, .max = 3500000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 0, .p2_slow = 14, .p2_fast = 14 }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_g4x_dual_channel_lvds = { .dot = { .min = 80000, .max = 224000 }, .vco = { .min = 1750000, .max = 3500000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 14, .max = 42 }, .p1 = { .min = 2, .max = 6 }, .p2 = { .dot_limit = 0, .p2_slow = 7, .p2_fast = 7 }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_g4x_display_port = { .dot = { .min = 161670, .max = 227000 }, .vco = { .min = 1750000, .max = 3500000}, .n = { .min = 1, .max = 2 }, .m = { .min = 97, .max = 108 }, .m1 = { .min = 0x10, .max = 0x12 }, .m2 = { .min = 0x05, .max = 0x06 }, .p = { .min = 10, .max = 20 }, .p1 = { .min = 1, .max = 2}, .p2 = { .dot_limit = 0, .p2_slow = 10, .p2_fast = 10 }, .find_pll = intel_find_pll_g4x_dp, }; static const intel_limit_t intel_limits_pineview_sdvo = { .dot = { .min = 20000, .max = 400000}, .vco = { .min = 1700000, .max = 3500000 }, /* Pineview's Ncounter is a ring counter */ .n = { .min = 3, .max = 6 }, .m = { .min = 2, .max = 256 }, /* Pineview only has one combined m divider, which we treat as m2. */ .m1 = { .min = 0, .max = 0 }, .m2 = { .min = 0, .max = 254 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 200000, .p2_slow = 10, .p2_fast = 5 }, .find_pll = intel_find_best_PLL, }; static const intel_limit_t intel_limits_pineview_lvds = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1700000, .max = 3500000 }, .n = { .min = 3, .max = 6 }, .m = { .min = 2, .max = 256 }, .m1 = { .min = 0, .max = 0 }, .m2 = { .min = 0, .max = 254 }, .p = { .min = 7, .max = 112 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 112000, .p2_slow = 14, .p2_fast = 14 }, .find_pll = intel_find_best_PLL, }; /* Ironlake / Sandybridge * * We calculate clock using (register_value + 2) for N/M1/M2, so here * the range value for them is (actual_value - 2). */ static const intel_limit_t intel_limits_ironlake_dac = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 5 }, .m = { .min = 79, .max = 127 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 10, .p2_fast = 5 }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_ironlake_single_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 118 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 14, .p2_fast = 14 }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_ironlake_dual_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 127 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 14, .max = 56 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 7, .p2_fast = 7 }, .find_pll = intel_g4x_find_best_PLL, }; /* LVDS 100mhz refclk limits. */ static const intel_limit_t intel_limits_ironlake_single_lvds_100m = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 2 }, .m = { .min = 79, .max = 126 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 14, .p2_fast = 14 }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 126 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 14, .max = 42 }, .p1 = { .min = 2, .max = 6 }, .p2 = { .dot_limit = 225000, .p2_slow = 7, .p2_fast = 7 }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_ironlake_display_port = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000}, .n = { .min = 1, .max = 2 }, .m = { .min = 81, .max = 90 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 10, .max = 20 }, .p1 = { .min = 1, .max = 2}, .p2 = { .dot_limit = 0, .p2_slow = 10, .p2_fast = 10 }, .find_pll = intel_find_pll_ironlake_dp, }; static const intel_limit_t intel_limits_vlv_dac = { .dot = { .min = 25000, .max = 270000 }, .vco = { .min = 4000000, .max = 6000000 }, .n = { .min = 1, .max = 7 }, .m = { .min = 22, .max = 450 }, /* guess */ .m1 = { .min = 2, .max = 3 }, .m2 = { .min = 11, .max = 156 }, .p = { .min = 10, .max = 30 }, .p1 = { .min = 2, .max = 3 }, .p2 = { .dot_limit = 270000, .p2_slow = 2, .p2_fast = 20 }, .find_pll = intel_vlv_find_best_pll, }; static const intel_limit_t intel_limits_vlv_hdmi = { .dot = { .min = 20000, .max = 165000 }, .vco = { .min = 4000000, .max = 5994000}, .n = { .min = 1, .max = 7 }, .m = { .min = 60, .max = 300 }, /* guess */ .m1 = { .min = 2, .max = 3 }, .m2 = { .min = 11, .max = 156 }, .p = { .min = 10, .max = 30 }, .p1 = { .min = 2, .max = 3 }, .p2 = { .dot_limit = 270000, .p2_slow = 2, .p2_fast = 20 }, .find_pll = intel_vlv_find_best_pll, }; static const intel_limit_t intel_limits_vlv_dp = { .dot = { .min = 25000, .max = 270000 }, .vco = { .min = 4000000, .max = 6000000 }, .n = { .min = 1, .max = 7 }, .m = { .min = 22, .max = 450 }, .m1 = { .min = 2, .max = 3 }, .m2 = { .min = 11, .max = 156 }, .p = { .min = 10, .max = 30 }, .p1 = { .min = 2, .max = 3 }, .p2 = { .dot_limit = 270000, .p2_slow = 2, .p2_fast = 20 }, .find_pll = intel_vlv_find_best_pll, }; u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg) { WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock)); if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) { DRM_ERROR("DPIO idle wait timed out\n"); return 0; } I915_WRITE(DPIO_REG, reg); I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID | DPIO_BYTE); if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) { DRM_ERROR("DPIO read wait timed out\n"); return 0; } return I915_READ(DPIO_DATA); } static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val) { WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock)); if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) { DRM_ERROR("DPIO idle wait timed out\n"); return; } I915_WRITE(DPIO_DATA, val); I915_WRITE(DPIO_REG, reg); I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID | DPIO_BYTE); if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) DRM_ERROR("DPIO write wait timed out\n"); } static void vlv_init_dpio(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* Reset the DPIO config */ I915_WRITE(DPIO_CTL, 0); POSTING_READ(DPIO_CTL); I915_WRITE(DPIO_CTL, 1); POSTING_READ(DPIO_CTL); } static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc, int refclk) { struct drm_device *dev = crtc->dev; const intel_limit_t *limit; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { if (intel_is_dual_link_lvds(dev)) { /* LVDS dual channel */ if (refclk == 100000) limit = &intel_limits_ironlake_dual_lvds_100m; else limit = &intel_limits_ironlake_dual_lvds; } else { if (refclk == 100000) limit = &intel_limits_ironlake_single_lvds_100m; else limit = &intel_limits_ironlake_single_lvds; } } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) limit = &intel_limits_ironlake_display_port; else limit = &intel_limits_ironlake_dac; return limit; } static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; const intel_limit_t *limit; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { if (intel_is_dual_link_lvds(dev)) /* LVDS with dual channel */ limit = &intel_limits_g4x_dual_channel_lvds; else /* LVDS with dual channel */ limit = &intel_limits_g4x_single_channel_lvds; } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) || intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { limit = &intel_limits_g4x_hdmi; } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) { limit = &intel_limits_g4x_sdvo; } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { limit = &intel_limits_g4x_display_port; } else /* The option is for other outputs */ limit = &intel_limits_i9xx_sdvo; return limit; } static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk) { struct drm_device *dev = crtc->dev; const intel_limit_t *limit; if (HAS_PCH_SPLIT(dev)) limit = intel_ironlake_limit(crtc, refclk); else if (IS_G4X(dev)) { limit = intel_g4x_limit(crtc); } else if (IS_PINEVIEW(dev)) { if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) limit = &intel_limits_pineview_lvds; else limit = &intel_limits_pineview_sdvo; } else if (IS_VALLEYVIEW(dev)) { if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) limit = &intel_limits_vlv_dac; else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) limit = &intel_limits_vlv_hdmi; else limit = &intel_limits_vlv_dp; } else if (!IS_GEN2(dev)) { if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) limit = &intel_limits_i9xx_lvds; else limit = &intel_limits_i9xx_sdvo; } else { if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) limit = &intel_limits_i8xx_lvds; else limit = &intel_limits_i8xx_dvo; } return limit; } /* m1 is reserved as 0 in Pineview, n is a ring counter */ static void pineview_clock(int refclk, intel_clock_t *clock) { clock->m = clock->m2 + 2; clock->p = clock->p1 * clock->p2; clock->vco = refclk * clock->m / clock->n; clock->dot = clock->vco / clock->p; } static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock) { if (IS_PINEVIEW(dev)) { pineview_clock(refclk, clock); return; } clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); clock->p = clock->p1 * clock->p2; clock->vco = refclk * clock->m / (clock->n + 2); clock->dot = clock->vco / clock->p; } /** * Returns whether any output on the specified pipe is of the specified type */ bool intel_pipe_has_type(struct drm_crtc *crtc, int type) { struct drm_device *dev = crtc->dev; struct intel_encoder *encoder; for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->type == type) return true; return false; } #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) /** * Returns whether the given set of divisors are valid for a given refclk with * the given connectors. */ static bool intel_PLL_is_valid(struct drm_device *dev, const intel_limit_t *limit, const intel_clock_t *clock) { if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) INTELPllInvalid("p1 out of range\n"); if (clock->p < limit->p.min || limit->p.max < clock->p) INTELPllInvalid("p out of range\n"); if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) INTELPllInvalid("m2 out of range\n"); if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) INTELPllInvalid("m1 out of range\n"); if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev)) INTELPllInvalid("m1 <= m2\n"); if (clock->m < limit->m.min || limit->m.max < clock->m) INTELPllInvalid("m out of range\n"); if (clock->n < limit->n.min || limit->n.max < clock->n) INTELPllInvalid("n out of range\n"); if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) INTELPllInvalid("vco out of range\n"); /* XXX: We may need to be checking "Dot clock" depending on the multiplier, * connector, etc., rather than just a single range. */ if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) INTELPllInvalid("dot out of range\n"); return true; } static bool intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; intel_clock_t clock; int err = target; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { /* * For LVDS just rely on its current settings for dual-channel. * We haven't figured out how to reliably set up different * single/dual channel state, if we even can. */ if (intel_is_dual_link_lvds(dev)) clock.p2 = limit->p2.p2_fast; else clock.p2 = limit->p2.p2_slow; } else { if (target < limit->p2.dot_limit) clock.p2 = limit->p2.p2_slow; else clock.p2 = limit->p2.p2_fast; } memset(best_clock, 0, sizeof(*best_clock)); for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) { /* m1 is always 0 in Pineview */ if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev)) break; for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++) { int this_err; intel_clock(dev, refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; if (match_clock && clock.p != match_clock->p) continue; this_err = abs(clock.dot - target); if (this_err < err) { *best_clock = clock; err = this_err; } } } } } return (err != target); } static bool intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; intel_clock_t clock; int max_n; bool found; /* approximately equals target * 0.00585 */ int err_most = (target >> 8) + (target >> 9); found = false; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { int lvds_reg; if (HAS_PCH_SPLIT(dev)) lvds_reg = PCH_LVDS; else lvds_reg = LVDS; if (intel_is_dual_link_lvds(dev)) clock.p2 = limit->p2.p2_fast; else clock.p2 = limit->p2.p2_slow; } else { if (target < limit->p2.dot_limit) clock.p2 = limit->p2.p2_slow; else clock.p2 = limit->p2.p2_fast; } memset(best_clock, 0, sizeof(*best_clock)); max_n = limit->n.max; /* based on hardware requirement, prefer smaller n to precision */ for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { /* based on hardware requirement, prefere larger m1,m2 */ for (clock.m1 = limit->m1.max; clock.m1 >= limit->m1.min; clock.m1--) { for (clock.m2 = limit->m2.max; clock.m2 >= limit->m2.min; clock.m2--) { for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { int this_err; intel_clock(dev, refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; if (match_clock && clock.p != match_clock->p) continue; this_err = abs(clock.dot - target); if (this_err < err_most) { *best_clock = clock; err_most = this_err; max_n = clock.n; found = true; } } } } } return found; } static bool intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; intel_clock_t clock; if (target < 200000) { clock.n = 1; clock.p1 = 2; clock.p2 = 10; clock.m1 = 12; clock.m2 = 9; } else { clock.n = 2; clock.p1 = 1; clock.p2 = 10; clock.m1 = 14; clock.m2 = 8; } intel_clock(dev, refclk, &clock); memcpy(best_clock, &clock, sizeof(intel_clock_t)); return true; } /* DisplayPort has only two frequencies, 162MHz and 270MHz */ static bool intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { intel_clock_t clock; if (target < 200000) { clock.p1 = 2; clock.p2 = 10; clock.n = 2; clock.m1 = 23; clock.m2 = 8; } else { clock.p1 = 1; clock.p2 = 10; clock.n = 1; clock.m1 = 14; clock.m2 = 2; } clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2); clock.p = (clock.p1 * clock.p2); clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p; clock.vco = 0; memcpy(best_clock, &clock, sizeof(intel_clock_t)); return true; } static bool intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2; u32 m, n, fastclk; u32 updrate, minupdate, fracbits, p; unsigned long bestppm, ppm, absppm; int dotclk, flag; flag = 0; dotclk = target * 1000; bestppm = 1000000; ppm = absppm = 0; fastclk = dotclk / (2*100); updrate = 0; minupdate = 19200; fracbits = 1; n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0; bestm1 = bestm2 = bestp1 = bestp2 = 0; /* based on hardware requirement, prefer smaller n to precision */ for (n = limit->n.min; n <= ((refclk) / minupdate); n++) { updrate = refclk / n; for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) { for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) { if (p2 > 10) p2 = p2 - 1; p = p1 * p2; /* based on hardware requirement, prefer bigger m1,m2 values */ for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) { m2 = (((2*(fastclk * p * n / m1 )) + refclk) / (2*refclk)); m = m1 * m2; vco = updrate * m; if (vco >= limit->vco.min && vco < limit->vco.max) { ppm = 1000000 * ((vco / p) - fastclk) / fastclk; absppm = (ppm > 0) ? ppm : (-ppm); if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) { bestppm = 0; flag = 1; } if (absppm < bestppm - 10) { bestppm = absppm; flag = 1; } if (flag) { bestn = n; bestm1 = m1; bestm2 = m2; bestp1 = p1; bestp2 = p2; flag = 0; } } } } } } best_clock->n = bestn; best_clock->m1 = bestm1; best_clock->m2 = bestm2; best_clock->p1 = bestp1; best_clock->p2 = bestp2; return true; } enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); return intel_crtc->cpu_transcoder; } static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; u32 frame, frame_reg = PIPEFRAME(pipe); frame = I915_READ(frame_reg); if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50)) DRM_DEBUG_KMS("vblank wait timed out\n"); } /** * intel_wait_for_vblank - wait for vblank on a given pipe * @dev: drm device * @pipe: pipe to wait for * * Wait for vblank to occur on a given pipe. Needed for various bits of * mode setting code. */ void intel_wait_for_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; int pipestat_reg = PIPESTAT(pipe); if (INTEL_INFO(dev)->gen >= 5) { ironlake_wait_for_vblank(dev, pipe); return; } /* Clear existing vblank status. Note this will clear any other * sticky status fields as well. * * This races with i915_driver_irq_handler() with the result * that either function could miss a vblank event. Here it is not * fatal, as we will either wait upon the next vblank interrupt or * timeout. Generally speaking intel_wait_for_vblank() is only * called during modeset at which time the GPU should be idle and * should *not* be performing page flips and thus not waiting on * vblanks... * Currently, the result of us stealing a vblank from the irq * handler is that a single frame will be skipped during swapbuffers. */ I915_WRITE(pipestat_reg, I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS); /* Wait for vblank interrupt bit to set */ if (wait_for(I915_READ(pipestat_reg) & PIPE_VBLANK_INTERRUPT_STATUS, 50)) DRM_DEBUG_KMS("vblank wait timed out\n"); } /* * intel_wait_for_pipe_off - wait for pipe to turn off * @dev: drm device * @pipe: pipe to wait for * * After disabling a pipe, we can't wait for vblank in the usual way, * spinning on the vblank interrupt status bit, since we won't actually * see an interrupt when the pipe is disabled. * * On Gen4 and above: * wait for the pipe register state bit to turn off * * Otherwise: * wait for the display line value to settle (it usually * ends up stopping at the start of the next frame). * */ void intel_wait_for_pipe_off(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); if (INTEL_INFO(dev)->gen >= 4) { int reg = PIPECONF(cpu_transcoder); /* Wait for the Pipe State to go off */ if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 100)) WARN(1, "pipe_off wait timed out\n"); } else { u32 last_line, line_mask; int reg = PIPEDSL(pipe); unsigned long timeout = jiffies + msecs_to_jiffies(100); if (IS_GEN2(dev)) line_mask = DSL_LINEMASK_GEN2; else line_mask = DSL_LINEMASK_GEN3; /* Wait for the display line to settle */ do { last_line = I915_READ(reg) & line_mask; mdelay(5); } while (((I915_READ(reg) & line_mask) != last_line) && time_after(timeout, jiffies)); if (time_after(jiffies, timeout)) WARN(1, "pipe_off wait timed out\n"); } } /* * ibx_digital_port_connected - is the specified port connected? * @dev_priv: i915 private structure * @port: the port to test * * Returns true if @port is connected, false otherwise. */ bool ibx_digital_port_connected(struct drm_i915_private *dev_priv, struct intel_digital_port *port) { u32 bit; /* XXX: IBX has different SDEISR bits */ if (HAS_PCH_IBX(dev_priv->dev)) return true; switch(port->port) { case PORT_B: bit = SDE_PORTB_HOTPLUG_CPT; break; case PORT_C: bit = SDE_PORTC_HOTPLUG_CPT; break; case PORT_D: bit = SDE_PORTD_HOTPLUG_CPT; break; default: return true; } return I915_READ(SDEISR) & bit; } static const char *state_string(bool enabled) { return enabled ? "on" : "off"; } /* Only for pre-ILK configs */ static void assert_pll(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { int reg; u32 val; bool cur_state; reg = DPLL(pipe); val = I915_READ(reg); cur_state = !!(val & DPLL_VCO_ENABLE); WARN(cur_state != state, "PLL state assertion failure (expected %s, current %s)\n", state_string(state), state_string(cur_state)); } #define assert_pll_enabled(d, p) assert_pll(d, p, true) #define assert_pll_disabled(d, p) assert_pll(d, p, false) /* For ILK+ */ static void assert_pch_pll(struct drm_i915_private *dev_priv, struct intel_pch_pll *pll, struct intel_crtc *crtc, bool state) { u32 val; bool cur_state; if (HAS_PCH_LPT(dev_priv->dev)) { DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n"); return; } if (WARN (!pll, "asserting PCH PLL %s with no PLL\n", state_string(state))) return; val = I915_READ(pll->pll_reg); cur_state = !!(val & DPLL_VCO_ENABLE); WARN(cur_state != state, "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n", pll->pll_reg, state_string(state), state_string(cur_state), val); /* Make sure the selected PLL is correctly attached to the transcoder */ if (crtc && HAS_PCH_CPT(dev_priv->dev)) { u32 pch_dpll; pch_dpll = I915_READ(PCH_DPLL_SEL); cur_state = pll->pll_reg == _PCH_DPLL_B; if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state, "PLL[%d] not attached to this transcoder %d: %08x\n", cur_state, crtc->pipe, pch_dpll)) { cur_state = !!(val >> (4*crtc->pipe + 3)); WARN(cur_state != state, "PLL[%d] not %s on this transcoder %d: %08x\n", pll->pll_reg == _PCH_DPLL_B, state_string(state), crtc->pipe, val); } } } #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true) #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false) static void assert_fdi_tx(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { int reg; u32 val; bool cur_state; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); if (HAS_DDI(dev_priv->dev)) { /* DDI does not have a specific FDI_TX register */ reg = TRANS_DDI_FUNC_CTL(cpu_transcoder); val = I915_READ(reg); cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); } else { reg = FDI_TX_CTL(pipe); val = I915_READ(reg); cur_state = !!(val & FDI_TX_ENABLE); } WARN(cur_state != state, "FDI TX state assertion failure (expected %s, current %s)\n", state_string(state), state_string(cur_state)); } #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) static void assert_fdi_rx(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { int reg; u32 val; bool cur_state; reg = FDI_RX_CTL(pipe); val = I915_READ(reg); cur_state = !!(val & FDI_RX_ENABLE); WARN(cur_state != state, "FDI RX state assertion failure (expected %s, current %s)\n", state_string(state), state_string(cur_state)); } #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, enum pipe pipe) { int reg; u32 val; /* ILK FDI PLL is always enabled */ if (dev_priv->info->gen == 5) return; /* On Haswell, DDI ports are responsible for the FDI PLL setup */ if (HAS_DDI(dev_priv->dev)) return; reg = FDI_TX_CTL(pipe); val = I915_READ(reg); WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); } static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv, enum pipe pipe) { int reg; u32 val; reg = FDI_RX_CTL(pipe); val = I915_READ(reg); WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n"); } static void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) { int pp_reg, lvds_reg; u32 val; enum pipe panel_pipe = PIPE_A; bool locked = true; if (HAS_PCH_SPLIT(dev_priv->dev)) { pp_reg = PCH_PP_CONTROL; lvds_reg = PCH_LVDS; } else { pp_reg = PP_CONTROL; lvds_reg = LVDS; } val = I915_READ(pp_reg); if (!(val & PANEL_POWER_ON) || ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS)) locked = false; if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT) panel_pipe = PIPE_B; WARN(panel_pipe == pipe && locked, "panel assertion failure, pipe %c regs locked\n", pipe_name(pipe)); } void assert_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { int reg; u32 val; bool cur_state; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); /* if we need the pipe A quirk it must be always on */ if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) state = true; reg = PIPECONF(cpu_transcoder); val = I915_READ(reg); cur_state = !!(val & PIPECONF_ENABLE); WARN(cur_state != state, "pipe %c assertion failure (expected %s, current %s)\n", pipe_name(pipe), state_string(state), state_string(cur_state)); } static void assert_plane(struct drm_i915_private *dev_priv, enum plane plane, bool state) { int reg; u32 val; bool cur_state; reg = DSPCNTR(plane); val = I915_READ(reg); cur_state = !!(val & DISPLAY_PLANE_ENABLE); WARN(cur_state != state, "plane %c assertion failure (expected %s, current %s)\n", plane_name(plane), state_string(state), state_string(cur_state)); } #define assert_plane_enabled(d, p) assert_plane(d, p, true) #define assert_plane_disabled(d, p) assert_plane(d, p, false) static void assert_planes_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { int reg, i; u32 val; int cur_pipe; /* Planes are fixed to pipes on ILK+ */ if (HAS_PCH_SPLIT(dev_priv->dev)) { reg = DSPCNTR(pipe); val = I915_READ(reg); WARN((val & DISPLAY_PLANE_ENABLE), "plane %c assertion failure, should be disabled but not\n", plane_name(pipe)); return; } /* Need to check both planes against the pipe */ for (i = 0; i < 2; i++) { reg = DSPCNTR(i); val = I915_READ(reg); cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> DISPPLANE_SEL_PIPE_SHIFT; WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe, "plane %c assertion failure, should be off on pipe %c but is still active\n", plane_name(i), pipe_name(pipe)); } } static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv) { u32 val; bool enabled; if (HAS_PCH_LPT(dev_priv->dev)) { DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n"); return; } val = I915_READ(PCH_DREF_CONTROL); enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | DREF_SUPERSPREAD_SOURCE_MASK)); WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n"); } static void assert_transcoder_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { int reg; u32 val; bool enabled; reg = TRANSCONF(pipe); val = I915_READ(reg); enabled = !!(val & TRANS_ENABLE); WARN(enabled, "transcoder assertion failed, should be off on pipe %c but is still active\n", pipe_name(pipe)); } static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 port_sel, u32 val) { if ((val & DP_PORT_EN) == 0) return false; if (HAS_PCH_CPT(dev_priv->dev)) { u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe); u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg); if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel) return false; } else { if ((val & DP_PIPE_MASK) != (pipe << 30)) return false; } return true; } static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 val) { if ((val & PORT_ENABLE) == 0) return false; if (HAS_PCH_CPT(dev_priv->dev)) { if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) return false; } else { if ((val & TRANSCODER_MASK) != TRANSCODER(pipe)) return false; } return true; } static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 val) { if ((val & LVDS_PORT_EN) == 0) return false; if (HAS_PCH_CPT(dev_priv->dev)) { if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) return false; } else { if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe)) return false; } return true; } static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 val) { if ((val & ADPA_DAC_ENABLE) == 0) return false; if (HAS_PCH_CPT(dev_priv->dev)) { if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) return false; } else { if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe)) return false; } return true; } static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 port_sel) { u32 val = I915_READ(reg); WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val), "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n", reg, pipe_name(pipe)); WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0 && (val & DP_PIPEB_SELECT), "IBX PCH dp port still using transcoder B\n"); } static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, enum pipe pipe, int reg) { u32 val = I915_READ(reg); WARN(hdmi_pipe_enabled(dev_priv, pipe, val), "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n", reg, pipe_name(pipe)); WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0 && (val & SDVO_PIPE_B_SELECT), "IBX PCH hdmi port still using transcoder B\n"); } static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { int reg; u32 val; assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); reg = PCH_ADPA; val = I915_READ(reg); WARN(adpa_pipe_enabled(dev_priv, pipe, val), "PCH VGA enabled on transcoder %c, should be disabled\n", pipe_name(pipe)); reg = PCH_LVDS; val = I915_READ(reg); WARN(lvds_pipe_enabled(dev_priv, pipe, val), "PCH LVDS enabled on transcoder %c, should be disabled\n", pipe_name(pipe)); assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB); assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC); assert_pch_hdmi_disabled(dev_priv, pipe, HDMID); } /** * intel_enable_pll - enable a PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to enable * * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to * make sure the PLL reg is writable first though, since the panel write * protect mechanism may be enabled. * * Note! This is for pre-ILK only. * * Unfortunately needed by dvo_ns2501 since the dvo depends on it running. */ static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) { int reg; u32 val; /* No really, not for ILK+ */ BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5); /* PLL is protected by panel, make sure we can write it */ if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev)) assert_panel_unlocked(dev_priv, pipe); reg = DPLL(pipe); val = I915_READ(reg); val |= DPLL_VCO_ENABLE; /* We do this three times for luck */ I915_WRITE(reg, val); POSTING_READ(reg); udelay(150); /* wait for warmup */ I915_WRITE(reg, val); POSTING_READ(reg); udelay(150); /* wait for warmup */ I915_WRITE(reg, val); POSTING_READ(reg); udelay(150); /* wait for warmup */ } /** * intel_disable_pll - disable a PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to disable * * Disable the PLL for @pipe, making sure the pipe is off first. * * Note! This is for pre-ILK only. */ static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) { int reg; u32 val; /* Don't disable pipe A or pipe A PLLs if needed */ if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE)) return; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, pipe); reg = DPLL(pipe); val = I915_READ(reg); val &= ~DPLL_VCO_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); } /* SBI access */ static void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value) { WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock)); if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) { DRM_ERROR("timeout waiting for SBI to become ready\n"); return; } I915_WRITE(SBI_ADDR, (reg << 16)); I915_WRITE(SBI_DATA, value); I915_WRITE(SBI_CTL_STAT, SBI_BUSY | SBI_CTL_OP_CRWR); if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0, 100)) { DRM_ERROR("timeout waiting for SBI to complete write transaction\n"); return; } } static u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg) { WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock)); if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) { DRM_ERROR("timeout waiting for SBI to become ready\n"); return 0; } I915_WRITE(SBI_ADDR, (reg << 16)); I915_WRITE(SBI_CTL_STAT, SBI_BUSY | SBI_CTL_OP_CRRD); if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0, 100)) { DRM_ERROR("timeout waiting for SBI to complete read transaction\n"); return 0; } return I915_READ(SBI_DATA); } /** * ironlake_enable_pch_pll - enable PCH PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to enable * * The PCH PLL needs to be enabled before the PCH transcoder, since it * drives the transcoder clock. */ static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc) { struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; struct intel_pch_pll *pll; int reg; u32 val; /* PCH PLLs only available on ILK, SNB and IVB */ BUG_ON(dev_priv->info->gen < 5); pll = intel_crtc->pch_pll; if (pll == NULL) return; if (WARN_ON(pll->refcount == 0)) return; DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n", pll->pll_reg, pll->active, pll->on, intel_crtc->base.base.id); /* PCH refclock must be enabled first */ assert_pch_refclk_enabled(dev_priv); if (pll->active++ && pll->on) { assert_pch_pll_enabled(dev_priv, pll, NULL); return; } DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg); reg = pll->pll_reg; val = I915_READ(reg); val |= DPLL_VCO_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); udelay(200); pll->on = true; } static void intel_disable_pch_pll(struct intel_crtc *intel_crtc) { struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; struct intel_pch_pll *pll = intel_crtc->pch_pll; int reg; u32 val; /* PCH only available on ILK+ */ BUG_ON(dev_priv->info->gen < 5); if (pll == NULL) return; if (WARN_ON(pll->refcount == 0)) return; DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n", pll->pll_reg, pll->active, pll->on, intel_crtc->base.base.id); if (WARN_ON(pll->active == 0)) { assert_pch_pll_disabled(dev_priv, pll, NULL); return; } if (--pll->active) { assert_pch_pll_enabled(dev_priv, pll, NULL); return; } DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg); /* Make sure transcoder isn't still depending on us */ assert_transcoder_disabled(dev_priv, intel_crtc->pipe); reg = pll->pll_reg; val = I915_READ(reg); val &= ~DPLL_VCO_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); udelay(200); pll->on = false; } static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_device *dev = dev_priv->dev; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; uint32_t reg, val, pipeconf_val; /* PCH only available on ILK+ */ BUG_ON(dev_priv->info->gen < 5); /* Make sure PCH DPLL is enabled */ assert_pch_pll_enabled(dev_priv, to_intel_crtc(crtc)->pch_pll, to_intel_crtc(crtc)); /* FDI must be feeding us bits for PCH ports */ assert_fdi_tx_enabled(dev_priv, pipe); assert_fdi_rx_enabled(dev_priv, pipe); if (HAS_PCH_CPT(dev)) { /* Workaround: Set the timing override bit before enabling the * pch transcoder. */ reg = TRANS_CHICKEN2(pipe); val = I915_READ(reg); val |= TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(reg, val); } reg = TRANSCONF(pipe); val = I915_READ(reg); pipeconf_val = I915_READ(PIPECONF(pipe)); if (HAS_PCH_IBX(dev_priv->dev)) { /* * make the BPC in transcoder be consistent with * that in pipeconf reg. */ val &= ~PIPE_BPC_MASK; val |= pipeconf_val & PIPE_BPC_MASK; } val &= ~TRANS_INTERLACE_MASK; if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) if (HAS_PCH_IBX(dev_priv->dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) val |= TRANS_LEGACY_INTERLACED_ILK; else val |= TRANS_INTERLACED; else val |= TRANS_PROGRESSIVE; I915_WRITE(reg, val | TRANS_ENABLE); if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100)) DRM_ERROR("failed to enable transcoder %d\n", pipe); } static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { u32 val, pipeconf_val; /* PCH only available on ILK+ */ BUG_ON(dev_priv->info->gen < 5); /* FDI must be feeding us bits for PCH ports */ assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); assert_fdi_rx_enabled(dev_priv, TRANSCODER_A); /* Workaround: set timing override bit. */ val = I915_READ(_TRANSA_CHICKEN2); val |= TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(_TRANSA_CHICKEN2, val); val = TRANS_ENABLE; pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == PIPECONF_INTERLACED_ILK) val |= TRANS_INTERLACED; else val |= TRANS_PROGRESSIVE; I915_WRITE(TRANSCONF(TRANSCODER_A), val); if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100)) DRM_ERROR("Failed to enable PCH transcoder\n"); } static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_device *dev = dev_priv->dev; uint32_t reg, val; /* FDI relies on the transcoder */ assert_fdi_tx_disabled(dev_priv, pipe); assert_fdi_rx_disabled(dev_priv, pipe); /* Ports must be off as well */ assert_pch_ports_disabled(dev_priv, pipe); reg = TRANSCONF(pipe); val = I915_READ(reg); val &= ~TRANS_ENABLE; I915_WRITE(reg, val); /* wait for PCH transcoder off, transcoder state */ if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50)) DRM_ERROR("failed to disable transcoder %d\n", pipe); if (!HAS_PCH_IBX(dev)) { /* Workaround: Clear the timing override chicken bit again. */ reg = TRANS_CHICKEN2(pipe); val = I915_READ(reg); val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(reg, val); } } static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) { u32 val; val = I915_READ(_TRANSACONF); val &= ~TRANS_ENABLE; I915_WRITE(_TRANSACONF, val); /* wait for PCH transcoder off, transcoder state */ if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50)) DRM_ERROR("Failed to disable PCH transcoder\n"); /* Workaround: clear timing override bit. */ val = I915_READ(_TRANSA_CHICKEN2); val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(_TRANSA_CHICKEN2, val); } /** * intel_enable_pipe - enable a pipe, asserting requirements * @dev_priv: i915 private structure * @pipe: pipe to enable * @pch_port: on ILK+, is this pipe driving a PCH port or not * * Enable @pipe, making sure that various hardware specific requirements * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc. * * @pipe should be %PIPE_A or %PIPE_B. * * Will wait until the pipe is actually running (i.e. first vblank) before * returning. */ static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, bool pch_port) { enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); enum pipe pch_transcoder; int reg; u32 val; if (IS_HASWELL(dev_priv->dev)) pch_transcoder = TRANSCODER_A; else pch_transcoder = pipe; /* * A pipe without a PLL won't actually be able to drive bits from * a plane. On ILK+ the pipe PLLs are integrated, so we don't * need the check. */ if (!HAS_PCH_SPLIT(dev_priv->dev)) assert_pll_enabled(dev_priv, pipe); else { if (pch_port) { /* if driving the PCH, we need FDI enabled */ assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder); assert_fdi_tx_pll_enabled(dev_priv, (enum pipe) cpu_transcoder); } /* FIXME: assert CPU port conditions for SNB+ */ } reg = PIPECONF(cpu_transcoder); val = I915_READ(reg); if (val & PIPECONF_ENABLE) return; I915_WRITE(reg, val | PIPECONF_ENABLE); intel_wait_for_vblank(dev_priv->dev, pipe); } /** * intel_disable_pipe - disable a pipe, asserting requirements * @dev_priv: i915 private structure * @pipe: pipe to disable * * Disable @pipe, making sure that various hardware specific requirements * are met, if applicable, e.g. plane disabled, panel fitter off, etc. * * @pipe should be %PIPE_A or %PIPE_B. * * Will wait until the pipe has shut down before returning. */ static void intel_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) { enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); int reg; u32 val; /* * Make sure planes won't keep trying to pump pixels to us, * or we might hang the display. */ assert_planes_disabled(dev_priv, pipe); /* Don't disable pipe A or pipe A PLLs if needed */ if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE)) return; reg = PIPECONF(cpu_transcoder); val = I915_READ(reg); if ((val & PIPECONF_ENABLE) == 0) return; I915_WRITE(reg, val & ~PIPECONF_ENABLE); intel_wait_for_pipe_off(dev_priv->dev, pipe); } /* * Plane regs are double buffered, going from enabled->disabled needs a * trigger in order to latch. The display address reg provides this. */ void intel_flush_display_plane(struct drm_i915_private *dev_priv, enum plane plane) { if (dev_priv->info->gen >= 4) I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane))); else I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane))); } /** * intel_enable_plane - enable a display plane on a given pipe * @dev_priv: i915 private structure * @plane: plane to enable * @pipe: pipe being fed * * Enable @plane on @pipe, making sure that @pipe is running first. */ static void intel_enable_plane(struct drm_i915_private *dev_priv, enum plane plane, enum pipe pipe) { int reg; u32 val; /* If the pipe isn't enabled, we can't pump pixels and may hang */ assert_pipe_enabled(dev_priv, pipe); reg = DSPCNTR(plane); val = I915_READ(reg); if (val & DISPLAY_PLANE_ENABLE) return; I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE); intel_flush_display_plane(dev_priv, plane); intel_wait_for_vblank(dev_priv->dev, pipe); } /** * intel_disable_plane - disable a display plane * @dev_priv: i915 private structure * @plane: plane to disable * @pipe: pipe consuming the data * * Disable @plane; should be an independent operation. */ static void intel_disable_plane(struct drm_i915_private *dev_priv, enum plane plane, enum pipe pipe) { int reg; u32 val; reg = DSPCNTR(plane); val = I915_READ(reg); if ((val & DISPLAY_PLANE_ENABLE) == 0) return; I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE); intel_flush_display_plane(dev_priv, plane); intel_wait_for_vblank(dev_priv->dev, pipe); } int intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_i915_gem_object *obj, struct intel_ring_buffer *pipelined) { struct drm_i915_private *dev_priv = dev->dev_private; u32 alignment; int ret; switch (obj->tiling_mode) { case I915_TILING_NONE: if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) alignment = 128 * 1024; else if (INTEL_INFO(dev)->gen >= 4) alignment = 4 * 1024; else alignment = 64 * 1024; break; case I915_TILING_X: /* pin() will align the object as required by fence */ alignment = 0; break; case I915_TILING_Y: /* FIXME: Is this true? */ DRM_ERROR("Y tiled not allowed for scan out buffers\n"); return -EINVAL; default: BUG(); } dev_priv->mm.interruptible = false; ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined); if (ret) goto err_interruptible; /* Install a fence for tiled scan-out. Pre-i965 always needs a * fence, whereas 965+ only requires a fence if using * framebuffer compression. For simplicity, we always install * a fence as the cost is not that onerous. */ ret = i915_gem_object_get_fence(obj); if (ret) goto err_unpin; i915_gem_object_pin_fence(obj); dev_priv->mm.interruptible = true; return 0; err_unpin: i915_gem_object_unpin(obj); err_interruptible: dev_priv->mm.interruptible = true; return ret; } void intel_unpin_fb_obj(struct drm_i915_gem_object *obj) { i915_gem_object_unpin_fence(obj); i915_gem_object_unpin(obj); } /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel * is assumed to be a power-of-two. */ unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y, unsigned int bpp, unsigned int pitch) { int tile_rows, tiles; tile_rows = *y / 8; *y %= 8; tiles = *x / (512/bpp); *x %= 512/bpp; return tile_rows * pitch * 8 + tiles * 4096; } static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_framebuffer *intel_fb; struct drm_i915_gem_object *obj; int plane = intel_crtc->plane; unsigned long linear_offset; u32 dspcntr; u32 reg; switch (plane) { case 0: case 1: break; default: DRM_ERROR("Can't update plane %d in SAREA\n", plane); return -EINVAL; } intel_fb = to_intel_framebuffer(fb); obj = intel_fb->obj; reg = DSPCNTR(plane); dspcntr = I915_READ(reg); /* Mask out pixel format bits in case we change it */ dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; switch (fb->pixel_format) { case DRM_FORMAT_C8: dspcntr |= DISPPLANE_8BPP; break; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_ARGB1555: dspcntr |= DISPPLANE_BGRX555; break; case DRM_FORMAT_RGB565: dspcntr |= DISPPLANE_BGRX565; break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: dspcntr |= DISPPLANE_BGRX888; break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: dspcntr |= DISPPLANE_RGBX888; break; case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: dspcntr |= DISPPLANE_BGRX101010; break; case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ABGR2101010: dspcntr |= DISPPLANE_RGBX101010; break; default: DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format); return -EINVAL; } if (INTEL_INFO(dev)->gen >= 4) { if (obj->tiling_mode != I915_TILING_NONE) dspcntr |= DISPPLANE_TILED; else dspcntr &= ~DISPPLANE_TILED; } I915_WRITE(reg, dspcntr); linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8); if (INTEL_INFO(dev)->gen >= 4) { intel_crtc->dspaddr_offset = intel_gen4_compute_offset_xtiled(&x, &y, fb->bits_per_pixel / 8, fb->pitches[0]); linear_offset -= intel_crtc->dspaddr_offset; } else { intel_crtc->dspaddr_offset = linear_offset; } DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n", obj->gtt_offset, linear_offset, x, y, fb->pitches[0]); I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); if (INTEL_INFO(dev)->gen >= 4) { I915_MODIFY_DISPBASE(DSPSURF(plane), obj->gtt_offset + intel_crtc->dspaddr_offset); I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); I915_WRITE(DSPLINOFF(plane), linear_offset); } else I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset); POSTING_READ(reg); return 0; } static int ironlake_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_framebuffer *intel_fb; struct drm_i915_gem_object *obj; int plane = intel_crtc->plane; unsigned long linear_offset; u32 dspcntr; u32 reg; switch (plane) { case 0: case 1: case 2: break; default: DRM_ERROR("Can't update plane %d in SAREA\n", plane); return -EINVAL; } intel_fb = to_intel_framebuffer(fb); obj = intel_fb->obj; reg = DSPCNTR(plane); dspcntr = I915_READ(reg); /* Mask out pixel format bits in case we change it */ dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; switch (fb->pixel_format) { case DRM_FORMAT_C8: dspcntr |= DISPPLANE_8BPP; break; case DRM_FORMAT_RGB565: dspcntr |= DISPPLANE_BGRX565; break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: dspcntr |= DISPPLANE_BGRX888; break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: dspcntr |= DISPPLANE_RGBX888; break; case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: dspcntr |= DISPPLANE_BGRX101010; break; case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ABGR2101010: dspcntr |= DISPPLANE_RGBX101010; break; default: DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format); return -EINVAL; } if (obj->tiling_mode != I915_TILING_NONE) dspcntr |= DISPPLANE_TILED; else dspcntr &= ~DISPPLANE_TILED; /* must disable */ dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; I915_WRITE(reg, dspcntr); linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8); intel_crtc->dspaddr_offset = intel_gen4_compute_offset_xtiled(&x, &y, fb->bits_per_pixel / 8, fb->pitches[0]); linear_offset -= intel_crtc->dspaddr_offset; DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n", obj->gtt_offset, linear_offset, x, y, fb->pitches[0]); I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); I915_MODIFY_DISPBASE(DSPSURF(plane), obj->gtt_offset + intel_crtc->dspaddr_offset); if (IS_HASWELL(dev)) { I915_WRITE(DSPOFFSET(plane), (y << 16) | x); } else { I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); I915_WRITE(DSPLINOFF(plane), linear_offset); } POSTING_READ(reg); return 0; } /* Assume fb object is pinned & idle & fenced and just update base pointers */ static int intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->display.disable_fbc) dev_priv->display.disable_fbc(dev); intel_increase_pllclock(crtc); return dev_priv->display.update_plane(crtc, fb, x, y); } static int intel_finish_fb(struct drm_framebuffer *old_fb) { struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj; struct drm_i915_private *dev_priv = obj->base.dev->dev_private; bool was_interruptible = dev_priv->mm.interruptible; int ret; wait_event(dev_priv->pending_flip_queue, atomic_read(&dev_priv->mm.wedged) || atomic_read(&obj->pending_flip) == 0); /* Big Hammer, we also need to ensure that any pending * MI_WAIT_FOR_EVENT inside a user batch buffer on the * current scanout is retired before unpinning the old * framebuffer. * * This should only fail upon a hung GPU, in which case we * can safely continue. */ dev_priv->mm.interruptible = false; ret = i915_gem_object_finish_gpu(obj); dev_priv->mm.interruptible = was_interruptible; return ret; } static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y) { struct drm_device *dev = crtc->dev; struct drm_i915_master_private *master_priv; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); if (!dev->primary->master) return; master_priv = dev->primary->master->driver_priv; if (!master_priv->sarea_priv) return; switch (intel_crtc->pipe) { case 0: master_priv->sarea_priv->pipeA_x = x; master_priv->sarea_priv->pipeA_y = y; break; case 1: master_priv->sarea_priv->pipeB_x = x; master_priv->sarea_priv->pipeB_y = y; break; default: break; } } static int intel_pipe_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *fb) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_framebuffer *old_fb; int ret; /* no fb bound */ if (!fb) { DRM_ERROR("No FB bound\n"); return 0; } if(intel_crtc->plane > dev_priv->num_pipe) { DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n", intel_crtc->plane, dev_priv->num_pipe); return -EINVAL; } mutex_lock(&dev->struct_mutex); ret = intel_pin_and_fence_fb_obj(dev, to_intel_framebuffer(fb)->obj, NULL); if (ret != 0) { mutex_unlock(&dev->struct_mutex); DRM_ERROR("pin & fence failed\n"); return ret; } if (crtc->fb) intel_finish_fb(crtc->fb); ret = dev_priv->display.update_plane(crtc, fb, x, y); if (ret) { intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj); mutex_unlock(&dev->struct_mutex); DRM_ERROR("failed to update base address\n"); return ret; } old_fb = crtc->fb; crtc->fb = fb; crtc->x = x; crtc->y = y; if (old_fb) { intel_wait_for_vblank(dev, intel_crtc->pipe); intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj); } intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); intel_crtc_update_sarea_pos(crtc, x, y); return 0; } static void intel_fdi_normal_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 reg, temp; /* enable normal train */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); if (IS_IVYBRIDGE(dev)) { temp &= ~FDI_LINK_TRAIN_NONE_IVB; temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; } I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_NORMAL_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_NONE; } I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); /* wait one idle pattern time */ POSTING_READ(reg); udelay(1000); /* IVB wants error correction enabled */ if (IS_IVYBRIDGE(dev)) I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE); } static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; u32 flags = I915_READ(SOUTH_CHICKEN1); flags |= FDI_PHASE_SYNC_OVR(pipe); I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */ flags |= FDI_PHASE_SYNC_EN(pipe); I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */ POSTING_READ(SOUTH_CHICKEN1); } static void ivb_modeset_global_resources(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *pipe_B_crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]); struct intel_crtc *pipe_C_crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]); uint32_t temp; /* When everything is off disable fdi C so that we could enable fdi B * with all lanes. XXX: This misses the case where a pipe is not using * any pch resources and so doesn't need any fdi lanes. */ if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) { WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); temp = I915_READ(SOUTH_CHICKEN1); temp &= ~FDI_BC_BIFURCATION_SELECT; DRM_DEBUG_KMS("disabling fdi C rx\n"); I915_WRITE(SOUTH_CHICKEN1, temp); } } /* The FDI link training functions for ILK/Ibexpeak. */ static void ironlake_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; u32 reg, temp, tries; /* FDI needs bits from pipe & plane first */ assert_pipe_enabled(dev_priv, pipe); assert_plane_enabled(dev_priv, plane); /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); I915_READ(reg); udelay(150); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~(7 << 19); temp |= (intel_crtc->fdi_lanes - 1) << 19; temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp | FDI_TX_ENABLE); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(150); /* Ironlake workaround, enable clock pointer after FDI enable*/ I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN); reg = FDI_RX_IIR(pipe); for (tries = 0; tries < 5; tries++) { temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if ((temp & FDI_RX_BIT_LOCK)) { DRM_DEBUG_KMS("FDI train 1 done.\n"); I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); break; } } if (tries == 5) DRM_ERROR("FDI train 1 fail!\n"); /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); reg = FDI_RX_IIR(pipe); for (tries = 0; tries < 5; tries++) { temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done.\n"); break; } } if (tries == 5) DRM_ERROR("FDI train 2 fail!\n"); DRM_DEBUG_KMS("FDI train done\n"); } static const int snb_b_fdi_train_param[] = { FDI_LINK_TRAIN_400MV_0DB_SNB_B, FDI_LINK_TRAIN_400MV_6DB_SNB_B, FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, FDI_LINK_TRAIN_800MV_0DB_SNB_B, }; /* The FDI link training functions for SNB/Cougarpoint. */ static void gen6_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 reg, temp, i, retry; /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~(7 << 19); temp |= (intel_crtc->fdi_lanes - 1) << 19; temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; /* SNB-B */ temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; I915_WRITE(reg, temp | FDI_TX_ENABLE); I915_WRITE(FDI_RX_MISC(pipe), FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; } I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(150); cpt_phase_pointer_enable(dev, pipe); for (i = 0; i < 4; i++) { reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(500); for (retry = 0; retry < 5; retry++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_BIT_LOCK) { I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); DRM_DEBUG_KMS("FDI train 1 done.\n"); break; } udelay(50); } if (retry < 5) break; } if (i == 4) DRM_ERROR("FDI train 1 fail!\n"); /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; if (IS_GEN6(dev)) { temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; /* SNB-B */ temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; } I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; } I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); for (i = 0; i < 4; i++) { reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(500); for (retry = 0; retry < 5; retry++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done.\n"); break; } udelay(50); } if (retry < 5) break; } if (i == 4) DRM_ERROR("FDI train 2 fail!\n"); DRM_DEBUG_KMS("FDI train done.\n"); } /* Manual link training for Ivy Bridge A0 parts */ static void ivb_manual_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 reg, temp, i; /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", I915_READ(FDI_RX_IIR(pipe))); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~(7 << 19); temp |= (intel_crtc->fdi_lanes - 1) << 19; temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; temp |= FDI_COMPOSITE_SYNC; I915_WRITE(reg, temp | FDI_TX_ENABLE); I915_WRITE(FDI_RX_MISC(pipe), FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_AUTO; temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; temp |= FDI_COMPOSITE_SYNC; I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(150); cpt_phase_pointer_enable(dev, pipe); for (i = 0; i < 4; i++) { reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(500); reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_BIT_LOCK || (I915_READ(reg) & FDI_RX_BIT_LOCK)) { I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i); break; } } if (i == 4) DRM_ERROR("FDI train 1 fail!\n"); /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE_IVB; temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); for (i = 0; i < 4; i++) { reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(500); reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i); break; } } if (i == 4) DRM_ERROR("FDI train 2 fail!\n"); DRM_DEBUG_KMS("FDI train done.\n"); } static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = intel_crtc->pipe; u32 reg, temp; /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~((0x7 << 19) | (0x7 << 16)); temp |= (intel_crtc->fdi_lanes - 1) << 19; temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11; I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); POSTING_READ(reg); udelay(200); /* Switch from Rawclk to PCDclk */ temp = I915_READ(reg); I915_WRITE(reg, temp | FDI_PCDCLK); POSTING_READ(reg); udelay(200); /* Enable CPU FDI TX PLL, always on for Ironlake */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); if ((temp & FDI_TX_PLL_ENABLE) == 0) { I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); POSTING_READ(reg); udelay(100); } } static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = intel_crtc->pipe; u32 reg, temp; /* Switch from PCDclk to Rawclk */ reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_PCDCLK); /* Disable CPU FDI TX PLL */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); POSTING_READ(reg); udelay(100); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); /* Wait for the clocks to turn off. */ POSTING_READ(reg); udelay(100); } static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; u32 flags = I915_READ(SOUTH_CHICKEN1); flags &= ~(FDI_PHASE_SYNC_EN(pipe)); I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */ flags &= ~(FDI_PHASE_SYNC_OVR(pipe)); I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */ POSTING_READ(SOUTH_CHICKEN1); } static void ironlake_fdi_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 reg, temp; /* disable CPU FDI tx and PCH FDI rx */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_TX_ENABLE); POSTING_READ(reg); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~(0x7 << 16); temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11; I915_WRITE(reg, temp & ~FDI_RX_ENABLE); POSTING_READ(reg); udelay(100); /* Ironlake workaround, disable clock pointer after downing FDI */ if (HAS_PCH_IBX(dev)) { I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); } else if (HAS_PCH_CPT(dev)) { cpt_phase_pointer_disable(dev, pipe); } /* still set train pattern 1 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; } /* BPC in FDI rx is consistent with that in PIPECONF */ temp &= ~(0x07 << 16); temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(100); } static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long flags; bool pending; if (atomic_read(&dev_priv->mm.wedged)) return false; spin_lock_irqsave(&dev->event_lock, flags); pending = to_intel_crtc(crtc)->unpin_work != NULL; spin_unlock_irqrestore(&dev->event_lock, flags); return pending; } static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (crtc->fb == NULL) return; wait_event(dev_priv->pending_flip_queue, !intel_crtc_has_pending_flip(crtc)); mutex_lock(&dev->struct_mutex); intel_finish_fb(crtc->fb); mutex_unlock(&dev->struct_mutex); } static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_encoder *intel_encoder; /* * If there's a non-PCH eDP on this crtc, it must be DP_A, and that * must be driven by its own crtc; no sharing is possible. */ for_each_encoder_on_crtc(dev, crtc, intel_encoder) { switch (intel_encoder->type) { case INTEL_OUTPUT_EDP: if (!intel_encoder_is_pch_edp(&intel_encoder->base)) return false; continue; } } return true; } static bool haswell_crtc_driving_pch(struct drm_crtc *crtc) { return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG); } /* Program iCLKIP clock to the desired frequency */ static void lpt_program_iclkip(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 divsel, phaseinc, auxdiv, phasedir = 0; u32 temp; mutex_lock(&dev_priv->dpio_lock); /* It is necessary to ungate the pixclk gate prior to programming * the divisors, and gate it back when it is done. */ I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); /* Disable SSCCTL */ intel_sbi_write(dev_priv, SBI_SSCCTL6, intel_sbi_read(dev_priv, SBI_SSCCTL6) | SBI_SSCCTL_DISABLE); /* 20MHz is a corner case which is out of range for the 7-bit divisor */ if (crtc->mode.clock == 20000) { auxdiv = 1; divsel = 0x41; phaseinc = 0x20; } else { /* The iCLK virtual clock root frequency is in MHz, * but the crtc->mode.clock in in KHz. To get the divisors, * it is necessary to divide one by another, so we * convert the virtual clock precision to KHz here for higher * precision. */ u32 iclk_virtual_root_freq = 172800 * 1000; u32 iclk_pi_range = 64; u32 desired_divisor, msb_divisor_value, pi_value; desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock); msb_divisor_value = desired_divisor / iclk_pi_range; pi_value = desired_divisor % iclk_pi_range; auxdiv = 0; divsel = msb_divisor_value - 2; phaseinc = pi_value; } /* This should not happen with any sane values */ WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & ~SBI_SSCDIVINTPHASE_INCVAL_MASK); DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", crtc->mode.clock, auxdiv, divsel, phasedir, phaseinc); /* Program SSCDIVINTPHASE6 */ temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6); temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); temp |= SBI_SSCDIVINTPHASE_PROPAGATE; intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp); /* Program SSCAUXDIV */ temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6); temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp); /* Enable modulator and associated divider */ temp = intel_sbi_read(dev_priv, SBI_SSCCTL6); temp &= ~SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL6, temp); /* Wait for initialization time */ udelay(24); I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); mutex_unlock(&dev_priv->dpio_lock); } /* * Enable PCH resources required for PCH ports: * - PCH PLLs * - FDI training & RX/TX * - update transcoder timings * - DP transcoding bits * - transcoder */ static void ironlake_pch_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 reg, temp; assert_transcoder_disabled(dev_priv, pipe); /* Write the TU size bits before fdi link training, so that error * detection works. */ I915_WRITE(FDI_RX_TUSIZE1(pipe), I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); /* For PCH output, training FDI link */ dev_priv->display.fdi_link_train(crtc); /* XXX: pch pll's can be enabled any time before we enable the PCH * transcoder, and we actually should do this to not upset any PCH * transcoder that already use the clock when we share it. * * Note that enable_pch_pll tries to do the right thing, but get_pch_pll * unconditionally resets the pll - we need that to have the right LVDS * enable sequence. */ ironlake_enable_pch_pll(intel_crtc); if (HAS_PCH_CPT(dev)) { u32 sel; temp = I915_READ(PCH_DPLL_SEL); switch (pipe) { default: case 0: temp |= TRANSA_DPLL_ENABLE; sel = TRANSA_DPLLB_SEL; break; case 1: temp |= TRANSB_DPLL_ENABLE; sel = TRANSB_DPLLB_SEL; break; case 2: temp |= TRANSC_DPLL_ENABLE; sel = TRANSC_DPLLB_SEL; break; } if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B) temp |= sel; else temp &= ~sel; I915_WRITE(PCH_DPLL_SEL, temp); } /* set transcoder timing, panel must allow it */ assert_panel_unlocked(dev_priv, pipe); I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe))); I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe))); I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe))); I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe))); I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe))); I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe))); I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe))); intel_fdi_normal_train(crtc); /* For PCH DP, enable TRANS_DP_CTL */ if (HAS_PCH_CPT(dev) && (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) { u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5; reg = TRANS_DP_CTL(pipe); temp = I915_READ(reg); temp &= ~(TRANS_DP_PORT_SEL_MASK | TRANS_DP_SYNC_MASK | TRANS_DP_BPC_MASK); temp |= (TRANS_DP_OUTPUT_ENABLE | TRANS_DP_ENH_FRAMING); temp |= bpc << 9; /* same format but at 11:9 */ if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC) temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC) temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; switch (intel_trans_dp_port_sel(crtc)) { case PCH_DP_B: temp |= TRANS_DP_PORT_SEL_B; break; case PCH_DP_C: temp |= TRANS_DP_PORT_SEL_C; break; case PCH_DP_D: temp |= TRANS_DP_PORT_SEL_D; break; default: BUG(); } I915_WRITE(reg, temp); } ironlake_enable_pch_transcoder(dev_priv, pipe); } static void lpt_pch_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; assert_transcoder_disabled(dev_priv, TRANSCODER_A); lpt_program_iclkip(crtc); /* Set transcoder timing. */ I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder))); I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder))); I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder))); I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder))); I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder))); I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder))); I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder))); lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); } static void intel_put_pch_pll(struct intel_crtc *intel_crtc) { struct intel_pch_pll *pll = intel_crtc->pch_pll; if (pll == NULL) return; if (pll->refcount == 0) { WARN(1, "bad PCH PLL refcount\n"); return; } --pll->refcount; intel_crtc->pch_pll = NULL; } static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp) { struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; struct intel_pch_pll *pll; int i; pll = intel_crtc->pch_pll; if (pll) { DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n", intel_crtc->base.base.id, pll->pll_reg); goto prepare; } if (HAS_PCH_IBX(dev_priv->dev)) { /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */ i = intel_crtc->pipe; pll = &dev_priv->pch_plls[i]; DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n", intel_crtc->base.base.id, pll->pll_reg); goto found; } for (i = 0; i < dev_priv->num_pch_pll; i++) { pll = &dev_priv->pch_plls[i]; /* Only want to check enabled timings first */ if (pll->refcount == 0) continue; if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) && fp == I915_READ(pll->fp0_reg)) { DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n", intel_crtc->base.base.id, pll->pll_reg, pll->refcount, pll->active); goto found; } } /* Ok no matching timings, maybe there's a free one? */ for (i = 0; i < dev_priv->num_pch_pll; i++) { pll = &dev_priv->pch_plls[i]; if (pll->refcount == 0) { DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n", intel_crtc->base.base.id, pll->pll_reg); goto found; } } return NULL; found: intel_crtc->pch_pll = pll; pll->refcount++; DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe); prepare: /* separate function? */ DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg); /* Wait for the clocks to stabilize before rewriting the regs */ I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE); POSTING_READ(pll->pll_reg); udelay(150); I915_WRITE(pll->fp0_reg, fp); I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE); pll->on = false; return pll; } void intel_cpt_verify_modeset(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; int dslreg = PIPEDSL(pipe); u32 temp; temp = I915_READ(dslreg); udelay(500); if (wait_for(I915_READ(dslreg) != temp, 5)) { if (wait_for(I915_READ(dslreg) != temp, 5)) DRM_ERROR("mode set failed: pipe %d stuck\n", pipe); } } static void ironlake_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; u32 temp; bool is_pch_port; WARN_ON(!crtc->enabled); if (intel_crtc->active) return; intel_crtc->active = true; intel_update_watermarks(dev); if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { temp = I915_READ(PCH_LVDS); if ((temp & LVDS_PORT_EN) == 0) I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN); } is_pch_port = ironlake_crtc_driving_pch(crtc); if (is_pch_port) { /* Note: FDI PLL enabling _must_ be done before we enable the * cpu pipes, hence this is separate from all the other fdi/pch * enabling. */ ironlake_fdi_pll_enable(intel_crtc); } else { assert_fdi_tx_disabled(dev_priv, pipe); assert_fdi_rx_disabled(dev_priv, pipe); } for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_enable) encoder->pre_enable(encoder); /* Enable panel fitting for LVDS */ if (dev_priv->pch_pf_size && (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) { /* Force use of hard-coded filter coefficients * as some pre-programmed values are broken, * e.g. x201. */ if (IS_IVYBRIDGE(dev)) I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); else I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos); I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size); } /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_crtc_load_lut(crtc); intel_enable_pipe(dev_priv, pipe, is_pch_port); intel_enable_plane(dev_priv, plane, pipe); if (is_pch_port) ironlake_pch_enable(crtc); mutex_lock(&dev->struct_mutex); intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); intel_crtc_update_cursor(crtc, true); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->enable(encoder); if (HAS_PCH_CPT(dev)) intel_cpt_verify_modeset(dev, intel_crtc->pipe); /* * There seems to be a race in PCH platform hw (at least on some * outputs) where an enabled pipe still completes any pageflip right * away (as if the pipe is off) instead of waiting for vblank. As soon * as the first vblank happend, everything works as expected. Hence just * wait for one vblank before returning to avoid strange things * happening. */ intel_wait_for_vblank(dev, intel_crtc->pipe); } static void haswell_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; bool is_pch_port; WARN_ON(!crtc->enabled); if (intel_crtc->active) return; intel_crtc->active = true; intel_update_watermarks(dev); is_pch_port = haswell_crtc_driving_pch(crtc); if (is_pch_port) dev_priv->display.fdi_link_train(crtc); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_enable) encoder->pre_enable(encoder); intel_ddi_enable_pipe_clock(intel_crtc); /* Enable panel fitting for eDP */ if (dev_priv->pch_pf_size && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { /* Force use of hard-coded filter coefficients * as some pre-programmed values are broken, * e.g. x201. */ I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos); I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size); } /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_crtc_load_lut(crtc); intel_ddi_set_pipe_settings(crtc); intel_ddi_enable_pipe_func(crtc); intel_enable_pipe(dev_priv, pipe, is_pch_port); intel_enable_plane(dev_priv, plane, pipe); if (is_pch_port) lpt_pch_enable(crtc); mutex_lock(&dev->struct_mutex); intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); intel_crtc_update_cursor(crtc, true); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->enable(encoder); /* * There seems to be a race in PCH platform hw (at least on some * outputs) where an enabled pipe still completes any pageflip right * away (as if the pipe is off) instead of waiting for vblank. As soon * as the first vblank happend, everything works as expected. Hence just * wait for one vblank before returning to avoid strange things * happening. */ intel_wait_for_vblank(dev, intel_crtc->pipe); } static void ironlake_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; u32 reg, temp; if (!intel_crtc->active) return; for_each_encoder_on_crtc(dev, crtc, encoder) encoder->disable(encoder); intel_crtc_wait_for_pending_flips(crtc); drm_vblank_off(dev, pipe); intel_crtc_update_cursor(crtc, false); intel_disable_plane(dev_priv, plane, pipe); if (dev_priv->cfb_plane == plane) intel_disable_fbc(dev); intel_disable_pipe(dev_priv, pipe); /* Disable PF */ I915_WRITE(PF_CTL(pipe), 0); I915_WRITE(PF_WIN_SZ(pipe), 0); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->post_disable) encoder->post_disable(encoder); ironlake_fdi_disable(crtc); ironlake_disable_pch_transcoder(dev_priv, pipe); if (HAS_PCH_CPT(dev)) { /* disable TRANS_DP_CTL */ reg = TRANS_DP_CTL(pipe); temp = I915_READ(reg); temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK); temp |= TRANS_DP_PORT_SEL_NONE; I915_WRITE(reg, temp); /* disable DPLL_SEL */ temp = I915_READ(PCH_DPLL_SEL); switch (pipe) { case 0: temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL); break; case 1: temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL); break; case 2: /* C shares PLL A or B */ temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL); break; default: BUG(); /* wtf */ } I915_WRITE(PCH_DPLL_SEL, temp); } /* disable PCH DPLL */ intel_disable_pch_pll(intel_crtc); ironlake_fdi_pll_disable(intel_crtc); intel_crtc->active = false; intel_update_watermarks(dev); mutex_lock(&dev->struct_mutex); intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); } static void haswell_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; bool is_pch_port; if (!intel_crtc->active) return; is_pch_port = haswell_crtc_driving_pch(crtc); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->disable(encoder); intel_crtc_wait_for_pending_flips(crtc); drm_vblank_off(dev, pipe); intel_crtc_update_cursor(crtc, false); intel_disable_plane(dev_priv, plane, pipe); if (dev_priv->cfb_plane == plane) intel_disable_fbc(dev); intel_disable_pipe(dev_priv, pipe); intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder); /* Disable PF */ I915_WRITE(PF_CTL(pipe), 0); I915_WRITE(PF_WIN_SZ(pipe), 0); intel_ddi_disable_pipe_clock(intel_crtc); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->post_disable) encoder->post_disable(encoder); if (is_pch_port) { lpt_disable_pch_transcoder(dev_priv); intel_ddi_fdi_disable(crtc); } intel_crtc->active = false; intel_update_watermarks(dev); mutex_lock(&dev->struct_mutex); intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); } static void ironlake_crtc_off(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); intel_put_pch_pll(intel_crtc); } static void haswell_crtc_off(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); /* Stop saying we're using TRANSCODER_EDP because some other CRTC might * start using it. */ intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe; intel_ddi_put_crtc_pll(crtc); } static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable) { if (!enable && intel_crtc->overlay) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; mutex_lock(&dev->struct_mutex); dev_priv->mm.interruptible = false; (void) intel_overlay_switch_off(intel_crtc->overlay); dev_priv->mm.interruptible = true; mutex_unlock(&dev->struct_mutex); } /* Let userspace switch the overlay on again. In most cases userspace * has to recompute where to put it anyway. */ } static void i9xx_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; WARN_ON(!crtc->enabled); if (intel_crtc->active) return; intel_crtc->active = true; intel_update_watermarks(dev); intel_enable_pll(dev_priv, pipe); intel_enable_pipe(dev_priv, pipe, false); intel_enable_plane(dev_priv, plane, pipe); intel_crtc_load_lut(crtc); intel_update_fbc(dev); /* Give the overlay scaler a chance to enable if it's on this pipe */ intel_crtc_dpms_overlay(intel_crtc, true); intel_crtc_update_cursor(crtc, true); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->enable(encoder); } static void i9xx_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; if (!intel_crtc->active) return; for_each_encoder_on_crtc(dev, crtc, encoder) encoder->disable(encoder); /* Give the overlay scaler a chance to disable if it's on this pipe */ intel_crtc_wait_for_pending_flips(crtc); drm_vblank_off(dev, pipe); intel_crtc_dpms_overlay(intel_crtc, false); intel_crtc_update_cursor(crtc, false); if (dev_priv->cfb_plane == plane) intel_disable_fbc(dev); intel_disable_plane(dev_priv, plane, pipe); intel_disable_pipe(dev_priv, pipe); intel_disable_pll(dev_priv, pipe); intel_crtc->active = false; intel_update_fbc(dev); intel_update_watermarks(dev); } static void i9xx_crtc_off(struct drm_crtc *crtc) { } static void intel_crtc_update_sarea(struct drm_crtc *crtc, bool enabled) { struct drm_device *dev = crtc->dev; struct drm_i915_master_private *master_priv; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; if (!dev->primary->master) return; master_priv = dev->primary->master->driver_priv; if (!master_priv->sarea_priv) return; switch (pipe) { case 0: master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0; master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0; break; case 1: master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0; master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0; break; default: DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe)); break; } } /** * Sets the power management mode of the pipe and plane. */ void intel_crtc_update_dpms(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder; bool enable = false; for_each_encoder_on_crtc(dev, crtc, intel_encoder) enable |= intel_encoder->connectors_active; if (enable) dev_priv->display.crtc_enable(crtc); else dev_priv->display.crtc_disable(crtc); intel_crtc_update_sarea(crtc, enable); } static void intel_crtc_noop(struct drm_crtc *crtc) { } static void intel_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_connector *connector; struct drm_i915_private *dev_priv = dev->dev_private; /* crtc should still be enabled when we disable it. */ WARN_ON(!crtc->enabled); dev_priv->display.crtc_disable(crtc); intel_crtc_update_sarea(crtc, false); dev_priv->display.off(crtc); assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane); assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe); if (crtc->fb) { mutex_lock(&dev->struct_mutex); intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj); mutex_unlock(&dev->struct_mutex); crtc->fb = NULL; } /* Update computed state. */ list_for_each_entry(connector, &dev->mode_config.connector_list, head) { if (!connector->encoder || !connector->encoder->crtc) continue; if (connector->encoder->crtc != crtc) continue; connector->dpms = DRM_MODE_DPMS_OFF; to_intel_encoder(connector->encoder)->connectors_active = false; } } void intel_modeset_disable(struct drm_device *dev) { struct drm_crtc *crtc; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { if (crtc->enabled) intel_crtc_disable(crtc); } } void intel_encoder_noop(struct drm_encoder *encoder) { } void intel_encoder_destroy(struct drm_encoder *encoder) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); drm_encoder_cleanup(encoder); kfree(intel_encoder); } /* Simple dpms helper for encodres with just one connector, no cloning and only * one kind of off state. It clamps all !ON modes to fully OFF and changes the * state of the entire output pipe. */ void intel_encoder_dpms(struct intel_encoder *encoder, int mode) { if (mode == DRM_MODE_DPMS_ON) { encoder->connectors_active = true; intel_crtc_update_dpms(encoder->base.crtc); } else { encoder->connectors_active = false; intel_crtc_update_dpms(encoder->base.crtc); } } /* Cross check the actual hw state with our own modeset state tracking (and it's * internal consistency). */ static void intel_connector_check_state(struct intel_connector *connector) { if (connector->get_hw_state(connector)) { struct intel_encoder *encoder = connector->encoder; struct drm_crtc *crtc; bool encoder_enabled; enum pipe pipe; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.base.id, drm_get_connector_name(&connector->base)); WARN(connector->base.dpms == DRM_MODE_DPMS_OFF, "wrong connector dpms state\n"); WARN(connector->base.encoder != &encoder->base, "active connector not linked to encoder\n"); WARN(!encoder->connectors_active, "encoder->connectors_active not set\n"); encoder_enabled = encoder->get_hw_state(encoder, &pipe); WARN(!encoder_enabled, "encoder not enabled\n"); if (WARN_ON(!encoder->base.crtc)) return; crtc = encoder->base.crtc; WARN(!crtc->enabled, "crtc not enabled\n"); WARN(!to_intel_crtc(crtc)->active, "crtc not active\n"); WARN(pipe != to_intel_crtc(crtc)->pipe, "encoder active on the wrong pipe\n"); } } /* Even simpler default implementation, if there's really no special case to * consider. */ void intel_connector_dpms(struct drm_connector *connector, int mode) { struct intel_encoder *encoder = intel_attached_encoder(connector); /* All the simple cases only support two dpms states. */ if (mode != DRM_MODE_DPMS_ON) mode = DRM_MODE_DPMS_OFF; if (mode == connector->dpms) return; connector->dpms = mode; /* Only need to change hw state when actually enabled */ if (encoder->base.crtc) intel_encoder_dpms(encoder, mode); else WARN_ON(encoder->connectors_active != false); intel_modeset_check_state(connector->dev); } /* Simple connector->get_hw_state implementation for encoders that support only * one connector and no cloning and hence the encoder state determines the state * of the connector. */ bool intel_connector_get_hw_state(struct intel_connector *connector) { enum pipe pipe = 0; struct intel_encoder *encoder = connector->encoder; return encoder->get_hw_state(encoder, &pipe); } static bool intel_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = crtc->dev; if (HAS_PCH_SPLIT(dev)) { /* FDI link clock is fixed at 2.7G */ if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4) return false; } /* All interlaced capable intel hw wants timings in frames. Note though * that intel_lvds_mode_fixup does some funny tricks with the crtc * timings, so we need to be careful not to clobber these.*/ if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET)) drm_mode_set_crtcinfo(adjusted_mode, 0); /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes * with a hsync front porch of 0. */ if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) && adjusted_mode->hsync_start == adjusted_mode->hdisplay) return false; return true; } static int valleyview_get_display_clock_speed(struct drm_device *dev) { return 400000; /* FIXME */ } static int i945_get_display_clock_speed(struct drm_device *dev) { return 400000; } static int i915_get_display_clock_speed(struct drm_device *dev) { return 333000; } static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) { return 200000; } static int i915gm_get_display_clock_speed(struct drm_device *dev) { u16 gcfgc = 0; pci_read_config_word(dev->pdev, GCFGC, &gcfgc); if (gcfgc & GC_LOW_FREQUENCY_ENABLE) return 133000; else { switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_333_MHZ: return 333000; default: case GC_DISPLAY_CLOCK_190_200_MHZ: return 190000; } } } static int i865_get_display_clock_speed(struct drm_device *dev) { return 266000; } static int i855_get_display_clock_speed(struct drm_device *dev) { u16 hpllcc = 0; /* Assume that the hardware is in the high speed state. This * should be the default. */ switch (hpllcc & GC_CLOCK_CONTROL_MASK) { case GC_CLOCK_133_200: case GC_CLOCK_100_200: return 200000; case GC_CLOCK_166_250: return 250000; case GC_CLOCK_100_133: return 133000; } /* Shouldn't happen */ return 0; } static int i830_get_display_clock_speed(struct drm_device *dev) { return 133000; } static void intel_reduce_ratio(uint32_t *num, uint32_t *den) { while (*num > 0xffffff || *den > 0xffffff) { *num >>= 1; *den >>= 1; } } void intel_link_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock, int link_clock, struct intel_link_m_n *m_n) { m_n->tu = 64; m_n->gmch_m = bits_per_pixel * pixel_clock; m_n->gmch_n = link_clock * nlanes * 8; intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); m_n->link_m = pixel_clock; m_n->link_n = link_clock; intel_reduce_ratio(&m_n->link_m, &m_n->link_n); } static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) { if (i915_panel_use_ssc >= 0) return i915_panel_use_ssc != 0; return dev_priv->lvds_use_ssc && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); } /** * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send * @crtc: CRTC structure * @mode: requested mode * * A pipe may be connected to one or more outputs. Based on the depth of the * attached framebuffer, choose a good color depth to use on the pipe. * * If possible, match the pipe depth to the fb depth. In some cases, this * isn't ideal, because the connected output supports a lesser or restricted * set of depths. Resolve that here: * LVDS typically supports only 6bpc, so clamp down in that case * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc * Displays may support a restricted set as well, check EDID and clamp as * appropriate. * DP may want to dither down to 6bpc to fit larger modes * * RETURNS: * Dithering requirement (i.e. false if display bpc and pipe bpc match, * true if they don't match). */ static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc, struct drm_framebuffer *fb, unsigned int *pipe_bpp, struct drm_display_mode *mode) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_connector *connector; struct intel_encoder *intel_encoder; unsigned int display_bpc = UINT_MAX, bpc; /* Walk the encoders & connectors on this crtc, get min bpc */ for_each_encoder_on_crtc(dev, crtc, intel_encoder) { if (intel_encoder->type == INTEL_OUTPUT_LVDS) { unsigned int lvds_bpc; if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP) lvds_bpc = 8; else lvds_bpc = 6; if (lvds_bpc < display_bpc) { DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc); display_bpc = lvds_bpc; } continue; } /* Not one of the known troublemakers, check the EDID */ list_for_each_entry(connector, &dev->mode_config.connector_list, head) { if (connector->encoder != &intel_encoder->base) continue; /* Don't use an invalid EDID bpc value */ if (connector->display_info.bpc && connector->display_info.bpc < display_bpc) { DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc); display_bpc = connector->display_info.bpc; } } /* * HDMI is either 12 or 8, so if the display lets 10bpc sneak * through, clamp it down. (Note: >12bpc will be caught below.) */ if (intel_encoder->type == INTEL_OUTPUT_HDMI) { if (display_bpc > 8 && display_bpc < 12) { DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n"); display_bpc = 12; } else { DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n"); display_bpc = 8; } } } if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) { DRM_DEBUG_KMS("Dithering DP to 6bpc\n"); display_bpc = 6; } /* * We could just drive the pipe at the highest bpc all the time and * enable dithering as needed, but that costs bandwidth. So choose * the minimum value that expresses the full color range of the fb but * also stays within the max display bpc discovered above. */ switch (fb->depth) { case 8: bpc = 8; /* since we go through a colormap */ break; case 15: case 16: bpc = 6; /* min is 18bpp */ break; case 24: bpc = 8; break; case 30: bpc = 10; break; case 48: bpc = 12; break; default: DRM_DEBUG("unsupported depth, assuming 24 bits\n"); bpc = min((unsigned int)8, display_bpc); break; } display_bpc = min(display_bpc, bpc); DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n", bpc, display_bpc); *pipe_bpp = display_bpc * 3; return display_bpc != bpc; } static int vlv_get_refclk(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; int refclk = 27000; /* for DP & HDMI */ return 100000; /* only one validated so far */ if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { refclk = 96000; } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { if (intel_panel_use_ssc(dev_priv)) refclk = 100000; else refclk = 96000; } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { refclk = 100000; } return refclk; } static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; int refclk; if (IS_VALLEYVIEW(dev)) { refclk = vlv_get_refclk(crtc); } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && intel_panel_use_ssc(dev_priv) && num_connectors < 2) { refclk = dev_priv->lvds_ssc_freq * 1000; DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n", refclk / 1000); } else if (!IS_GEN2(dev)) { refclk = 96000; } else { refclk = 48000; } return refclk; } static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode, intel_clock_t *clock) { /* SDVO TV has fixed PLL values depend on its clock range, this mirrors vbios setting. */ if (adjusted_mode->clock >= 100000 && adjusted_mode->clock < 140500) { clock->p1 = 2; clock->p2 = 10; clock->n = 3; clock->m1 = 16; clock->m2 = 8; } else if (adjusted_mode->clock >= 140500 && adjusted_mode->clock <= 200000) { clock->p1 = 1; clock->p2 = 10; clock->n = 6; clock->m1 = 12; clock->m2 = 8; } } static void i9xx_update_pll_dividers(struct drm_crtc *crtc, intel_clock_t *clock, intel_clock_t *reduced_clock) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 fp, fp2 = 0; if (IS_PINEVIEW(dev)) { fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2; if (reduced_clock) fp2 = (1 << reduced_clock->n) << 16 | reduced_clock->m1 << 8 | reduced_clock->m2; } else { fp = clock->n << 16 | clock->m1 << 8 | clock->m2; if (reduced_clock) fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 | reduced_clock->m2; } I915_WRITE(FP0(pipe), fp); intel_crtc->lowfreq_avail = false; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && reduced_clock && i915_powersave) { I915_WRITE(FP1(pipe), fp2); intel_crtc->lowfreq_avail = true; } else { I915_WRITE(FP1(pipe), fp); } } static void vlv_update_pll(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, intel_clock_t *clock, intel_clock_t *reduced_clock, int num_connectors) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 dpll, mdiv, pdiv; u32 bestn, bestm1, bestm2, bestp1, bestp2; bool is_sdvo; u32 temp; mutex_lock(&dev_priv->dpio_lock); is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI); dpll = DPLL_VGA_MODE_DIS; dpll |= DPLL_EXT_BUFFER_ENABLE_VLV; dpll |= DPLL_REFA_CLK_ENABLE_VLV; dpll |= DPLL_INTEGRATED_CLOCK_VLV; I915_WRITE(DPLL(pipe), dpll); POSTING_READ(DPLL(pipe)); bestn = clock->n; bestm1 = clock->m1; bestm2 = clock->m2; bestp1 = clock->p1; bestp2 = clock->p2; /* * In Valleyview PLL and program lane counter registers are exposed * through DPIO interface */ mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); mdiv |= ((bestn << DPIO_N_SHIFT)); mdiv |= (1 << DPIO_POST_DIV_SHIFT); mdiv |= (1 << DPIO_K_SHIFT); mdiv |= DPIO_ENABLE_CALIBRATION; intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv); intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000); pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) | (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) | (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT); intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv); intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b); dpll |= DPLL_VCO_ENABLE; I915_WRITE(DPLL(pipe), dpll); POSTING_READ(DPLL(pipe)); if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) DRM_ERROR("DPLL %d failed to lock\n", pipe); intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620); if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) intel_dp_set_m_n(crtc, mode, adjusted_mode); I915_WRITE(DPLL(pipe), dpll); /* Wait for the clocks to stabilize. */ POSTING_READ(DPLL(pipe)); udelay(150); temp = 0; if (is_sdvo) { temp = intel_mode_get_pixel_multiplier(adjusted_mode); if (temp > 1) temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; else temp = 0; } I915_WRITE(DPLL_MD(pipe), temp); POSTING_READ(DPLL_MD(pipe)); /* Now program lane control registers */ if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) { temp = 0x1000C4; if(pipe == 1) temp |= (1 << 21); intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp); } if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP)) { temp = 0x1000C4; if(pipe == 1) temp |= (1 << 21); intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp); } mutex_unlock(&dev_priv->dpio_lock); } static void i9xx_update_pll(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, intel_clock_t *clock, intel_clock_t *reduced_clock, int num_connectors) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; u32 dpll; bool is_sdvo; i9xx_update_pll_dividers(crtc, clock, reduced_clock); is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI); dpll = DPLL_VGA_MODE_DIS; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) dpll |= DPLLB_MODE_LVDS; else dpll |= DPLLB_MODE_DAC_SERIAL; if (is_sdvo) { int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); if (pixel_multiplier > 1) { if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; } dpll |= DPLL_DVO_HIGH_SPEED; } if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) dpll |= DPLL_DVO_HIGH_SPEED; /* compute bitmask from p1 value */ if (IS_PINEVIEW(dev)) dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; else { dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; if (IS_G4X(dev) && reduced_clock) dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; } switch (clock->p2) { case 5: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; break; case 7: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; break; case 10: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; break; case 14: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; break; } if (INTEL_INFO(dev)->gen >= 4) dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT)) dpll |= PLL_REF_INPUT_TVCLKINBC; else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT)) /* XXX: just matching BIOS for now */ /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ dpll |= 3; else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && intel_panel_use_ssc(dev_priv) && num_connectors < 2) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; dpll |= DPLL_VCO_ENABLE; I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE); POSTING_READ(DPLL(pipe)); udelay(150); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_pll_enable) encoder->pre_pll_enable(encoder); if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) intel_dp_set_m_n(crtc, mode, adjusted_mode); I915_WRITE(DPLL(pipe), dpll); /* Wait for the clocks to stabilize. */ POSTING_READ(DPLL(pipe)); udelay(150); if (INTEL_INFO(dev)->gen >= 4) { u32 temp = 0; if (is_sdvo) { temp = intel_mode_get_pixel_multiplier(adjusted_mode); if (temp > 1) temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; else temp = 0; } I915_WRITE(DPLL_MD(pipe), temp); } else { /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ I915_WRITE(DPLL(pipe), dpll); } } static void i8xx_update_pll(struct drm_crtc *crtc, struct drm_display_mode *adjusted_mode, intel_clock_t *clock, intel_clock_t *reduced_clock, int num_connectors) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; u32 dpll; i9xx_update_pll_dividers(crtc, clock, reduced_clock); dpll = DPLL_VGA_MODE_DIS; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; } else { if (clock->p1 == 2) dpll |= PLL_P1_DIVIDE_BY_TWO; else dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; if (clock->p2 == 4) dpll |= PLL_P2_DIVIDE_BY_4; } if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT)) /* XXX: just matching BIOS for now */ /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ dpll |= 3; else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && intel_panel_use_ssc(dev_priv) && num_connectors < 2) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; dpll |= DPLL_VCO_ENABLE; I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE); POSTING_READ(DPLL(pipe)); udelay(150); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_pll_enable) encoder->pre_pll_enable(encoder); I915_WRITE(DPLL(pipe), dpll); /* Wait for the clocks to stabilize. */ POSTING_READ(DPLL(pipe)); udelay(150); /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ I915_WRITE(DPLL(pipe), dpll); } static void intel_set_pipe_timings(struct intel_crtc *intel_crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = intel_crtc->pipe; enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; uint32_t vsyncshift; if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { /* the chip adds 2 halflines automatically */ adjusted_mode->crtc_vtotal -= 1; adjusted_mode->crtc_vblank_end -= 1; vsyncshift = adjusted_mode->crtc_hsync_start - adjusted_mode->crtc_htotal / 2; } else { vsyncshift = 0; } if (INTEL_INFO(dev)->gen > 3) I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); I915_WRITE(HTOTAL(cpu_transcoder), (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); I915_WRITE(HBLANK(cpu_transcoder), (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); I915_WRITE(HSYNC(cpu_transcoder), (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); I915_WRITE(VTOTAL(cpu_transcoder), (adjusted_mode->crtc_vdisplay - 1) | ((adjusted_mode->crtc_vtotal - 1) << 16)); I915_WRITE(VBLANK(cpu_transcoder), (adjusted_mode->crtc_vblank_start - 1) | ((adjusted_mode->crtc_vblank_end - 1) << 16)); I915_WRITE(VSYNC(cpu_transcoder), (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); /* Workaround: when the EDP input selection is B, the VTOTAL_B must be * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is * documented on the DDI_FUNC_CTL register description, EDP Input Select * bits. */ if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP && (pipe == PIPE_B || pipe == PIPE_C)) I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); /* pipesrc controls the size that is scaled from, which should * always be the user's requested size. */ I915_WRITE(PIPESRC(pipe), ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); } static int i9xx_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *fb) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; int refclk, num_connectors = 0; intel_clock_t clock, reduced_clock; u32 dspcntr, pipeconf; bool ok, has_reduced_clock = false, is_sdvo = false; bool is_lvds = false, is_tv = false, is_dp = false; struct intel_encoder *encoder; const intel_limit_t *limit; int ret; for_each_encoder_on_crtc(dev, crtc, encoder) { switch (encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_SDVO: case INTEL_OUTPUT_HDMI: is_sdvo = true; if (encoder->needs_tv_clock) is_tv = true; break; case INTEL_OUTPUT_TVOUT: is_tv = true; break; case INTEL_OUTPUT_DISPLAYPORT: is_dp = true; break; } num_connectors++; } refclk = i9xx_get_refclk(crtc, num_connectors); /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. */ limit = intel_limit(crtc, refclk); ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL, &clock); if (!ok) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } /* Ensure that the cursor is valid for the new mode before changing... */ intel_crtc_update_cursor(crtc, true); if (is_lvds && dev_priv->lvds_downclock_avail) { /* * Ensure we match the reduced clock's P to the target clock. * If the clocks don't match, we can't switch the display clock * by using the FP0/FP1. In such case we will disable the LVDS * downclock feature. */ has_reduced_clock = limit->find_pll(limit, crtc, dev_priv->lvds_downclock, refclk, &clock, &reduced_clock); } if (is_sdvo && is_tv) i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock); if (IS_GEN2(dev)) i8xx_update_pll(crtc, adjusted_mode, &clock, has_reduced_clock ? &reduced_clock : NULL, num_connectors); else if (IS_VALLEYVIEW(dev)) vlv_update_pll(crtc, mode, adjusted_mode, &clock, has_reduced_clock ? &reduced_clock : NULL, num_connectors); else i9xx_update_pll(crtc, mode, adjusted_mode, &clock, has_reduced_clock ? &reduced_clock : NULL, num_connectors); /* setup pipeconf */ pipeconf = I915_READ(PIPECONF(pipe)); /* Set up the display plane register */ dspcntr = DISPPLANE_GAMMA_ENABLE; if (pipe == 0) dspcntr &= ~DISPPLANE_SEL_PIPE_MASK; else dspcntr |= DISPPLANE_SEL_PIPE_B; if (pipe == 0 && INTEL_INFO(dev)->gen < 4) { /* Enable pixel doubling when the dot clock is > 90% of the (display) * core speed. * * XXX: No double-wide on 915GM pipe B. Is that the only reason for the * pipe == 0 check? */ if (mode->clock > dev_priv->display.get_display_clock_speed(dev) * 9 / 10) pipeconf |= PIPECONF_DOUBLE_WIDE; else pipeconf &= ~PIPECONF_DOUBLE_WIDE; } /* default to 8bpc */ pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN); if (is_dp) { if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) { pipeconf |= PIPECONF_BPP_6 | PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP; } } if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) { pipeconf |= PIPECONF_BPP_6 | PIPECONF_ENABLE | I965_PIPECONF_ACTIVE; } } DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); drm_mode_debug_printmodeline(mode); if (HAS_PIPE_CXSR(dev)) { if (intel_crtc->lowfreq_avail) { DRM_DEBUG_KMS("enabling CxSR downclocking\n"); pipeconf |= PIPECONF_CXSR_DOWNCLOCK; } else { DRM_DEBUG_KMS("disabling CxSR downclocking\n"); pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK; } } pipeconf &= ~PIPECONF_INTERLACE_MASK; if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; else pipeconf |= PIPECONF_PROGRESSIVE; intel_set_pipe_timings(intel_crtc, mode, adjusted_mode); /* pipesrc and dspsize control the size that is scaled from, * which should always be the user's requested size. */ I915_WRITE(DSPSIZE(plane), ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); I915_WRITE(DSPPOS(plane), 0); I915_WRITE(PIPECONF(pipe), pipeconf); POSTING_READ(PIPECONF(pipe)); intel_enable_pipe(dev_priv, pipe, false); intel_wait_for_vblank(dev, pipe); I915_WRITE(DSPCNTR(plane), dspcntr); POSTING_READ(DSPCNTR(plane)); ret = intel_pipe_set_base(crtc, x, y, fb); intel_update_watermarks(dev); return ret; } /* * Initialize reference clocks when the driver loads */ void ironlake_init_pch_refclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_mode_config *mode_config = &dev->mode_config; struct intel_encoder *encoder; u32 temp; bool has_lvds = false; bool has_cpu_edp = false; bool has_pch_edp = false; bool has_panel = false; bool has_ck505 = false; bool can_ssc = false; /* We need to take the global config into account */ list_for_each_entry(encoder, &mode_config->encoder_list, base.head) { switch (encoder->type) { case INTEL_OUTPUT_LVDS: has_panel = true; has_lvds = true; break; case INTEL_OUTPUT_EDP: has_panel = true; if (intel_encoder_is_pch_edp(&encoder->base)) has_pch_edp = true; else has_cpu_edp = true; break; } } if (HAS_PCH_IBX(dev)) { has_ck505 = dev_priv->display_clock_mode; can_ssc = has_ck505; } else { has_ck505 = false; can_ssc = true; } DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n", has_panel, has_lvds, has_pch_edp, has_cpu_edp, has_ck505); /* Ironlake: try to setup display ref clock before DPLL * enabling. This is only under driver's control after * PCH B stepping, previous chipset stepping should be * ignoring this setting. */ temp = I915_READ(PCH_DREF_CONTROL); /* Always enable nonspread source */ temp &= ~DREF_NONSPREAD_SOURCE_MASK; if (has_ck505) temp |= DREF_NONSPREAD_CK505_ENABLE; else temp |= DREF_NONSPREAD_SOURCE_ENABLE; if (has_panel) { temp &= ~DREF_SSC_SOURCE_MASK; temp |= DREF_SSC_SOURCE_ENABLE; /* SSC must be turned on before enabling the CPU output */ if (intel_panel_use_ssc(dev_priv) && can_ssc) { DRM_DEBUG_KMS("Using SSC on panel\n"); temp |= DREF_SSC1_ENABLE; } else temp &= ~DREF_SSC1_ENABLE; /* Get SSC going before enabling the outputs */ I915_WRITE(PCH_DREF_CONTROL, temp); POSTING_READ(PCH_DREF_CONTROL); udelay(200); temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK; /* Enable CPU source on CPU attached eDP */ if (has_cpu_edp) { if (intel_panel_use_ssc(dev_priv) && can_ssc) { DRM_DEBUG_KMS("Using SSC on eDP\n"); temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; } else temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; } else temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE; I915_WRITE(PCH_DREF_CONTROL, temp); POSTING_READ(PCH_DREF_CONTROL); udelay(200); } else { DRM_DEBUG_KMS("Disabling SSC entirely\n"); temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK; /* Turn off CPU output */ temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE; I915_WRITE(PCH_DREF_CONTROL, temp); POSTING_READ(PCH_DREF_CONTROL); udelay(200); /* Turn off the SSC source */ temp &= ~DREF_SSC_SOURCE_MASK; temp |= DREF_SSC_SOURCE_DISABLE; /* Turn off SSC1 */ temp &= ~ DREF_SSC1_ENABLE; I915_WRITE(PCH_DREF_CONTROL, temp); POSTING_READ(PCH_DREF_CONTROL); udelay(200); } } static int ironlake_get_refclk(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; struct intel_encoder *edp_encoder = NULL; int num_connectors = 0; bool is_lvds = false; for_each_encoder_on_crtc(dev, crtc, encoder) { switch (encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_EDP: edp_encoder = encoder; break; } num_connectors++; } if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) { DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n", dev_priv->lvds_ssc_freq); return dev_priv->lvds_ssc_freq * 1000; } return 120000; } static void ironlake_set_pipeconf(struct drm_crtc *crtc, struct drm_display_mode *adjusted_mode, bool dither) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; uint32_t val; val = I915_READ(PIPECONF(pipe)); val &= ~PIPE_BPC_MASK; switch (intel_crtc->bpp) { case 18: val |= PIPE_6BPC; break; case 24: val |= PIPE_8BPC; break; case 30: val |= PIPE_10BPC; break; case 36: val |= PIPE_12BPC; break; default: /* Case prevented by intel_choose_pipe_bpp_dither. */ BUG(); } val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK); if (dither) val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); val &= ~PIPECONF_INTERLACE_MASK; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACED_ILK; else val |= PIPECONF_PROGRESSIVE; I915_WRITE(PIPECONF(pipe), val); POSTING_READ(PIPECONF(pipe)); } static void haswell_set_pipeconf(struct drm_crtc *crtc, struct drm_display_mode *adjusted_mode, bool dither) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; uint32_t val; val = I915_READ(PIPECONF(cpu_transcoder)); val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK); if (dither) val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); val &= ~PIPECONF_INTERLACE_MASK_HSW; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACED_ILK; else val |= PIPECONF_PROGRESSIVE; I915_WRITE(PIPECONF(cpu_transcoder), val); POSTING_READ(PIPECONF(cpu_transcoder)); } static bool ironlake_compute_clocks(struct drm_crtc *crtc, struct drm_display_mode *adjusted_mode, intel_clock_t *clock, bool *has_reduced_clock, intel_clock_t *reduced_clock) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder; int refclk; const intel_limit_t *limit; bool ret, is_sdvo = false, is_tv = false, is_lvds = false; for_each_encoder_on_crtc(dev, crtc, intel_encoder) { switch (intel_encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_SDVO: case INTEL_OUTPUT_HDMI: is_sdvo = true; if (intel_encoder->needs_tv_clock) is_tv = true; break; case INTEL_OUTPUT_TVOUT: is_tv = true; break; } } refclk = ironlake_get_refclk(crtc); /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. */ limit = intel_limit(crtc, refclk); ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL, clock); if (!ret) return false; if (is_lvds && dev_priv->lvds_downclock_avail) { /* * Ensure we match the reduced clock's P to the target clock. * If the clocks don't match, we can't switch the display clock * by using the FP0/FP1. In such case we will disable the LVDS * downclock feature. */ *has_reduced_clock = limit->find_pll(limit, crtc, dev_priv->lvds_downclock, refclk, clock, reduced_clock); } if (is_sdvo && is_tv) i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock); return true; } static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t temp; temp = I915_READ(SOUTH_CHICKEN1); if (temp & FDI_BC_BIFURCATION_SELECT) return; WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); temp |= FDI_BC_BIFURCATION_SELECT; DRM_DEBUG_KMS("enabling fdi C rx\n"); I915_WRITE(SOUTH_CHICKEN1, temp); POSTING_READ(SOUTH_CHICKEN1); } static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *pipe_B_crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]); DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n", intel_crtc->pipe, intel_crtc->fdi_lanes); if (intel_crtc->fdi_lanes > 4) { DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n", intel_crtc->pipe, intel_crtc->fdi_lanes); /* Clamp lanes to avoid programming the hw with bogus values. */ intel_crtc->fdi_lanes = 4; return false; } if (dev_priv->num_pipe == 2) return true; switch (intel_crtc->pipe) { case PIPE_A: return true; case PIPE_B: if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled && intel_crtc->fdi_lanes > 2) { DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n", intel_crtc->pipe, intel_crtc->fdi_lanes); /* Clamp lanes to avoid programming the hw with bogus values. */ intel_crtc->fdi_lanes = 2; return false; } if (intel_crtc->fdi_lanes > 2) WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT); else cpt_enable_fdi_bc_bifurcation(dev); return true; case PIPE_C: if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) { if (intel_crtc->fdi_lanes > 2) { DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n", intel_crtc->pipe, intel_crtc->fdi_lanes); /* Clamp lanes to avoid programming the hw with bogus values. */ intel_crtc->fdi_lanes = 2; return false; } } else { DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); return false; } cpt_enable_fdi_bc_bifurcation(dev); return true; default: BUG(); } } static void ironlake_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; struct intel_encoder *intel_encoder, *edp_encoder = NULL; struct intel_link_m_n m_n = {0}; int target_clock, pixel_multiplier, lane, link_bw; bool is_dp = false, is_cpu_edp = false; for_each_encoder_on_crtc(dev, crtc, intel_encoder) { switch (intel_encoder->type) { case INTEL_OUTPUT_DISPLAYPORT: is_dp = true; break; case INTEL_OUTPUT_EDP: is_dp = true; if (!intel_encoder_is_pch_edp(&intel_encoder->base)) is_cpu_edp = true; edp_encoder = intel_encoder; break; } } /* FDI link */ pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); lane = 0; /* CPU eDP doesn't require FDI link, so just set DP M/N according to current link config */ if (is_cpu_edp) { intel_edp_link_config(edp_encoder, &lane, &link_bw); } else { /* FDI is a binary signal running at ~2.7GHz, encoding * each output octet as 10 bits. The actual frequency * is stored as a divider into a 100MHz clock, and the * mode pixel clock is stored in units of 1KHz. * Hence the bw of each lane in terms of the mode signal * is: */ link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10; } /* [e]DP over FDI requires target mode clock instead of link clock. */ if (edp_encoder) target_clock = intel_edp_target_clock(edp_encoder, mode); else if (is_dp) target_clock = mode->clock; else target_clock = adjusted_mode->clock; if (!lane) { /* * Account for spread spectrum to avoid * oversubscribing the link. Max center spread * is 2.5%; use 5% for safety's sake. */ u32 bps = target_clock * intel_crtc->bpp * 21 / 20; lane = bps / (link_bw * 8) + 1; } intel_crtc->fdi_lanes = lane; if (pixel_multiplier > 1) link_bw *= pixel_multiplier; intel_link_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, &m_n); I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m); I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n); I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m); I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n); } static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc, struct drm_display_mode *adjusted_mode, intel_clock_t *clock, u32 fp) { struct drm_crtc *crtc = &intel_crtc->base; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder; uint32_t dpll; int factor, pixel_multiplier, num_connectors = 0; bool is_lvds = false, is_sdvo = false, is_tv = false; bool is_dp = false, is_cpu_edp = false; for_each_encoder_on_crtc(dev, crtc, intel_encoder) { switch (intel_encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_SDVO: case INTEL_OUTPUT_HDMI: is_sdvo = true; if (intel_encoder->needs_tv_clock) is_tv = true; break; case INTEL_OUTPUT_TVOUT: is_tv = true; break; case INTEL_OUTPUT_DISPLAYPORT: is_dp = true; break; case INTEL_OUTPUT_EDP: is_dp = true; if (!intel_encoder_is_pch_edp(&intel_encoder->base)) is_cpu_edp = true; break; } num_connectors++; } /* Enable autotuning of the PLL clock (if permissible) */ factor = 21; if (is_lvds) { if ((intel_panel_use_ssc(dev_priv) && dev_priv->lvds_ssc_freq == 100) || intel_is_dual_link_lvds(dev)) factor = 25; } else if (is_sdvo && is_tv) factor = 20; if (clock->m < factor * clock->n) fp |= FP_CB_TUNE; dpll = 0; if (is_lvds) dpll |= DPLLB_MODE_LVDS; else dpll |= DPLLB_MODE_DAC_SERIAL; if (is_sdvo) { pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); if (pixel_multiplier > 1) { dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; } dpll |= DPLL_DVO_HIGH_SPEED; } if (is_dp && !is_cpu_edp) dpll |= DPLL_DVO_HIGH_SPEED; /* compute bitmask from p1 value */ dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; /* also FPA1 */ dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; switch (clock->p2) { case 5: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; break; case 7: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; break; case 10: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; break; case 14: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; break; } if (is_sdvo && is_tv) dpll |= PLL_REF_INPUT_TVCLKINBC; else if (is_tv) /* XXX: just matching BIOS for now */ /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ dpll |= 3; else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; return dpll; } static int ironlake_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *fb) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; int num_connectors = 0; intel_clock_t clock, reduced_clock; u32 dpll, fp = 0, fp2 = 0; bool ok, has_reduced_clock = false; bool is_lvds = false, is_dp = false, is_cpu_edp = false; struct intel_encoder *encoder; int ret; bool dither, fdi_config_ok; for_each_encoder_on_crtc(dev, crtc, encoder) { switch (encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_DISPLAYPORT: is_dp = true; break; case INTEL_OUTPUT_EDP: is_dp = true; if (!intel_encoder_is_pch_edp(&encoder->base)) is_cpu_edp = true; break; } num_connectors++; } WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)), "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev)); ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock, &has_reduced_clock, &reduced_clock); if (!ok) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } /* Ensure that the cursor is valid for the new mode before changing... */ intel_crtc_update_cursor(crtc, true); /* determine panel color depth */ dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, adjusted_mode); if (is_lvds && dev_priv->lvds_dither) dither = true; fp = clock.n << 16 | clock.m1 << 8 | clock.m2; if (has_reduced_clock) fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 | reduced_clock.m2; dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp); DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe); drm_mode_debug_printmodeline(mode); /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ if (!is_cpu_edp) { struct intel_pch_pll *pll; pll = intel_get_pch_pll(intel_crtc, dpll, fp); if (pll == NULL) { DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n", pipe); return -EINVAL; } } else intel_put_pch_pll(intel_crtc); if (is_dp && !is_cpu_edp) intel_dp_set_m_n(crtc, mode, adjusted_mode); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_pll_enable) encoder->pre_pll_enable(encoder); if (intel_crtc->pch_pll) { I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll); /* Wait for the clocks to stabilize. */ POSTING_READ(intel_crtc->pch_pll->pll_reg); udelay(150); /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll); } intel_crtc->lowfreq_avail = false; if (intel_crtc->pch_pll) { if (is_lvds && has_reduced_clock && i915_powersave) { I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2); intel_crtc->lowfreq_avail = true; } else { I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp); } } intel_set_pipe_timings(intel_crtc, mode, adjusted_mode); /* Note, this also computes intel_crtc->fdi_lanes which is used below in * ironlake_check_fdi_lanes. */ ironlake_set_m_n(crtc, mode, adjusted_mode); fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc); ironlake_set_pipeconf(crtc, adjusted_mode, dither); intel_wait_for_vblank(dev, pipe); /* Set up the display plane register */ I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE); POSTING_READ(DSPCNTR(plane)); ret = intel_pipe_set_base(crtc, x, y, fb); intel_update_watermarks(dev); intel_update_linetime_watermarks(dev, pipe, adjusted_mode); return fdi_config_ok ? ret : -EINVAL; } static int haswell_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *fb) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; int num_connectors = 0; bool is_dp = false, is_cpu_edp = false; struct intel_encoder *encoder; int ret; bool dither; for_each_encoder_on_crtc(dev, crtc, encoder) { switch (encoder->type) { case INTEL_OUTPUT_DISPLAYPORT: is_dp = true; break; case INTEL_OUTPUT_EDP: is_dp = true; if (!intel_encoder_is_pch_edp(&encoder->base)) is_cpu_edp = true; break; } num_connectors++; } if (is_cpu_edp) intel_crtc->cpu_transcoder = TRANSCODER_EDP; else intel_crtc->cpu_transcoder = pipe; /* We are not sure yet this won't happen. */ WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev)); WARN(num_connectors != 1, "%d connectors attached to pipe %c\n", num_connectors, pipe_name(pipe)); WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) & (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE)); WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE); if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock)) return -EINVAL; /* Ensure that the cursor is valid for the new mode before changing... */ intel_crtc_update_cursor(crtc, true); /* determine panel color depth */ dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, adjusted_mode); DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe); drm_mode_debug_printmodeline(mode); if (is_dp && !is_cpu_edp) intel_dp_set_m_n(crtc, mode, adjusted_mode); intel_crtc->lowfreq_avail = false; intel_set_pipe_timings(intel_crtc, mode, adjusted_mode); if (!is_dp || is_cpu_edp) ironlake_set_m_n(crtc, mode, adjusted_mode); haswell_set_pipeconf(crtc, adjusted_mode, dither); /* Set up the display plane register */ I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE); POSTING_READ(DSPCNTR(plane)); ret = intel_pipe_set_base(crtc, x, y, fb); intel_update_watermarks(dev); intel_update_linetime_watermarks(dev, pipe, adjusted_mode); return ret; } static int intel_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *fb) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_encoder_helper_funcs *encoder_funcs; struct intel_encoder *encoder; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int ret; drm_vblank_pre_modeset(dev, pipe); ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode, x, y, fb); drm_vblank_post_modeset(dev, pipe); if (ret != 0) return ret; for_each_encoder_on_crtc(dev, crtc, encoder) { DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n", encoder->base.base.id, drm_get_encoder_name(&encoder->base), mode->base.id, mode->name); encoder_funcs = encoder->base.helper_private; encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode); } return 0; } static bool intel_eld_uptodate(struct drm_connector *connector, int reg_eldv, uint32_t bits_eldv, int reg_elda, uint32_t bits_elda, int reg_edid) { struct drm_i915_private *dev_priv = connector->dev->dev_private; uint8_t *eld = connector->eld; uint32_t i; i = I915_READ(reg_eldv); i &= bits_eldv; if (!eld[0]) return !i; if (!i) return false; i = I915_READ(reg_elda); i &= ~bits_elda; I915_WRITE(reg_elda, i); for (i = 0; i < eld[2]; i++) if (I915_READ(reg_edid) != *((uint32_t *)eld + i)) return false; return true; } static void g4x_write_eld(struct drm_connector *connector, struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = connector->dev->dev_private; uint8_t *eld = connector->eld; uint32_t eldv; uint32_t len; uint32_t i; i = I915_READ(G4X_AUD_VID_DID); if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL) eldv = G4X_ELDV_DEVCL_DEVBLC; else eldv = G4X_ELDV_DEVCTG; if (intel_eld_uptodate(connector, G4X_AUD_CNTL_ST, eldv, G4X_AUD_CNTL_ST, G4X_ELD_ADDR, G4X_HDMIW_HDMIEDID)) return; i = I915_READ(G4X_AUD_CNTL_ST); i &= ~(eldv | G4X_ELD_ADDR); len = (i >> 9) & 0x1f; /* ELD buffer size */ I915_WRITE(G4X_AUD_CNTL_ST, i); if (!eld[0]) return; len = min_t(uint8_t, eld[2], len); DRM_DEBUG_DRIVER("ELD size %d\n", len); for (i = 0; i < len; i++) I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i)); i = I915_READ(G4X_AUD_CNTL_ST); i |= eldv; I915_WRITE(G4X_AUD_CNTL_ST, i); } static void haswell_write_eld(struct drm_connector *connector, struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = connector->dev->dev_private; uint8_t *eld = connector->eld; struct drm_device *dev = crtc->dev; uint32_t eldv; uint32_t i; int len; int pipe = to_intel_crtc(crtc)->pipe; int tmp; int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe); int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe); int aud_config = HSW_AUD_CFG(pipe); int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD; DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n"); /* Audio output enable */ DRM_DEBUG_DRIVER("HDMI audio: enable codec\n"); tmp = I915_READ(aud_cntrl_st2); tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4)); I915_WRITE(aud_cntrl_st2, tmp); /* Wait for 1 vertical blank */ intel_wait_for_vblank(dev, pipe); /* Set ELD valid state */ tmp = I915_READ(aud_cntrl_st2); DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp); tmp |= (AUDIO_ELD_VALID_A << (pipe * 4)); I915_WRITE(aud_cntrl_st2, tmp); tmp = I915_READ(aud_cntrl_st2); DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp); /* Enable HDMI mode */ tmp = I915_READ(aud_config); DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp); /* clear N_programing_enable and N_value_index */ tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE); I915_WRITE(aud_config, tmp); DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe)); eldv = AUDIO_ELD_VALID_A << (pipe * 4); if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n"); eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */ I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */ } else I915_WRITE(aud_config, 0); if (intel_eld_uptodate(connector, aud_cntrl_st2, eldv, aud_cntl_st, IBX_ELD_ADDRESS, hdmiw_hdmiedid)) return; i = I915_READ(aud_cntrl_st2); i &= ~eldv; I915_WRITE(aud_cntrl_st2, i); if (!eld[0]) return; i = I915_READ(aud_cntl_st); i &= ~IBX_ELD_ADDRESS; I915_WRITE(aud_cntl_st, i); i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */ DRM_DEBUG_DRIVER("port num:%d\n", i); len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */ DRM_DEBUG_DRIVER("ELD size %d\n", len); for (i = 0; i < len; i++) I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i)); i = I915_READ(aud_cntrl_st2); i |= eldv; I915_WRITE(aud_cntrl_st2, i); } static void ironlake_write_eld(struct drm_connector *connector, struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = connector->dev->dev_private; uint8_t *eld = connector->eld; uint32_t eldv; uint32_t i; int len; int hdmiw_hdmiedid; int aud_config; int aud_cntl_st; int aud_cntrl_st2; int pipe = to_intel_crtc(crtc)->pipe; if (HAS_PCH_IBX(connector->dev)) { hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe); aud_config = IBX_AUD_CFG(pipe); aud_cntl_st = IBX_AUD_CNTL_ST(pipe); aud_cntrl_st2 = IBX_AUD_CNTL_ST2; } else { hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe); aud_config = CPT_AUD_CFG(pipe); aud_cntl_st = CPT_AUD_CNTL_ST(pipe); aud_cntrl_st2 = CPT_AUD_CNTRL_ST2; } DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe)); i = I915_READ(aud_cntl_st); i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */ if (!i) { DRM_DEBUG_DRIVER("Audio directed to unknown port\n"); /* operate blindly on all ports */ eldv = IBX_ELD_VALIDB; eldv |= IBX_ELD_VALIDB << 4; eldv |= IBX_ELD_VALIDB << 8; } else { DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i); eldv = IBX_ELD_VALIDB << ((i - 1) * 4); } if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n"); eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */ I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */ } else I915_WRITE(aud_config, 0); if (intel_eld_uptodate(connector, aud_cntrl_st2, eldv, aud_cntl_st, IBX_ELD_ADDRESS, hdmiw_hdmiedid)) return; i = I915_READ(aud_cntrl_st2); i &= ~eldv; I915_WRITE(aud_cntrl_st2, i); if (!eld[0]) return; i = I915_READ(aud_cntl_st); i &= ~IBX_ELD_ADDRESS; I915_WRITE(aud_cntl_st, i); len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */ DRM_DEBUG_DRIVER("ELD size %d\n", len); for (i = 0; i < len; i++) I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i)); i = I915_READ(aud_cntrl_st2); i |= eldv; I915_WRITE(aud_cntrl_st2, i); } void intel_write_eld(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct drm_crtc *crtc = encoder->crtc; struct drm_connector *connector; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; connector = drm_select_eld(encoder, mode); if (!connector) return; DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, drm_get_connector_name(connector), connector->encoder->base.id, drm_get_encoder_name(connector->encoder)); connector->eld[6] = drm_av_sync_delay(connector, mode) / 2; if (dev_priv->display.write_eld) dev_priv->display.write_eld(connector, crtc); } /** Loads the palette/gamma unit for the CRTC with the prepared values */ void intel_crtc_load_lut(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int palreg = PALETTE(intel_crtc->pipe); int i; /* The clocks have to be on to load the palette. */ if (!crtc->enabled || !intel_crtc->active) return; /* use legacy palette for Ironlake */ if (HAS_PCH_SPLIT(dev)) palreg = LGC_PALETTE(intel_crtc->pipe); for (i = 0; i < 256; i++) { I915_WRITE(palreg + 4 * i, (intel_crtc->lut_r[i] << 16) | (intel_crtc->lut_g[i] << 8) | intel_crtc->lut_b[i]); } } static void i845_update_cursor(struct drm_crtc *crtc, u32 base) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); bool visible = base != 0; u32 cntl; if (intel_crtc->cursor_visible == visible) return; cntl = I915_READ(_CURACNTR); if (visible) { /* On these chipsets we can only modify the base whilst * the cursor is disabled. */ I915_WRITE(_CURABASE, base); cntl &= ~(CURSOR_FORMAT_MASK); /* XXX width must be 64, stride 256 => 0x00 << 28 */ cntl |= CURSOR_ENABLE | CURSOR_GAMMA_ENABLE | CURSOR_FORMAT_ARGB; } else cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE); I915_WRITE(_CURACNTR, cntl); intel_crtc->cursor_visible = visible; } static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; bool visible = base != 0; if (intel_crtc->cursor_visible != visible) { uint32_t cntl = I915_READ(CURCNTR(pipe)); if (base) { cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT); cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; cntl |= pipe << 28; /* Connect to correct pipe */ } else { cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE); cntl |= CURSOR_MODE_DISABLE; } I915_WRITE(CURCNTR(pipe), cntl); intel_crtc->cursor_visible = visible; } /* and commit changes on next vblank */ I915_WRITE(CURBASE(pipe), base); } static void ivb_update_cursor(struct drm_crtc *crtc, u32 base) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; bool visible = base != 0; if (intel_crtc->cursor_visible != visible) { uint32_t cntl = I915_READ(CURCNTR_IVB(pipe)); if (base) { cntl &= ~CURSOR_MODE; cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; } else { cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE); cntl |= CURSOR_MODE_DISABLE; } I915_WRITE(CURCNTR_IVB(pipe), cntl); intel_crtc->cursor_visible = visible; } /* and commit changes on next vblank */ I915_WRITE(CURBASE_IVB(pipe), base); } /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */ static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int x = intel_crtc->cursor_x; int y = intel_crtc->cursor_y; u32 base, pos; bool visible; pos = 0; if (on && crtc->enabled && crtc->fb) { base = intel_crtc->cursor_addr; if (x > (int) crtc->fb->width) base = 0; if (y > (int) crtc->fb->height) base = 0; } else base = 0; if (x < 0) { if (x + intel_crtc->cursor_width < 0) base = 0; pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; x = -x; } pos |= x << CURSOR_X_SHIFT; if (y < 0) { if (y + intel_crtc->cursor_height < 0) base = 0; pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; y = -y; } pos |= y << CURSOR_Y_SHIFT; visible = base != 0; if (!visible && !intel_crtc->cursor_visible) return; if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) { I915_WRITE(CURPOS_IVB(pipe), pos); ivb_update_cursor(crtc, base); } else { I915_WRITE(CURPOS(pipe), pos); if (IS_845G(dev) || IS_I865G(dev)) i845_update_cursor(crtc, base); else i9xx_update_cursor(crtc, base); } } static int intel_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file, uint32_t handle, uint32_t width, uint32_t height) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_i915_gem_object *obj; uint32_t addr; int ret; /* if we want to turn off the cursor ignore width and height */ if (!handle) { DRM_DEBUG_KMS("cursor off\n"); addr = 0; obj = NULL; mutex_lock(&dev->struct_mutex); goto finish; } /* Currently we only support 64x64 cursors */ if (width != 64 || height != 64) { DRM_ERROR("we currently only support 64x64 cursors\n"); return -EINVAL; } obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); if (&obj->base == NULL) return -ENOENT; if (obj->base.size < width * height * 4) { DRM_ERROR("buffer is to small\n"); ret = -ENOMEM; goto fail; } /* we only need to pin inside GTT if cursor is non-phy */ mutex_lock(&dev->struct_mutex); if (!dev_priv->info->cursor_needs_physical) { if (obj->tiling_mode) { DRM_ERROR("cursor cannot be tiled\n"); ret = -EINVAL; goto fail_locked; } ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL); if (ret) { DRM_ERROR("failed to move cursor bo into the GTT\n"); goto fail_locked; } ret = i915_gem_object_put_fence(obj); if (ret) { DRM_ERROR("failed to release fence for cursor"); goto fail_unpin; } addr = obj->gtt_offset; } else { int align = IS_I830(dev) ? 16 * 1024 : 256; ret = i915_gem_attach_phys_object(dev, obj, (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1, align); if (ret) { DRM_ERROR("failed to attach phys object\n"); goto fail_locked; } addr = obj->phys_obj->handle->busaddr; } if (IS_GEN2(dev)) I915_WRITE(CURSIZE, (height << 12) | width); finish: if (intel_crtc->cursor_bo) { if (dev_priv->info->cursor_needs_physical) { if (intel_crtc->cursor_bo != obj) i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo); } else i915_gem_object_unpin(intel_crtc->cursor_bo); drm_gem_object_unreference(&intel_crtc->cursor_bo->base); } mutex_unlock(&dev->struct_mutex); intel_crtc->cursor_addr = addr; intel_crtc->cursor_bo = obj; intel_crtc->cursor_width = width; intel_crtc->cursor_height = height; intel_crtc_update_cursor(crtc, true); return 0; fail_unpin: i915_gem_object_unpin(obj); fail_locked: mutex_unlock(&dev->struct_mutex); fail: drm_gem_object_unreference_unlocked(&obj->base); return ret; } static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); intel_crtc->cursor_x = x; intel_crtc->cursor_y = y; intel_crtc_update_cursor(crtc, true); return 0; } /** Sets the color ramps on behalf of RandR */ void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, u16 blue, int regno) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); intel_crtc->lut_r[regno] = red >> 8; intel_crtc->lut_g[regno] = green >> 8; intel_crtc->lut_b[regno] = blue >> 8; } void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, int regno) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); *red = intel_crtc->lut_r[regno] << 8; *green = intel_crtc->lut_g[regno] << 8; *blue = intel_crtc->lut_b[regno] << 8; } static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, uint32_t start, uint32_t size) { int end = (start + size > 256) ? 256 : start + size, i; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); for (i = start; i < end; i++) { intel_crtc->lut_r[i] = red[i] >> 8; intel_crtc->lut_g[i] = green[i] >> 8; intel_crtc->lut_b[i] = blue[i] >> 8; } intel_crtc_load_lut(crtc); } /** * Get a pipe with a simple mode set on it for doing load-based monitor * detection. * * It will be up to the load-detect code to adjust the pipe as appropriate for * its requirements. The pipe will be connected to no other encoders. * * Currently this code will only succeed if there is a pipe with no encoders * configured for it. In the future, it could choose to temporarily disable * some outputs to free up a pipe for its use. * * \return crtc, or NULL if no pipes are available. */ /* VESA 640x480x72Hz mode to set on the pipe */ static struct drm_display_mode load_detect_mode = { DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), }; static struct drm_framebuffer * intel_framebuffer_create(struct drm_device *dev, struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj) { struct intel_framebuffer *intel_fb; int ret; intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) { drm_gem_object_unreference_unlocked(&obj->base); return ERR_PTR(-ENOMEM); } ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj); if (ret) { drm_gem_object_unreference_unlocked(&obj->base); kfree(intel_fb); return ERR_PTR(ret); } return &intel_fb->base; } static u32 intel_framebuffer_pitch_for_width(int width, int bpp) { u32 pitch = DIV_ROUND_UP(width * bpp, 8); return ALIGN(pitch, 64); } static u32 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp) { u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp); return ALIGN(pitch * mode->vdisplay, PAGE_SIZE); } static struct drm_framebuffer * intel_framebuffer_create_for_mode(struct drm_device *dev, struct drm_display_mode *mode, int depth, int bpp) { struct drm_i915_gem_object *obj; struct drm_mode_fb_cmd2 mode_cmd = { 0 }; obj = i915_gem_alloc_object(dev, intel_framebuffer_size_for_mode(mode, bpp)); if (obj == NULL) return ERR_PTR(-ENOMEM); mode_cmd.width = mode->hdisplay; mode_cmd.height = mode->vdisplay; mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp); mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth); return intel_framebuffer_create(dev, &mode_cmd, obj); } static struct drm_framebuffer * mode_fits_in_fbdev(struct drm_device *dev, struct drm_display_mode *mode) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; struct drm_framebuffer *fb; if (dev_priv->fbdev == NULL) return NULL; obj = dev_priv->fbdev->ifb.obj; if (obj == NULL) return NULL; fb = &dev_priv->fbdev->ifb.base; if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay, fb->bits_per_pixel)) return NULL; if (obj->base.size < mode->vdisplay * fb->pitches[0]) return NULL; return fb; } bool intel_get_load_detect_pipe(struct drm_connector *connector, struct drm_display_mode *mode, struct intel_load_detect_pipe *old) { struct intel_crtc *intel_crtc; struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct drm_crtc *possible_crtc; struct drm_encoder *encoder = &intel_encoder->base; struct drm_crtc *crtc = NULL; struct drm_device *dev = encoder->dev; struct drm_framebuffer *fb; int i = -1; DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, drm_get_connector_name(connector), encoder->base.id, drm_get_encoder_name(encoder)); /* * Algorithm gets a little messy: * * - if the connector already has an assigned crtc, use it (but make * sure it's on first) * * - try to find the first unused crtc that can drive this connector, * and use that if we find one */ /* See if we already have a CRTC for this connector */ if (encoder->crtc) { crtc = encoder->crtc; old->dpms_mode = connector->dpms; old->load_detect_temp = false; /* Make sure the crtc and connector are running */ if (connector->dpms != DRM_MODE_DPMS_ON) connector->funcs->dpms(connector, DRM_MODE_DPMS_ON); return true; } /* Find an unused one (if possible) */ list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) { i++; if (!(encoder->possible_crtcs & (1 << i))) continue; if (!possible_crtc->enabled) { crtc = possible_crtc; break; } } /* * If we didn't find an unused CRTC, don't use any. */ if (!crtc) { DRM_DEBUG_KMS("no pipe available for load-detect\n"); return false; } intel_encoder->new_crtc = to_intel_crtc(crtc); to_intel_connector(connector)->new_encoder = intel_encoder; intel_crtc = to_intel_crtc(crtc); old->dpms_mode = connector->dpms; old->load_detect_temp = true; old->release_fb = NULL; if (!mode) mode = &load_detect_mode; /* We need a framebuffer large enough to accommodate all accesses * that the plane may generate whilst we perform load detection. * We can not rely on the fbcon either being present (we get called * during its initialisation to detect all boot displays, or it may * not even exist) or that it is large enough to satisfy the * requested mode. */ fb = mode_fits_in_fbdev(dev, mode); if (fb == NULL) { DRM_DEBUG_KMS("creating tmp fb for load-detection\n"); fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32); old->release_fb = fb; } else DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n"); if (IS_ERR(fb)) { DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n"); return false; } if (!intel_set_mode(crtc, mode, 0, 0, fb)) { DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); if (old->release_fb) old->release_fb->funcs->destroy(old->release_fb); return false; } /* let the connector get through one full cycle before testing */ intel_wait_for_vblank(dev, intel_crtc->pipe); return true; } void intel_release_load_detect_pipe(struct drm_connector *connector, struct intel_load_detect_pipe *old) { struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct drm_encoder *encoder = &intel_encoder->base; DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, drm_get_connector_name(connector), encoder->base.id, drm_get_encoder_name(encoder)); if (old->load_detect_temp) { struct drm_crtc *crtc = encoder->crtc; to_intel_connector(connector)->new_encoder = NULL; intel_encoder->new_crtc = NULL; intel_set_mode(crtc, NULL, 0, 0, NULL); if (old->release_fb) old->release_fb->funcs->destroy(old->release_fb); return; } /* Switch crtc and encoder back off if necessary */ if (old->dpms_mode != DRM_MODE_DPMS_ON) connector->funcs->dpms(connector, old->dpms_mode); } /* Returns the clock of the currently programmed mode of the given pipe. */ static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 dpll = I915_READ(DPLL(pipe)); u32 fp; intel_clock_t clock; if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = I915_READ(FP0(pipe)); else fp = I915_READ(FP1(pipe)); clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; if (IS_PINEVIEW(dev)) { clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; } else { clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; } if (!IS_GEN2(dev)) { if (IS_PINEVIEW(dev)) clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); else clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> DPLL_FPA01_P1_POST_DIV_SHIFT); switch (dpll & DPLL_MODE_MASK) { case DPLLB_MODE_DAC_SERIAL: clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 5 : 10; break; case DPLLB_MODE_LVDS: clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 7 : 14; break; default: DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " "mode\n", (int)(dpll & DPLL_MODE_MASK)); return 0; } /* XXX: Handle the 100Mhz refclk */ intel_clock(dev, 96000, &clock); } else { bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN); if (is_lvds) { clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> DPLL_FPA01_P1_POST_DIV_SHIFT); clock.p2 = 14; if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) { /* XXX: might not be 66MHz */ intel_clock(dev, 66000, &clock); } else intel_clock(dev, 48000, &clock); } else { if (dpll & PLL_P1_DIVIDE_BY_TWO) clock.p1 = 2; else { clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; } if (dpll & PLL_P2_DIVIDE_BY_4) clock.p2 = 4; else clock.p2 = 2; intel_clock(dev, 48000, &clock); } } /* XXX: It would be nice to validate the clocks, but we can't reuse * i830PllIsValid() because it relies on the xf86_config connector * configuration being accurate, which it isn't necessarily. */ return clock.dot; } /** Returns the currently programmed mode of the given pipe. */ struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; struct drm_display_mode *mode; int htot = I915_READ(HTOTAL(cpu_transcoder)); int hsync = I915_READ(HSYNC(cpu_transcoder)); int vtot = I915_READ(VTOTAL(cpu_transcoder)); int vsync = I915_READ(VSYNC(cpu_transcoder)); mode = kzalloc(sizeof(*mode), GFP_KERNEL); if (!mode) return NULL; mode->clock = intel_crtc_clock_get(dev, crtc); mode->hdisplay = (htot & 0xffff) + 1; mode->htotal = ((htot & 0xffff0000) >> 16) + 1; mode->hsync_start = (hsync & 0xffff) + 1; mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; mode->vdisplay = (vtot & 0xffff) + 1; mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; mode->vsync_start = (vsync & 0xffff) + 1; mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; drm_mode_set_name(mode); return mode; } static void intel_increase_pllclock(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int dpll_reg = DPLL(pipe); int dpll; if (HAS_PCH_SPLIT(dev)) return; if (!dev_priv->lvds_downclock_avail) return; dpll = I915_READ(dpll_reg); if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) { DRM_DEBUG_DRIVER("upclocking LVDS\n"); assert_panel_unlocked(dev_priv, pipe); dpll &= ~DISPLAY_RATE_SELECT_FPA1; I915_WRITE(dpll_reg, dpll); intel_wait_for_vblank(dev, pipe); dpll = I915_READ(dpll_reg); if (dpll & DISPLAY_RATE_SELECT_FPA1) DRM_DEBUG_DRIVER("failed to upclock LVDS!\n"); } } static void intel_decrease_pllclock(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); if (HAS_PCH_SPLIT(dev)) return; if (!dev_priv->lvds_downclock_avail) return; /* * Since this is called by a timer, we should never get here in * the manual case. */ if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) { int pipe = intel_crtc->pipe; int dpll_reg = DPLL(pipe); int dpll; DRM_DEBUG_DRIVER("downclocking LVDS\n"); assert_panel_unlocked(dev_priv, pipe); dpll = I915_READ(dpll_reg); dpll |= DISPLAY_RATE_SELECT_FPA1; I915_WRITE(dpll_reg, dpll); intel_wait_for_vblank(dev, pipe); dpll = I915_READ(dpll_reg); if (!(dpll & DISPLAY_RATE_SELECT_FPA1)) DRM_DEBUG_DRIVER("failed to downclock LVDS!\n"); } } void intel_mark_busy(struct drm_device *dev) { i915_update_gfx_val(dev->dev_private); } void intel_mark_idle(struct drm_device *dev) { } void intel_mark_fb_busy(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_crtc *crtc; if (!i915_powersave) return; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { if (!crtc->fb) continue; if (to_intel_framebuffer(crtc->fb)->obj == obj) intel_increase_pllclock(crtc); } } void intel_mark_fb_idle(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_crtc *crtc; if (!i915_powersave) return; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { if (!crtc->fb) continue; if (to_intel_framebuffer(crtc->fb)->obj == obj) intel_decrease_pllclock(crtc); } } static void intel_crtc_destroy(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_device *dev = crtc->dev; struct intel_unpin_work *work; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); work = intel_crtc->unpin_work; intel_crtc->unpin_work = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); if (work) { cancel_work_sync(&work->work); kfree(work); } drm_crtc_cleanup(crtc); kfree(intel_crtc); } static void intel_unpin_work_fn(struct work_struct *__work) { struct intel_unpin_work *work = container_of(__work, struct intel_unpin_work, work); struct drm_device *dev = work->crtc->dev; mutex_lock(&dev->struct_mutex); intel_unpin_fb_obj(work->old_fb_obj); drm_gem_object_unreference(&work->pending_flip_obj->base); drm_gem_object_unreference(&work->old_fb_obj->base); intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0); atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count); kfree(work); } static void do_intel_finish_page_flip(struct drm_device *dev, struct drm_crtc *crtc) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_unpin_work *work; struct drm_i915_gem_object *obj; unsigned long flags; /* Ignore early vblank irqs */ if (intel_crtc == NULL) return; spin_lock_irqsave(&dev->event_lock, flags); work = intel_crtc->unpin_work; if (work == NULL || !work->pending) { spin_unlock_irqrestore(&dev->event_lock, flags); return; } intel_crtc->unpin_work = NULL; if (work->event) drm_send_vblank_event(dev, intel_crtc->pipe, work->event); drm_vblank_put(dev, intel_crtc->pipe); spin_unlock_irqrestore(&dev->event_lock, flags); obj = work->old_fb_obj; wake_up(&dev_priv->pending_flip_queue); queue_work(dev_priv->wq, &work->work); trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj); } void intel_finish_page_flip(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; do_intel_finish_page_flip(dev, crtc); } void intel_finish_page_flip_plane(struct drm_device *dev, int plane) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane]; do_intel_finish_page_flip(dev, crtc); } void intel_prepare_page_flip(struct drm_device *dev, int plane) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]); unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (intel_crtc->unpin_work) { if ((++intel_crtc->unpin_work->pending) > 1) DRM_ERROR("Prepared flip multiple times\n"); } else { DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n"); } spin_unlock_irqrestore(&dev->event_lock, flags); } static int intel_gen2_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); u32 flip_mask; struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; int ret; ret = intel_pin_and_fence_fb_obj(dev, obj, ring); if (ret) goto err; ret = intel_ring_begin(ring, 6); if (ret) goto err_unpin; /* Can't queue multiple flips, so wait for the previous * one to finish before executing the next. */ if (intel_crtc->plane) flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; else flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(ring, fb->pitches[0]); intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); intel_ring_emit(ring, 0); /* aux display base address, unused */ intel_ring_advance(ring); return 0; err_unpin: intel_unpin_fb_obj(obj); err: return ret; } static int intel_gen3_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); u32 flip_mask; struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; int ret; ret = intel_pin_and_fence_fb_obj(dev, obj, ring); if (ret) goto err; ret = intel_ring_begin(ring, 6); if (ret) goto err_unpin; if (intel_crtc->plane) flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; else flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(ring, fb->pitches[0]); intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; err_unpin: intel_unpin_fb_obj(obj); err: return ret; } static int intel_gen4_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); uint32_t pf, pipesrc; struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; int ret; ret = intel_pin_and_fence_fb_obj(dev, obj, ring); if (ret) goto err; ret = intel_ring_begin(ring, 4); if (ret) goto err_unpin; /* i965+ uses the linear or tiled offsets from the * Display Registers (which do not change across a page-flip) * so we need only reprogram the base address. */ intel_ring_emit(ring, MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(ring, fb->pitches[0]); intel_ring_emit(ring, (obj->gtt_offset + intel_crtc->dspaddr_offset) | obj->tiling_mode); /* XXX Enabling the panel-fitter across page-flip is so far * untested on non-native modes, so ignore it for now. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; */ pf = 0; pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; intel_ring_emit(ring, pf | pipesrc); intel_ring_advance(ring); return 0; err_unpin: intel_unpin_fb_obj(obj); err: return ret; } static int intel_gen6_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; uint32_t pf, pipesrc; int ret; ret = intel_pin_and_fence_fb_obj(dev, obj, ring); if (ret) goto err; ret = intel_ring_begin(ring, 4); if (ret) goto err_unpin; intel_ring_emit(ring, MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode); intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); /* Contrary to the suggestions in the documentation, * "Enable Panel Fitter" does not seem to be required when page * flipping with a non-native mode, and worse causes a normal * modeset to fail. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE; */ pf = 0; pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; intel_ring_emit(ring, pf | pipesrc); intel_ring_advance(ring); return 0; err_unpin: intel_unpin_fb_obj(obj); err: return ret; } /* * On gen7 we currently use the blit ring because (in early silicon at least) * the render ring doesn't give us interrpts for page flip completion, which * means clients will hang after the first flip is queued. Fortunately the * blit ring generates interrupts properly, so use it instead. */ static int intel_gen7_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_ring_buffer *ring = &dev_priv->ring[BCS]; uint32_t plane_bit = 0; int ret; ret = intel_pin_and_fence_fb_obj(dev, obj, ring); if (ret) goto err; switch(intel_crtc->plane) { case PLANE_A: plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A; break; case PLANE_B: plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B; break; case PLANE_C: plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C; break; default: WARN_ONCE(1, "unknown plane in flip command\n"); ret = -ENODEV; goto err_unpin; } ret = intel_ring_begin(ring, 4); if (ret) goto err_unpin; intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit); intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode)); intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); intel_ring_emit(ring, (MI_NOOP)); intel_ring_advance(ring); return 0; err_unpin: intel_unpin_fb_obj(obj); err: return ret; } static int intel_default_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj) { return -ENODEV; } static int intel_crtc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_framebuffer *intel_fb; struct drm_i915_gem_object *obj; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_unpin_work *work; unsigned long flags; int ret; /* Can't change pixel format via MI display flips. */ if (fb->pixel_format != crtc->fb->pixel_format) return -EINVAL; /* * TILEOFF/LINOFF registers can't be changed via MI display flips. * Note that pitch changes could also affect these register. */ if (INTEL_INFO(dev)->gen > 3 && (fb->offsets[0] != crtc->fb->offsets[0] || fb->pitches[0] != crtc->fb->pitches[0])) return -EINVAL; work = kzalloc(sizeof *work, GFP_KERNEL); if (work == NULL) return -ENOMEM; work->event = event; work->crtc = crtc; intel_fb = to_intel_framebuffer(crtc->fb); work->old_fb_obj = intel_fb->obj; INIT_WORK(&work->work, intel_unpin_work_fn); ret = drm_vblank_get(dev, intel_crtc->pipe); if (ret) goto free_work; /* We borrow the event spin lock for protecting unpin_work */ spin_lock_irqsave(&dev->event_lock, flags); if (intel_crtc->unpin_work) { spin_unlock_irqrestore(&dev->event_lock, flags); kfree(work); drm_vblank_put(dev, intel_crtc->pipe); DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); return -EBUSY; } intel_crtc->unpin_work = work; spin_unlock_irqrestore(&dev->event_lock, flags); intel_fb = to_intel_framebuffer(fb); obj = intel_fb->obj; if (atomic_read(&intel_crtc->unpin_work_count) >= 2) flush_workqueue(dev_priv->wq); ret = i915_mutex_lock_interruptible(dev); if (ret) goto cleanup; /* Reference the objects for the scheduled work. */ drm_gem_object_reference(&work->old_fb_obj->base); drm_gem_object_reference(&obj->base); crtc->fb = fb; work->pending_flip_obj = obj; work->enable_stall_check = true; atomic_inc(&intel_crtc->unpin_work_count); ret = dev_priv->display.queue_flip(dev, crtc, fb, obj); if (ret) goto cleanup_pending; intel_disable_fbc(dev); intel_mark_fb_busy(obj); mutex_unlock(&dev->struct_mutex); trace_i915_flip_request(intel_crtc->plane, obj); return 0; cleanup_pending: atomic_dec(&intel_crtc->unpin_work_count); drm_gem_object_unreference(&work->old_fb_obj->base); drm_gem_object_unreference(&obj->base); mutex_unlock(&dev->struct_mutex); cleanup: spin_lock_irqsave(&dev->event_lock, flags); intel_crtc->unpin_work = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); drm_vblank_put(dev, intel_crtc->pipe); free_work: kfree(work); return ret; } static struct drm_crtc_helper_funcs intel_helper_funcs = { .mode_set_base_atomic = intel_pipe_set_base_atomic, .load_lut = intel_crtc_load_lut, .disable = intel_crtc_noop, }; bool intel_encoder_check_is_cloned(struct intel_encoder *encoder) { struct intel_encoder *other_encoder; struct drm_crtc *crtc = &encoder->new_crtc->base; if (WARN_ON(!crtc)) return false; list_for_each_entry(other_encoder, &crtc->dev->mode_config.encoder_list, base.head) { if (&other_encoder->new_crtc->base != crtc || encoder == other_encoder) continue; else return true; } return false; } static bool intel_encoder_crtc_ok(struct drm_encoder *encoder, struct drm_crtc *crtc) { struct drm_device *dev; struct drm_crtc *tmp; int crtc_mask = 1; WARN(!crtc, "checking null crtc?\n"); dev = crtc->dev; list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) { if (tmp == crtc) break; crtc_mask <<= 1; } if (encoder->possible_crtcs & crtc_mask) return true; return false; } /** * intel_modeset_update_staged_output_state * * Updates the staged output configuration state, e.g. after we've read out the * current hw state. */ static void intel_modeset_update_staged_output_state(struct drm_device *dev) { struct intel_encoder *encoder; struct intel_connector *connector; list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { connector->new_encoder = to_intel_encoder(connector->base.encoder); } list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { encoder->new_crtc = to_intel_crtc(encoder->base.crtc); } } /** * intel_modeset_commit_output_state * * This function copies the stage display pipe configuration to the real one. */ static void intel_modeset_commit_output_state(struct drm_device *dev) { struct intel_encoder *encoder; struct intel_connector *connector; list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { connector->base.encoder = &connector->new_encoder->base; } list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { encoder->base.crtc = &encoder->new_crtc->base; } } static struct drm_display_mode * intel_modeset_adjusted_mode(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct drm_device *dev = crtc->dev; struct drm_display_mode *adjusted_mode; struct drm_encoder_helper_funcs *encoder_funcs; struct intel_encoder *encoder; adjusted_mode = drm_mode_duplicate(dev, mode); if (!adjusted_mode) return ERR_PTR(-ENOMEM); /* Pass our mode to the connectors and the CRTC to give them a chance to * adjust it according to limitations or connector properties, and also * a chance to reject the mode entirely. */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { if (&encoder->new_crtc->base != crtc) continue; encoder_funcs = encoder->base.helper_private; if (!(encoder_funcs->mode_fixup(&encoder->base, mode, adjusted_mode))) { DRM_DEBUG_KMS("Encoder fixup failed\n"); goto fail; } } if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) { DRM_DEBUG_KMS("CRTC fixup failed\n"); goto fail; } DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id); return adjusted_mode; fail: drm_mode_destroy(dev, adjusted_mode); return ERR_PTR(-EINVAL); } /* Computes which crtcs are affected and sets the relevant bits in the mask. For * simplicity we use the crtc's pipe number (because it's easier to obtain). */ static void intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes, unsigned *prepare_pipes, unsigned *disable_pipes) { struct intel_crtc *intel_crtc; struct drm_device *dev = crtc->dev; struct intel_encoder *encoder; struct intel_connector *connector; struct drm_crtc *tmp_crtc; *disable_pipes = *modeset_pipes = *prepare_pipes = 0; /* Check which crtcs have changed outputs connected to them, these need * to be part of the prepare_pipes mask. We don't (yet) support global * modeset across multiple crtcs, so modeset_pipes will only have one * bit set at most. */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->base.encoder == &connector->new_encoder->base) continue; if (connector->base.encoder) { tmp_crtc = connector->base.encoder->crtc; *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe; } if (connector->new_encoder) *prepare_pipes |= 1 << connector->new_encoder->new_crtc->pipe; } list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { if (encoder->base.crtc == &encoder->new_crtc->base) continue; if (encoder->base.crtc) { tmp_crtc = encoder->base.crtc; *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe; } if (encoder->new_crtc) *prepare_pipes |= 1 << encoder->new_crtc->pipe; } /* Check for any pipes that will be fully disabled ... */ list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) { bool used = false; /* Don't try to disable disabled crtcs. */ if (!intel_crtc->base.enabled) continue; list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { if (encoder->new_crtc == intel_crtc) used = true; } if (!used) *disable_pipes |= 1 << intel_crtc->pipe; } /* set_mode is also used to update properties on life display pipes. */ intel_crtc = to_intel_crtc(crtc); if (crtc->enabled) *prepare_pipes |= 1 << intel_crtc->pipe; /* We only support modeset on one single crtc, hence we need to do that * only for the passed in crtc iff we change anything else than just * disable crtcs. * * This is actually not true, to be fully compatible with the old crtc * helper we automatically disable _any_ output (i.e. doesn't need to be * connected to the crtc we're modesetting on) if it's disconnected. * Which is a rather nutty api (since changed the output configuration * without userspace's explicit request can lead to confusion), but * alas. Hence we currently need to modeset on all pipes we prepare. */ if (*prepare_pipes) *modeset_pipes = *prepare_pipes; /* ... and mask these out. */ *modeset_pipes &= ~(*disable_pipes); *prepare_pipes &= ~(*disable_pipes); } static bool intel_crtc_in_use(struct drm_crtc *crtc) { struct drm_encoder *encoder; struct drm_device *dev = crtc->dev; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) if (encoder->crtc == crtc) return true; return false; } static void intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes) { struct intel_encoder *intel_encoder; struct intel_crtc *intel_crtc; struct drm_connector *connector; list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list, base.head) { if (!intel_encoder->base.crtc) continue; intel_crtc = to_intel_crtc(intel_encoder->base.crtc); if (prepare_pipes & (1 << intel_crtc->pipe)) intel_encoder->connectors_active = false; } intel_modeset_commit_output_state(dev); /* Update computed state. */ list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) { intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base); } list_for_each_entry(connector, &dev->mode_config.connector_list, head) { if (!connector->encoder || !connector->encoder->crtc) continue; intel_crtc = to_intel_crtc(connector->encoder->crtc); if (prepare_pipes & (1 << intel_crtc->pipe)) { struct drm_property *dpms_property = dev->mode_config.dpms_property; connector->dpms = DRM_MODE_DPMS_ON; drm_object_property_set_value(&connector->base, dpms_property, DRM_MODE_DPMS_ON); intel_encoder = to_intel_encoder(connector->encoder); intel_encoder->connectors_active = true; } } } #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \ list_for_each_entry((intel_crtc), \ &(dev)->mode_config.crtc_list, \ base.head) \ if (mask & (1 <<(intel_crtc)->pipe)) \ void intel_modeset_check_state(struct drm_device *dev) { struct intel_crtc *crtc; struct intel_encoder *encoder; struct intel_connector *connector; list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { /* This also checks the encoder/connector hw state with the * ->get_hw_state callbacks. */ intel_connector_check_state(connector); WARN(&connector->new_encoder->base != connector->base.encoder, "connector's staged encoder doesn't match current encoder\n"); } list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { bool enabled = false; bool active = false; enum pipe pipe, tracked_pipe; DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", encoder->base.base.id, drm_get_encoder_name(&encoder->base)); WARN(&encoder->new_crtc->base != encoder->base.crtc, "encoder's stage crtc doesn't match current crtc\n"); WARN(encoder->connectors_active && !encoder->base.crtc, "encoder's active_connectors set, but no crtc\n"); list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->base.encoder != &encoder->base) continue; enabled = true; if (connector->base.dpms != DRM_MODE_DPMS_OFF) active = true; } WARN(!!encoder->base.crtc != enabled, "encoder's enabled state mismatch " "(expected %i, found %i)\n", !!encoder->base.crtc, enabled); WARN(active && !encoder->base.crtc, "active encoder with no crtc\n"); WARN(encoder->connectors_active != active, "encoder's computed active state doesn't match tracked active state " "(expected %i, found %i)\n", active, encoder->connectors_active); active = encoder->get_hw_state(encoder, &pipe); WARN(active != encoder->connectors_active, "encoder's hw state doesn't match sw tracking " "(expected %i, found %i)\n", encoder->connectors_active, active); if (!encoder->base.crtc) continue; tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe; WARN(active && pipe != tracked_pipe, "active encoder's pipe doesn't match" "(expected %i, found %i)\n", tracked_pipe, pipe); } list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) { bool enabled = false; bool active = false; DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.base.id); WARN(crtc->active && !crtc->base.enabled, "active crtc, but not enabled in sw tracking\n"); list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { if (encoder->base.crtc != &crtc->base) continue; enabled = true; if (encoder->connectors_active) active = true; } WARN(active != crtc->active, "crtc's computed active state doesn't match tracked active state " "(expected %i, found %i)\n", active, crtc->active); WARN(enabled != crtc->base.enabled, "crtc's computed enabled state doesn't match tracked enabled state " "(expected %i, found %i)\n", enabled, crtc->base.enabled); assert_pipe(dev->dev_private, crtc->pipe, crtc->active); } } bool intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode, int x, int y, struct drm_framebuffer *fb) { struct drm_device *dev = crtc->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_display_mode *adjusted_mode, *saved_mode, *saved_hwmode; struct intel_crtc *intel_crtc; unsigned disable_pipes, prepare_pipes, modeset_pipes; bool ret = true; saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL); if (!saved_mode) { DRM_ERROR("i915: Could not allocate saved display mode.\n"); return false; } saved_hwmode = saved_mode + 1; intel_modeset_affected_pipes(crtc, &modeset_pipes, &prepare_pipes, &disable_pipes); DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n", modeset_pipes, prepare_pipes, disable_pipes); for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc) intel_crtc_disable(&intel_crtc->base); *saved_hwmode = crtc->hwmode; *saved_mode = crtc->mode; /* Hack: Because we don't (yet) support global modeset on multiple * crtcs, we don't keep track of the new mode for more than one crtc. * Hence simply check whether any bit is set in modeset_pipes in all the * pieces of code that are not yet converted to deal with mutliple crtcs * changing their mode at the same time. */ adjusted_mode = NULL; if (modeset_pipes) { adjusted_mode = intel_modeset_adjusted_mode(crtc, mode); if (IS_ERR(adjusted_mode)) { ret = false; goto out; } } for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) { if (intel_crtc->base.enabled) dev_priv->display.crtc_disable(&intel_crtc->base); } /* crtc->mode is already used by the ->mode_set callbacks, hence we need * to set it here already despite that we pass it down the callchain. */ if (modeset_pipes) crtc->mode = *mode; /* Only after disabling all output pipelines that will be changed can we * update the the output configuration. */ intel_modeset_update_state(dev, prepare_pipes); if (dev_priv->display.modeset_global_resources) dev_priv->display.modeset_global_resources(dev); /* Set up the DPLL and any encoders state that needs to adjust or depend * on the DPLL. */ for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) { ret = !intel_crtc_mode_set(&intel_crtc->base, mode, adjusted_mode, x, y, fb); if (!ret) goto done; } /* Now enable the clocks, plane, pipe, and connectors that we set up. */ for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) dev_priv->display.crtc_enable(&intel_crtc->base); if (modeset_pipes) { /* Store real post-adjustment hardware mode. */ crtc->hwmode = *adjusted_mode; /* Calculate and store various constants which * are later needed by vblank and swap-completion * timestamping. They are derived from true hwmode. */ drm_calc_timestamping_constants(crtc); } /* FIXME: add subpixel order */ done: drm_mode_destroy(dev, adjusted_mode); if (!ret && crtc->enabled) { crtc->hwmode = *saved_hwmode; crtc->mode = *saved_mode; } else { intel_modeset_check_state(dev); } out: kfree(saved_mode); return ret; } #undef for_each_intel_crtc_masked static void intel_set_config_free(struct intel_set_config *config) { if (!config) return; kfree(config->save_connector_encoders); kfree(config->save_encoder_crtcs); kfree(config); } static int intel_set_config_save_state(struct drm_device *dev, struct intel_set_config *config) { struct drm_encoder *encoder; struct drm_connector *connector; int count; config->save_encoder_crtcs = kcalloc(dev->mode_config.num_encoder, sizeof(struct drm_crtc *), GFP_KERNEL); if (!config->save_encoder_crtcs) return -ENOMEM; config->save_connector_encoders = kcalloc(dev->mode_config.num_connector, sizeof(struct drm_encoder *), GFP_KERNEL); if (!config->save_connector_encoders) return -ENOMEM; /* Copy data. Note that driver private data is not affected. * Should anything bad happen only the expected state is * restored, not the drivers personal bookkeeping. */ count = 0; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { config->save_encoder_crtcs[count++] = encoder->crtc; } count = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { config->save_connector_encoders[count++] = connector->encoder; } return 0; } static void intel_set_config_restore_state(struct drm_device *dev, struct intel_set_config *config) { struct intel_encoder *encoder; struct intel_connector *connector; int count; count = 0; list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { encoder->new_crtc = to_intel_crtc(config->save_encoder_crtcs[count++]); } count = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { connector->new_encoder = to_intel_encoder(config->save_connector_encoders[count++]); } } static void intel_set_config_compute_mode_changes(struct drm_mode_set *set, struct intel_set_config *config) { /* We should be able to check here if the fb has the same properties * and then just flip_or_move it */ if (set->crtc->fb != set->fb) { /* If we have no fb then treat it as a full mode set */ if (set->crtc->fb == NULL) { DRM_DEBUG_KMS("crtc has no fb, full mode set\n"); config->mode_changed = true; } else if (set->fb == NULL) { config->mode_changed = true; } else if (set->fb->depth != set->crtc->fb->depth) { config->mode_changed = true; } else if (set->fb->bits_per_pixel != set->crtc->fb->bits_per_pixel) { config->mode_changed = true; } else config->fb_changed = true; } if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y)) config->fb_changed = true; if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) { DRM_DEBUG_KMS("modes are different, full mode set\n"); drm_mode_debug_printmodeline(&set->crtc->mode); drm_mode_debug_printmodeline(set->mode); config->mode_changed = true; } } static int intel_modeset_stage_output_state(struct drm_device *dev, struct drm_mode_set *set, struct intel_set_config *config) { struct drm_crtc *new_crtc; struct intel_connector *connector; struct intel_encoder *encoder; int count, ro; /* The upper layers ensure that we either disabl a crtc or have a list * of connectors. For paranoia, double-check this. */ WARN_ON(!set->fb && (set->num_connectors != 0)); WARN_ON(set->fb && (set->num_connectors == 0)); count = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { /* Otherwise traverse passed in connector list and get encoders * for them. */ for (ro = 0; ro < set->num_connectors; ro++) { if (set->connectors[ro] == &connector->base) { connector->new_encoder = connector->encoder; break; } } /* If we disable the crtc, disable all its connectors. Also, if * the connector is on the changing crtc but not on the new * connector list, disable it. */ if ((!set->fb || ro == set->num_connectors) && connector->base.encoder && connector->base.encoder->crtc == set->crtc) { connector->new_encoder = NULL; DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n", connector->base.base.id, drm_get_connector_name(&connector->base)); } if (&connector->new_encoder->base != connector->base.encoder) { DRM_DEBUG_KMS("encoder changed, full mode switch\n"); config->mode_changed = true; } /* Disable all disconnected encoders. */ if (connector->base.status == connector_status_disconnected) connector->new_encoder = NULL; } /* connector->new_encoder is now updated for all connectors. */ /* Update crtc of enabled connectors. */ count = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (!connector->new_encoder) continue; new_crtc = connector->new_encoder->base.crtc; for (ro = 0; ro < set->num_connectors; ro++) { if (set->connectors[ro] == &connector->base) new_crtc = set->crtc; } /* Make sure the new CRTC will work with the encoder */ if (!intel_encoder_crtc_ok(&connector->new_encoder->base, new_crtc)) { return -EINVAL; } connector->encoder->new_crtc = to_intel_crtc(new_crtc); DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n", connector->base.base.id, drm_get_connector_name(&connector->base), new_crtc->base.id); } /* Check for any encoders that needs to be disabled. */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->new_encoder == encoder) { WARN_ON(!connector->new_encoder->new_crtc); goto next_encoder; } } encoder->new_crtc = NULL; next_encoder: /* Only now check for crtc changes so we don't miss encoders * that will be disabled. */ if (&encoder->new_crtc->base != encoder->base.crtc) { DRM_DEBUG_KMS("crtc changed, full mode switch\n"); config->mode_changed = true; } } /* Now we've also updated encoder->new_crtc for all encoders. */ return 0; } static int intel_crtc_set_config(struct drm_mode_set *set) { struct drm_device *dev; struct drm_mode_set save_set; struct intel_set_config *config; int ret; BUG_ON(!set); BUG_ON(!set->crtc); BUG_ON(!set->crtc->helper_private); if (!set->mode) set->fb = NULL; /* The fb helper likes to play gross jokes with ->mode_set_config. * Unfortunately the crtc helper doesn't do much at all for this case, * so we have to cope with this madness until the fb helper is fixed up. */ if (set->fb && set->num_connectors == 0) return 0; if (set->fb) { DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n", set->crtc->base.id, set->fb->base.id, (int)set->num_connectors, set->x, set->y); } else { DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id); } dev = set->crtc->dev; ret = -ENOMEM; config = kzalloc(sizeof(*config), GFP_KERNEL); if (!config) goto out_config; ret = intel_set_config_save_state(dev, config); if (ret) goto out_config; save_set.crtc = set->crtc; save_set.mode = &set->crtc->mode; save_set.x = set->crtc->x; save_set.y = set->crtc->y; save_set.fb = set->crtc->fb; /* Compute whether we need a full modeset, only an fb base update or no * change at all. In the future we might also check whether only the * mode changed, e.g. for LVDS where we only change the panel fitter in * such cases. */ intel_set_config_compute_mode_changes(set, config); ret = intel_modeset_stage_output_state(dev, set, config); if (ret) goto fail; if (config->mode_changed) { if (set->mode) { DRM_DEBUG_KMS("attempting to set mode from" " userspace\n"); drm_mode_debug_printmodeline(set->mode); } if (!intel_set_mode(set->crtc, set->mode, set->x, set->y, set->fb)) { DRM_ERROR("failed to set mode on [CRTC:%d]\n", set->crtc->base.id); ret = -EINVAL; goto fail; } } else if (config->fb_changed) { ret = intel_pipe_set_base(set->crtc, set->x, set->y, set->fb); } intel_set_config_free(config); return 0; fail: intel_set_config_restore_state(dev, config); /* Try to restore the config */ if (config->mode_changed && !intel_set_mode(save_set.crtc, save_set.mode, save_set.x, save_set.y, save_set.fb)) DRM_ERROR("failed to restore config after modeset failure\n"); out_config: intel_set_config_free(config); return ret; } static const struct drm_crtc_funcs intel_crtc_funcs = { .cursor_set = intel_crtc_cursor_set, .cursor_move = intel_crtc_cursor_move, .gamma_set = intel_crtc_gamma_set, .set_config = intel_crtc_set_config, .destroy = intel_crtc_destroy, .page_flip = intel_crtc_page_flip, }; static void intel_cpu_pll_init(struct drm_device *dev) { if (HAS_DDI(dev)) intel_ddi_pll_init(dev); } static void intel_pch_pll_init(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int i; if (dev_priv->num_pch_pll == 0) { DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n"); return; } for (i = 0; i < dev_priv->num_pch_pll; i++) { dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i); dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i); dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i); } } static void intel_crtc_init(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc; int i; intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); if (intel_crtc == NULL) return; drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs); drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256); for (i = 0; i < 256; i++) { intel_crtc->lut_r[i] = i; intel_crtc->lut_g[i] = i; intel_crtc->lut_b[i] = i; } /* Swap pipes & planes for FBC on pre-965 */ intel_crtc->pipe = pipe; intel_crtc->plane = pipe; intel_crtc->cpu_transcoder = pipe; if (IS_MOBILE(dev) && IS_GEN3(dev)) { DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); intel_crtc->plane = !pipe; } BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; intel_crtc->bpp = 24; /* default for pre-Ironlake */ drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); } int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; struct drm_mode_object *drmmode_obj; struct intel_crtc *crtc; if (!drm_core_check_feature(dev, DRIVER_MODESET)) return -ENODEV; drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id, DRM_MODE_OBJECT_CRTC); if (!drmmode_obj) { DRM_ERROR("no such CRTC id\n"); return -EINVAL; } crtc = to_intel_crtc(obj_to_crtc(drmmode_obj)); pipe_from_crtc_id->pipe = crtc->pipe; return 0; } static int intel_encoder_clones(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct intel_encoder *source_encoder; int index_mask = 0; int entry = 0; list_for_each_entry(source_encoder, &dev->mode_config.encoder_list, base.head) { if (encoder == source_encoder) index_mask |= (1 << entry); /* Intel hw has only one MUX where enocoders could be cloned. */ if (encoder->cloneable && source_encoder->cloneable) index_mask |= (1 << entry); entry++; } return index_mask; } static bool has_edp_a(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!IS_MOBILE(dev)) return false; if ((I915_READ(DP_A) & DP_DETECTED) == 0) return false; if (IS_GEN5(dev) && (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE)) return false; return true; } static void intel_setup_outputs(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; bool dpd_is_edp = false; bool has_lvds; has_lvds = intel_lvds_init(dev); if (!has_lvds && !HAS_PCH_SPLIT(dev)) { /* disable the panel fitter on everything but LVDS */ I915_WRITE(PFIT_CONTROL, 0); } if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES))) intel_crt_init(dev); if (HAS_DDI(dev)) { int found; /* Haswell uses DDI functions to detect digital outputs */ found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED; /* DDI A only supports eDP */ if (found) intel_ddi_init(dev, PORT_A); /* DDI B, C and D detection is indicated by the SFUSE_STRAP * register */ found = I915_READ(SFUSE_STRAP); if (found & SFUSE_STRAP_DDIB_DETECTED) intel_ddi_init(dev, PORT_B); if (found & SFUSE_STRAP_DDIC_DETECTED) intel_ddi_init(dev, PORT_C); if (found & SFUSE_STRAP_DDID_DETECTED) intel_ddi_init(dev, PORT_D); } else if (HAS_PCH_SPLIT(dev)) { int found; dpd_is_edp = intel_dpd_is_edp(dev); if (has_edp_a(dev)) intel_dp_init(dev, DP_A, PORT_A); if (I915_READ(HDMIB) & PORT_DETECTED) { /* PCH SDVOB multiplex with HDMIB */ found = intel_sdvo_init(dev, PCH_SDVOB, true); if (!found) intel_hdmi_init(dev, HDMIB, PORT_B); if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) intel_dp_init(dev, PCH_DP_B, PORT_B); } if (I915_READ(HDMIC) & PORT_DETECTED) intel_hdmi_init(dev, HDMIC, PORT_C); if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED) intel_hdmi_init(dev, HDMID, PORT_D); if (I915_READ(PCH_DP_C) & DP_DETECTED) intel_dp_init(dev, PCH_DP_C, PORT_C); if (I915_READ(PCH_DP_D) & DP_DETECTED) intel_dp_init(dev, PCH_DP_D, PORT_D); } else if (IS_VALLEYVIEW(dev)) { int found; /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */ if (I915_READ(DP_C) & DP_DETECTED) intel_dp_init(dev, DP_C, PORT_C); if (I915_READ(SDVOB) & PORT_DETECTED) { /* SDVOB multiplex with HDMIB */ found = intel_sdvo_init(dev, SDVOB, true); if (!found) intel_hdmi_init(dev, SDVOB, PORT_B); if (!found && (I915_READ(DP_B) & DP_DETECTED)) intel_dp_init(dev, DP_B, PORT_B); } if (I915_READ(SDVOC) & PORT_DETECTED) intel_hdmi_init(dev, SDVOC, PORT_C); } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) { bool found = false; if (I915_READ(SDVOB) & SDVO_DETECTED) { DRM_DEBUG_KMS("probing SDVOB\n"); found = intel_sdvo_init(dev, SDVOB, true); if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) { DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); intel_hdmi_init(dev, SDVOB, PORT_B); } if (!found && SUPPORTS_INTEGRATED_DP(dev)) { DRM_DEBUG_KMS("probing DP_B\n"); intel_dp_init(dev, DP_B, PORT_B); } } /* Before G4X SDVOC doesn't have its own detect register */ if (I915_READ(SDVOB) & SDVO_DETECTED) { DRM_DEBUG_KMS("probing SDVOC\n"); found = intel_sdvo_init(dev, SDVOC, false); } if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) { if (SUPPORTS_INTEGRATED_HDMI(dev)) { DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); intel_hdmi_init(dev, SDVOC, PORT_C); } if (SUPPORTS_INTEGRATED_DP(dev)) { DRM_DEBUG_KMS("probing DP_C\n"); intel_dp_init(dev, DP_C, PORT_C); } } if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED)) { DRM_DEBUG_KMS("probing DP_D\n"); intel_dp_init(dev, DP_D, PORT_D); } } else if (IS_GEN2(dev)) intel_dvo_init(dev); if (SUPPORTS_TV(dev)) intel_tv_init(dev); list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { encoder->base.possible_crtcs = encoder->crtc_mask; encoder->base.possible_clones = intel_encoder_clones(encoder); } if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) ironlake_init_pch_refclk(dev); drm_helper_move_panel_connectors_to_head(dev); } static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); drm_framebuffer_cleanup(fb); drm_gem_object_unreference_unlocked(&intel_fb->obj->base); kfree(intel_fb); } static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, struct drm_file *file, unsigned int *handle) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb->obj; return drm_gem_handle_create(file, &obj->base, handle); } static const struct drm_framebuffer_funcs intel_fb_funcs = { .destroy = intel_user_framebuffer_destroy, .create_handle = intel_user_framebuffer_create_handle, }; int intel_framebuffer_init(struct drm_device *dev, struct intel_framebuffer *intel_fb, struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj) { int ret; if (obj->tiling_mode == I915_TILING_Y) return -EINVAL; if (mode_cmd->pitches[0] & 63) return -EINVAL; /* FIXME <= Gen4 stride limits are bit unclear */ if (mode_cmd->pitches[0] > 32768) return -EINVAL; if (obj->tiling_mode != I915_TILING_NONE && mode_cmd->pitches[0] != obj->stride) return -EINVAL; /* Reject formats not supported by any plane early. */ switch (mode_cmd->pixel_format) { case DRM_FORMAT_C8: case DRM_FORMAT_RGB565: case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: break; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_ARGB1555: if (INTEL_INFO(dev)->gen > 3) return -EINVAL; break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ABGR2101010: if (INTEL_INFO(dev)->gen < 4) return -EINVAL; break; case DRM_FORMAT_YUYV: case DRM_FORMAT_UYVY: case DRM_FORMAT_YVYU: case DRM_FORMAT_VYUY: if (INTEL_INFO(dev)->gen < 6) return -EINVAL; break; default: DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format); return -EINVAL; } /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ if (mode_cmd->offsets[0] != 0) return -EINVAL; ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); if (ret) { DRM_ERROR("framebuffer init failed %d\n", ret); return ret; } drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); intel_fb->obj = obj; return 0; } static struct drm_framebuffer * intel_user_framebuffer_create(struct drm_device *dev, struct drm_file *filp, struct drm_mode_fb_cmd2 *mode_cmd) { struct drm_i915_gem_object *obj; obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handles[0])); if (&obj->base == NULL) return ERR_PTR(-ENOENT); return intel_framebuffer_create(dev, mode_cmd, obj); } static const struct drm_mode_config_funcs intel_mode_funcs = { .fb_create = intel_user_framebuffer_create, .output_poll_changed = intel_fb_output_poll_changed, }; /* Set up chip specific display functions */ static void intel_init_display(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* We always want a DPMS function */ if (HAS_DDI(dev)) { dev_priv->display.crtc_mode_set = haswell_crtc_mode_set; dev_priv->display.crtc_enable = haswell_crtc_enable; dev_priv->display.crtc_disable = haswell_crtc_disable; dev_priv->display.off = haswell_crtc_off; dev_priv->display.update_plane = ironlake_update_plane; } else if (HAS_PCH_SPLIT(dev)) { dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set; dev_priv->display.crtc_enable = ironlake_crtc_enable; dev_priv->display.crtc_disable = ironlake_crtc_disable; dev_priv->display.off = ironlake_crtc_off; dev_priv->display.update_plane = ironlake_update_plane; } else { dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set; dev_priv->display.crtc_enable = i9xx_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; dev_priv->display.off = i9xx_crtc_off; dev_priv->display.update_plane = i9xx_update_plane; } /* Returns the core display clock speed */ if (IS_VALLEYVIEW(dev)) dev_priv->display.get_display_clock_speed = valleyview_get_display_clock_speed; else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev))) dev_priv->display.get_display_clock_speed = i945_get_display_clock_speed; else if (IS_I915G(dev)) dev_priv->display.get_display_clock_speed = i915_get_display_clock_speed; else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev)) dev_priv->display.get_display_clock_speed = i9xx_misc_get_display_clock_speed; else if (IS_I915GM(dev)) dev_priv->display.get_display_clock_speed = i915gm_get_display_clock_speed; else if (IS_I865G(dev)) dev_priv->display.get_display_clock_speed = i865_get_display_clock_speed; else if (IS_I85X(dev)) dev_priv->display.get_display_clock_speed = i855_get_display_clock_speed; else /* 852, 830 */ dev_priv->display.get_display_clock_speed = i830_get_display_clock_speed; if (HAS_PCH_SPLIT(dev)) { if (IS_GEN5(dev)) { dev_priv->display.fdi_link_train = ironlake_fdi_link_train; dev_priv->display.write_eld = ironlake_write_eld; } else if (IS_GEN6(dev)) { dev_priv->display.fdi_link_train = gen6_fdi_link_train; dev_priv->display.write_eld = ironlake_write_eld; } else if (IS_IVYBRIDGE(dev)) { /* FIXME: detect B0+ stepping and use auto training */ dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; dev_priv->display.write_eld = ironlake_write_eld; dev_priv->display.modeset_global_resources = ivb_modeset_global_resources; } else if (IS_HASWELL(dev)) { dev_priv->display.fdi_link_train = hsw_fdi_link_train; dev_priv->display.write_eld = haswell_write_eld; } else dev_priv->display.update_wm = NULL; } else if (IS_G4X(dev)) { dev_priv->display.write_eld = g4x_write_eld; } /* Default just returns -ENODEV to indicate unsupported */ dev_priv->display.queue_flip = intel_default_queue_flip; switch (INTEL_INFO(dev)->gen) { case 2: dev_priv->display.queue_flip = intel_gen2_queue_flip; break; case 3: dev_priv->display.queue_flip = intel_gen3_queue_flip; break; case 4: case 5: dev_priv->display.queue_flip = intel_gen4_queue_flip; break; case 6: dev_priv->display.queue_flip = intel_gen6_queue_flip; break; case 7: dev_priv->display.queue_flip = intel_gen7_queue_flip; break; } } /* * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend, * resume, or other times. This quirk makes sure that's the case for * affected systems. */ static void quirk_pipea_force(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_PIPEA_FORCE; DRM_INFO("applying pipe a force quirk\n"); } /* * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason */ static void quirk_ssc_force_disable(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE; DRM_INFO("applying lvds SSC disable quirk\n"); } /* * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight * brightness value */ static void quirk_invert_brightness(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS; DRM_INFO("applying inverted panel brightness quirk\n"); } struct intel_quirk { int device; int subsystem_vendor; int subsystem_device; void (*hook)(struct drm_device *dev); }; /* For systems that don't have a meaningful PCI subdevice/subvendor ID */ struct intel_dmi_quirk { void (*hook)(struct drm_device *dev); const struct dmi_system_id (*dmi_id_list)[]; }; static int intel_dmi_reverse_brightness(const struct dmi_system_id *id) { DRM_INFO("Backlight polarity reversed on %s\n", id->ident); return 1; } static const struct intel_dmi_quirk intel_dmi_quirks[] = { { .dmi_id_list = &(const struct dmi_system_id[]) { { .callback = intel_dmi_reverse_brightness, .ident = "NCR Corporation", .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, ""), }, }, { } /* terminating entry */ }, .hook = quirk_invert_brightness, }, }; static struct intel_quirk intel_quirks[] = { /* HP Mini needs pipe A force quirk (LP: #322104) */ { 0x27ae, 0x103c, 0x361a, quirk_pipea_force }, /* Toshiba Protege R-205, S-209 needs pipe A force quirk */ { 0x2592, 0x1179, 0x0001, quirk_pipea_force }, /* ThinkPad T60 needs pipe A force quirk (bug #16494) */ { 0x2782, 0x17aa, 0x201a, quirk_pipea_force }, /* 830/845 need to leave pipe A & dpll A up */ { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, /* Lenovo U160 cannot use SSC on LVDS */ { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable }, /* Sony Vaio Y cannot use SSC on LVDS */ { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable }, /* Acer Aspire 5734Z must invert backlight brightness */ { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness }, }; static void intel_init_quirks(struct drm_device *dev) { struct pci_dev *d = dev->pdev; int i; for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) { struct intel_quirk *q = &intel_quirks[i]; if (d->device == q->device && (d->subsystem_vendor == q->subsystem_vendor || q->subsystem_vendor == PCI_ANY_ID) && (d->subsystem_device == q->subsystem_device || q->subsystem_device == PCI_ANY_ID)) q->hook(dev); } for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) { if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0) intel_dmi_quirks[i].hook(dev); } } /* Disable the VGA plane that we never use */ static void i915_disable_vga(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u8 sr1; u32 vga_reg; if (HAS_PCH_SPLIT(dev)) vga_reg = CPU_VGACNTRL; else vga_reg = VGACNTRL; vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); outb(SR01, VGA_SR_INDEX); sr1 = inb(VGA_SR_DATA); outb(sr1 | 1<<5, VGA_SR_DATA); vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); udelay(300); I915_WRITE(vga_reg, VGA_DISP_DISABLE); POSTING_READ(vga_reg); } void intel_modeset_init_hw(struct drm_device *dev) { /* We attempt to init the necessary power wells early in the initialization * time, so the subsystems that expect power to be enabled can work. */ intel_init_power_wells(dev); intel_prepare_ddi(dev); intel_init_clock_gating(dev); mutex_lock(&dev->struct_mutex); intel_enable_gt_powersave(dev); mutex_unlock(&dev->struct_mutex); } void intel_modeset_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int i, ret; drm_mode_config_init(dev); dev->mode_config.min_width = 0; dev->mode_config.min_height = 0; dev->mode_config.preferred_depth = 24; dev->mode_config.prefer_shadow = 1; dev->mode_config.funcs = &intel_mode_funcs; intel_init_quirks(dev); intel_init_pm(dev); intel_init_display(dev); if (IS_GEN2(dev)) { dev->mode_config.max_width = 2048; dev->mode_config.max_height = 2048; } else if (IS_GEN3(dev)) { dev->mode_config.max_width = 4096; dev->mode_config.max_height = 4096; } else { dev->mode_config.max_width = 8192; dev->mode_config.max_height = 8192; } dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr; DRM_DEBUG_KMS("%d display pipe%s available.\n", dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : ""); for (i = 0; i < dev_priv->num_pipe; i++) { intel_crtc_init(dev, i); ret = intel_plane_init(dev, i); if (ret) DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret); } intel_cpu_pll_init(dev); intel_pch_pll_init(dev); /* Just disable it once at startup */ i915_disable_vga(dev); intel_setup_outputs(dev); /* Just in case the BIOS is doing something questionable. */ intel_disable_fbc(dev); } static void intel_connector_break_all_links(struct intel_connector *connector) { connector->base.dpms = DRM_MODE_DPMS_OFF; connector->base.encoder = NULL; connector->encoder->connectors_active = false; connector->encoder->base.crtc = NULL; } static void intel_enable_pipe_a(struct drm_device *dev) { struct intel_connector *connector; struct drm_connector *crt = NULL; struct intel_load_detect_pipe load_detect_temp; /* We can't just switch on the pipe A, we need to set things up with a * proper mode and output configuration. As a gross hack, enable pipe A * by enabling the load detect pipe once. */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->encoder->type == INTEL_OUTPUT_ANALOG) { crt = &connector->base; break; } } if (!crt) return; if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp)) intel_release_load_detect_pipe(crt, &load_detect_temp); } static bool intel_check_plane_mapping(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; u32 reg, val; if (dev_priv->num_pipe == 1) return true; reg = DSPCNTR(!crtc->plane); val = I915_READ(reg); if ((val & DISPLAY_PLANE_ENABLE) && (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe)) return false; return true; } static void intel_sanitize_crtc(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 reg; /* Clear any frame start delays used for debugging left by the BIOS */ reg = PIPECONF(crtc->cpu_transcoder); I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); /* We need to sanitize the plane -> pipe mapping first because this will * disable the crtc (and hence change the state) if it is wrong. Note * that gen4+ has a fixed plane -> pipe mapping. */ if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) { struct intel_connector *connector; bool plane; DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n", crtc->base.base.id); /* Pipe has the wrong plane attached and the plane is active. * Temporarily change the plane mapping and disable everything * ... */ plane = crtc->plane; crtc->plane = !plane; dev_priv->display.crtc_disable(&crtc->base); crtc->plane = plane; /* ... and break all links. */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->encoder->base.crtc != &crtc->base) continue; intel_connector_break_all_links(connector); } WARN_ON(crtc->active); crtc->base.enabled = false; } if (dev_priv->quirks & QUIRK_PIPEA_FORCE && crtc->pipe == PIPE_A && !crtc->active) { /* BIOS forgot to enable pipe A, this mostly happens after * resume. Force-enable the pipe to fix this, the update_dpms * call below we restore the pipe to the right state, but leave * the required bits on. */ intel_enable_pipe_a(dev); } /* Adjust the state of the output pipe according to whether we * have active connectors/encoders. */ intel_crtc_update_dpms(&crtc->base); if (crtc->active != crtc->base.enabled) { struct intel_encoder *encoder; /* This can happen either due to bugs in the get_hw_state * functions or because the pipe is force-enabled due to the * pipe A quirk. */ DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n", crtc->base.base.id, crtc->base.enabled ? "enabled" : "disabled", crtc->active ? "enabled" : "disabled"); crtc->base.enabled = crtc->active; /* Because we only establish the connector -> encoder -> * crtc links if something is active, this means the * crtc is now deactivated. Break the links. connector * -> encoder links are only establish when things are * actually up, hence no need to break them. */ WARN_ON(crtc->active); for_each_encoder_on_crtc(dev, &crtc->base, encoder) { WARN_ON(encoder->connectors_active); encoder->base.crtc = NULL; } } } static void intel_sanitize_encoder(struct intel_encoder *encoder) { struct intel_connector *connector; struct drm_device *dev = encoder->base.dev; /* We need to check both for a crtc link (meaning that the * encoder is active and trying to read from a pipe) and the * pipe itself being active. */ bool has_active_crtc = encoder->base.crtc && to_intel_crtc(encoder->base.crtc)->active; if (encoder->connectors_active && !has_active_crtc) { DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", encoder->base.base.id, drm_get_encoder_name(&encoder->base)); /* Connector is active, but has no active pipe. This is * fallout from our resume register restoring. Disable * the encoder manually again. */ if (encoder->base.crtc) { DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", encoder->base.base.id, drm_get_encoder_name(&encoder->base)); encoder->disable(encoder); } /* Inconsistent output/port/pipe state happens presumably due to * a bug in one of the get_hw_state functions. Or someplace else * in our code, like the register restore mess on resume. Clamp * things to off as a safer default. */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->encoder != encoder) continue; intel_connector_break_all_links(connector); } } /* Enabled encoders without active connectors will be fixed in * the crtc fixup. */ } /* Scan out the current hw modeset state, sanitizes it and maps it into the drm * and i915 state tracking structures. */ void intel_modeset_setup_hw_state(struct drm_device *dev, bool force_restore) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; u32 tmp; struct intel_crtc *crtc; struct intel_encoder *encoder; struct intel_connector *connector; if (HAS_DDI(dev)) { tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); if (tmp & TRANS_DDI_FUNC_ENABLE) { switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { case TRANS_DDI_EDP_INPUT_A_ON: case TRANS_DDI_EDP_INPUT_A_ONOFF: pipe = PIPE_A; break; case TRANS_DDI_EDP_INPUT_B_ONOFF: pipe = PIPE_B; break; case TRANS_DDI_EDP_INPUT_C_ONOFF: pipe = PIPE_C; break; } crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); crtc->cpu_transcoder = TRANSCODER_EDP; DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n", pipe_name(pipe)); } } for_each_pipe(pipe) { crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); tmp = I915_READ(PIPECONF(crtc->cpu_transcoder)); if (tmp & PIPECONF_ENABLE) crtc->active = true; else crtc->active = false; crtc->base.enabled = crtc->active; DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n", crtc->base.base.id, crtc->active ? "enabled" : "disabled"); } if (HAS_DDI(dev)) intel_ddi_setup_hw_pll_state(dev); list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { pipe = 0; if (encoder->get_hw_state(encoder, &pipe)) { encoder->base.crtc = dev_priv->pipe_to_crtc_mapping[pipe]; } else { encoder->base.crtc = NULL; } encoder->connectors_active = false; DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n", encoder->base.base.id, drm_get_encoder_name(&encoder->base), encoder->base.crtc ? "enabled" : "disabled", pipe); } list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->get_hw_state(connector)) { connector->base.dpms = DRM_MODE_DPMS_ON; connector->encoder->connectors_active = true; connector->base.encoder = &connector->encoder->base; } else { connector->base.dpms = DRM_MODE_DPMS_OFF; connector->base.encoder = NULL; } DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", connector->base.base.id, drm_get_connector_name(&connector->base), connector->base.encoder ? "enabled" : "disabled"); } /* HW state is read out, now we need to sanitize this mess. */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { intel_sanitize_encoder(encoder); } for_each_pipe(pipe) { crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); intel_sanitize_crtc(crtc); } if (force_restore) { for_each_pipe(pipe) { crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); intel_set_mode(&crtc->base, &crtc->base.mode, crtc->base.x, crtc->base.y, crtc->base.fb); } } else { intel_modeset_update_staged_output_state(dev); } intel_modeset_check_state(dev); drm_mode_config_reset(dev); } void intel_modeset_gem_init(struct drm_device *dev) { intel_modeset_init_hw(dev); intel_setup_overlay(dev); intel_modeset_setup_hw_state(dev, false); } void intel_modeset_cleanup(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; struct intel_crtc *intel_crtc; drm_kms_helper_poll_fini(dev); mutex_lock(&dev->struct_mutex); intel_unregister_dsm_handler(); list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { /* Skip inactive CRTCs */ if (!crtc->fb) continue; intel_crtc = to_intel_crtc(crtc); intel_increase_pllclock(crtc); } intel_disable_fbc(dev); intel_disable_gt_powersave(dev); ironlake_teardown_rc6(dev); if (IS_VALLEYVIEW(dev)) vlv_init_dpio(dev); mutex_unlock(&dev->struct_mutex); /* Disable the irq before mode object teardown, for the irq might * enqueue unpin/hotplug work. */ drm_irq_uninstall(dev); cancel_work_sync(&dev_priv->hotplug_work); cancel_work_sync(&dev_priv->rps.work); /* flush any delayed tasks or pending work */ flush_scheduled_work(); drm_mode_config_cleanup(dev); } /* * Return which encoder is currently attached for connector. */ struct drm_encoder *intel_best_encoder(struct drm_connector *connector) { return &intel_attached_encoder(connector)->base; } void intel_connector_attach_encoder(struct intel_connector *connector, struct intel_encoder *encoder) { connector->encoder = encoder; drm_mode_connector_attach_encoder(&connector->base, &encoder->base); } /* * set vga decode state - true == enable VGA decode */ int intel_modeset_vga_set_state(struct drm_device *dev, bool state) { struct drm_i915_private *dev_priv = dev->dev_private; u16 gmch_ctrl; pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl); if (state) gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; else gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl); return 0; } #ifdef CONFIG_DEBUG_FS #include struct intel_display_error_state { struct intel_cursor_error_state { u32 control; u32 position; u32 base; u32 size; } cursor[I915_MAX_PIPES]; struct intel_pipe_error_state { u32 conf; u32 source; u32 htotal; u32 hblank; u32 hsync; u32 vtotal; u32 vblank; u32 vsync; } pipe[I915_MAX_PIPES]; struct intel_plane_error_state { u32 control; u32 stride; u32 size; u32 pos; u32 addr; u32 surface; u32 tile_offset; } plane[I915_MAX_PIPES]; }; struct intel_display_error_state * intel_display_capture_error_state(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_display_error_state *error; enum transcoder cpu_transcoder; int i; error = kmalloc(sizeof(*error), GFP_ATOMIC); if (error == NULL) return NULL; for_each_pipe(i) { cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i); error->cursor[i].control = I915_READ(CURCNTR(i)); error->cursor[i].position = I915_READ(CURPOS(i)); error->cursor[i].base = I915_READ(CURBASE(i)); error->plane[i].control = I915_READ(DSPCNTR(i)); error->plane[i].stride = I915_READ(DSPSTRIDE(i)); error->plane[i].size = I915_READ(DSPSIZE(i)); error->plane[i].pos = I915_READ(DSPPOS(i)); error->plane[i].addr = I915_READ(DSPADDR(i)); if (INTEL_INFO(dev)->gen >= 4) { error->plane[i].surface = I915_READ(DSPSURF(i)); error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); } error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder)); error->pipe[i].source = I915_READ(PIPESRC(i)); error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder)); error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder)); error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder)); error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder)); } return error; } void intel_display_print_error_state(struct seq_file *m, struct drm_device *dev, struct intel_display_error_state *error) { drm_i915_private_t *dev_priv = dev->dev_private; int i; seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe); for_each_pipe(i) { seq_printf(m, "Pipe [%d]:\n", i); seq_printf(m, " CONF: %08x\n", error->pipe[i].conf); seq_printf(m, " SRC: %08x\n", error->pipe[i].source); seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal); seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank); seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync); seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal); seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank); seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync); seq_printf(m, "Plane [%d]:\n", i); seq_printf(m, " CNTR: %08x\n", error->plane[i].control); seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride); seq_printf(m, " SIZE: %08x\n", error->plane[i].size); seq_printf(m, " POS: %08x\n", error->plane[i].pos); seq_printf(m, " ADDR: %08x\n", error->plane[i].addr); if (INTEL_INFO(dev)->gen >= 4) { seq_printf(m, " SURF: %08x\n", error->plane[i].surface); seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); } seq_printf(m, "Cursor [%d]:\n", i); seq_printf(m, " CNTR: %08x\n", error->cursor[i].control); seq_printf(m, " POS: %08x\n", error->cursor[i].position); seq_printf(m, " BASE: %08x\n", error->cursor[i].base); } } #endif