/* * BRIEF MODULE DESCRIPTION * Au1xx0 Power Management routines. * * Copyright 2001, 2008 MontaVista Software Inc. * Author: MontaVista Software, Inc. * * Some of the routines are right out of init/main.c, whose * copyrights apply here. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #ifdef CONFIG_PM #define DEBUG 1 #ifdef DEBUG #define DPRINTK(fmt, args...) printk(KERN_DEBUG "%s: " fmt, __func__, ## args) #else #define DPRINTK(fmt, args...) #endif extern unsigned long save_local_and_disable(int controller); extern void restore_local_and_enable(int controller, unsigned long mask); static DEFINE_SPINLOCK(pm_lock); /* * We need to save/restore a bunch of core registers that are * either volatile or reset to some state across a processor sleep. * If reading a register doesn't provide a proper result for a * later restore, we have to provide a function for loading that * register and save a copy. * * We only have to save/restore registers that aren't otherwise * done as part of a driver pm_* function. */ static unsigned int sleep_uart0_inten; static unsigned int sleep_uart0_fifoctl; static unsigned int sleep_uart0_linectl; static unsigned int sleep_uart0_clkdiv; static unsigned int sleep_uart0_enable; static unsigned int sleep_usb[2]; static unsigned int sleep_sys_clocks[5]; static unsigned int sleep_sys_pinfunc; static unsigned int sleep_static_memctlr[4][3]; /* * Define this to cause the value you write to /proc/sys/pm/sleep to * set the TOY timer for the amount of time you want to sleep. * This is done mainly for testing, but may be useful in other cases. * The value is number of 32KHz ticks to sleep. */ #define SLEEP_TEST_TIMEOUT 1 #ifdef SLEEP_TEST_TIMEOUT static int sleep_ticks; static void wakeup_counter0_set(int ticks) { au_writel(au_readl(SYS_TOYREAD) + ticks, SYS_TOYMATCH2); au_sync(); } #endif static void save_core_regs(void) { extern void save_au1xxx_intctl(void); extern void pm_eth0_shutdown(void); /* * Do the serial ports.....these really should be a pm_* * registered function by the driver......but of course the * standard serial driver doesn't understand our Au1xxx * unique registers. */ sleep_uart0_inten = au_readl(UART0_ADDR + UART_IER); sleep_uart0_fifoctl = au_readl(UART0_ADDR + UART_FCR); sleep_uart0_linectl = au_readl(UART0_ADDR + UART_LCR); sleep_uart0_clkdiv = au_readl(UART0_ADDR + UART_CLK); sleep_uart0_enable = au_readl(UART0_ADDR + UART_MOD_CNTRL); au_sync(); #ifndef CONFIG_SOC_AU1200 /* Shutdown USB host/device. */ sleep_usb[0] = au_readl(USB_HOST_CONFIG); /* There appears to be some undocumented reset register.... */ au_writel(0, 0xb0100004); au_sync(); au_writel(0, USB_HOST_CONFIG); au_sync(); sleep_usb[1] = au_readl(USBD_ENABLE); au_writel(0, USBD_ENABLE); au_sync(); #else /* AU1200 */ /* enable access to OTG mmio so we can save OTG CAP/MUX. * FIXME: write an OTG driver and move this stuff there! */ au_writel(au_readl(USB_MSR_BASE + 4) | (1 << 6), USB_MSR_BASE + 4); au_sync(); sleep_usb[0] = au_readl(0xb4020020); /* OTG_CAP */ sleep_usb[1] = au_readl(0xb4020024); /* OTG_MUX */ #endif /* Save interrupt controller state. */ save_au1xxx_intctl(); /* Clocks and PLLs. */ sleep_sys_clocks[0] = au_readl(SYS_FREQCTRL0); sleep_sys_clocks[1] = au_readl(SYS_FREQCTRL1); sleep_sys_clocks[2] = au_readl(SYS_CLKSRC); sleep_sys_clocks[3] = au_readl(SYS_CPUPLL); sleep_sys_clocks[4] = au_readl(SYS_AUXPLL); /* pin mux config */ sleep_sys_pinfunc = au_readl(SYS_PINFUNC); /* Save the static memory controller configuration. */ sleep_static_memctlr[0][0] = au_readl(MEM_STCFG0); sleep_static_memctlr[0][1] = au_readl(MEM_STTIME0); sleep_static_memctlr[0][2] = au_readl(MEM_STADDR0); sleep_static_memctlr[1][0] = au_readl(MEM_STCFG1); sleep_static_memctlr[1][1] = au_readl(MEM_STTIME1); sleep_static_memctlr[1][2] = au_readl(MEM_STADDR1); sleep_static_memctlr[2][0] = au_readl(MEM_STCFG2); sleep_static_memctlr[2][1] = au_readl(MEM_STTIME2); sleep_static_memctlr[2][2] = au_readl(MEM_STADDR2); sleep_static_memctlr[3][0] = au_readl(MEM_STCFG3); sleep_static_memctlr[3][1] = au_readl(MEM_STTIME3); sleep_static_memctlr[3][2] = au_readl(MEM_STADDR3); } static void restore_core_regs(void) { /* restore clock configuration. Writing CPUPLL last will * stall a bit and stabilize other clocks (unless this is * one of those Au1000 with a write-only PLL, where we dont * have a valid value) */ au_writel(sleep_sys_clocks[0], SYS_FREQCTRL0); au_writel(sleep_sys_clocks[1], SYS_FREQCTRL1); au_writel(sleep_sys_clocks[2], SYS_CLKSRC); au_writel(sleep_sys_clocks[4], SYS_AUXPLL); if (!au1xxx_cpu_has_pll_wo()) au_writel(sleep_sys_clocks[3], SYS_CPUPLL); au_sync(); au_writel(sleep_sys_pinfunc, SYS_PINFUNC); au_sync(); #ifndef CONFIG_SOC_AU1200 au_writel(sleep_usb[0], USB_HOST_CONFIG); au_writel(sleep_usb[1], USBD_ENABLE); au_sync(); #else /* enable accces to OTG memory */ au_writel(au_readl(USB_MSR_BASE + 4) | (1 << 6), USB_MSR_BASE + 4); au_sync(); /* restore OTG caps and port mux. */ au_writel(sleep_usb[0], 0xb4020020 + 0); /* OTG_CAP */ au_sync(); au_writel(sleep_usb[1], 0xb4020020 + 4); /* OTG_MUX */ au_sync(); #endif /* Restore the static memory controller configuration. */ au_writel(sleep_static_memctlr[0][0], MEM_STCFG0); au_writel(sleep_static_memctlr[0][1], MEM_STTIME0); au_writel(sleep_static_memctlr[0][2], MEM_STADDR0); au_writel(sleep_static_memctlr[1][0], MEM_STCFG1); au_writel(sleep_static_memctlr[1][1], MEM_STTIME1); au_writel(sleep_static_memctlr[1][2], MEM_STADDR1); au_writel(sleep_static_memctlr[2][0], MEM_STCFG2); au_writel(sleep_static_memctlr[2][1], MEM_STTIME2); au_writel(sleep_static_memctlr[2][2], MEM_STADDR2); au_writel(sleep_static_memctlr[3][0], MEM_STCFG3); au_writel(sleep_static_memctlr[3][1], MEM_STTIME3); au_writel(sleep_static_memctlr[3][2], MEM_STADDR3); /* * Enable the UART if it was enabled before sleep. * I guess I should define module control bits........ */ if (sleep_uart0_enable & 0x02) { au_writel(0, UART0_ADDR + UART_MOD_CNTRL); au_sync(); au_writel(1, UART0_ADDR + UART_MOD_CNTRL); au_sync(); au_writel(3, UART0_ADDR + UART_MOD_CNTRL); au_sync(); au_writel(sleep_uart0_inten, UART0_ADDR + UART_IER); au_sync(); au_writel(sleep_uart0_fifoctl, UART0_ADDR + UART_FCR); au_sync(); au_writel(sleep_uart0_linectl, UART0_ADDR + UART_LCR); au_sync(); au_writel(sleep_uart0_clkdiv, UART0_ADDR + UART_CLK); au_sync(); } restore_au1xxx_intctl(); } unsigned long suspend_mode; void wakeup_from_suspend(void) { suspend_mode = 0; } void au_sleep(void) { save_core_regs(); au1xxx_save_and_sleep(); restore_core_regs(); } static int pm_do_sleep(ctl_table *ctl, int write, struct file *file, void __user *buffer, size_t *len, loff_t *ppos) { unsigned long wakeup, flags; int ret; #ifdef SLEEP_TEST_TIMEOUT #define TMPBUFLEN2 16 char buf[TMPBUFLEN2], *p; #endif spin_lock_irqsave(&pm_lock, flags); if (!write) { *len = 0; ret = 0; goto out_unlock; }; #ifdef SLEEP_TEST_TIMEOUT if (*len > TMPBUFLEN2 - 1) { ret = -EFAULT; goto out_unlock; } if (copy_from_user(buf, buffer, *len)) { return -EFAULT; goto out_unlock; } buf[*len] = 0; p = buf; sleep_ticks = simple_strtoul(p, &p, 0); wakeup_counter0_set(sleep_ticks); #endif /** ** The code below is all system dependent and we should probably ** have a function call out of here to set this up. You need ** to configure the GPIO or timer interrupts that will bring ** you out of sleep. ** For testing, the TOY counter wakeup is useful. **/ #if 0 au_writel(au_readl(SYS_PINSTATERD) & ~(1 << 11), SYS_PINSTATERD); /* GPIO 6 can cause a wake up event */ wakeup = au_readl(SYS_WAKEMSK); wakeup &= ~(1 << 8); /* turn off match20 wakeup */ wakeup |= 1 << 6; /* turn on GPIO 6 wakeup */ #else /* For testing, allow match20 to wake us up. */ wakeup = 1 << 8; /* turn on match20 wakeup */ wakeup = 0; #endif au_writel(1, SYS_WAKESRC); /* clear cause */ au_sync(); au_writel(wakeup, SYS_WAKEMSK); au_sync(); au_sleep(); ret = 0; out_unlock: spin_unlock_irqrestore(&pm_lock, flags); return ret; } #if !defined(CONFIG_SOC_AU1200) && !defined(CONFIG_SOC_AU1550) /* * This is right out of init/main.c */ /* * This is the number of bits of precision for the loops_per_jiffy. * Each bit takes on average 1.5/HZ seconds. This (like the original) * is a little better than 1%. */ #define LPS_PREC 8 static void au1000_calibrate_delay(void) { unsigned long ticks, loopbit; int lps_precision = LPS_PREC; loops_per_jiffy = 1 << 12; while (loops_per_jiffy <<= 1) { /* Wait for "start of" clock tick */ ticks = jiffies; while (ticks == jiffies) /* nothing */ ; /* Go ... */ ticks = jiffies; __delay(loops_per_jiffy); ticks = jiffies - ticks; if (ticks) break; } /* * Do a binary approximation to get loops_per_jiffy set to be equal * one clock (up to lps_precision bits) */ loops_per_jiffy >>= 1; loopbit = loops_per_jiffy; while (lps_precision-- && (loopbit >>= 1)) { loops_per_jiffy |= loopbit; ticks = jiffies; while (ticks == jiffies); ticks = jiffies; __delay(loops_per_jiffy); if (jiffies != ticks) /* longer than 1 tick */ loops_per_jiffy &= ~loopbit; } } static int pm_do_freq(ctl_table *ctl, int write, struct file *file, void __user *buffer, size_t *len, loff_t *ppos) { int retval = 0, i; unsigned long val, pll; #define TMPBUFLEN 64 #define MAX_CPU_FREQ 396 char buf[TMPBUFLEN], *p; unsigned long flags, intc0_mask, intc1_mask; unsigned long old_baud_base, old_cpu_freq, old_clk, old_refresh; unsigned long new_baud_base, new_cpu_freq, new_clk, new_refresh; unsigned long baud_rate; spin_lock_irqsave(&pm_lock, flags); if (!write) *len = 0; else { /* Parse the new frequency */ if (*len > TMPBUFLEN - 1) { spin_unlock_irqrestore(&pm_lock, flags); return -EFAULT; } if (copy_from_user(buf, buffer, *len)) { spin_unlock_irqrestore(&pm_lock, flags); return -EFAULT; } buf[*len] = 0; p = buf; val = simple_strtoul(p, &p, 0); if (val > MAX_CPU_FREQ) { spin_unlock_irqrestore(&pm_lock, flags); return -EFAULT; } pll = val / 12; if ((pll > 33) || (pll < 7)) { /* 396 MHz max, 84 MHz min */ /* Revisit this for higher speed CPUs */ spin_unlock_irqrestore(&pm_lock, flags); return -EFAULT; } old_baud_base = get_au1x00_uart_baud_base(); old_cpu_freq = get_au1x00_speed(); new_cpu_freq = pll * 12 * 1000000; new_baud_base = (new_cpu_freq / (2 * ((int)(au_readl(SYS_POWERCTRL) & 0x03) + 2) * 16)); set_au1x00_speed(new_cpu_freq); set_au1x00_uart_baud_base(new_baud_base); old_refresh = au_readl(MEM_SDREFCFG) & 0x1ffffff; new_refresh = ((old_refresh * new_cpu_freq) / old_cpu_freq) | (au_readl(MEM_SDREFCFG) & ~0x1ffffff); au_writel(pll, SYS_CPUPLL); au_sync_delay(1); au_writel(new_refresh, MEM_SDREFCFG); au_sync_delay(1); for (i = 0; i < 4; i++) if (au_readl(UART_BASE + UART_MOD_CNTRL + i * 0x00100000) == 3) { old_clk = au_readl(UART_BASE + UART_CLK + i * 0x00100000); baud_rate = old_baud_base / old_clk; /* * We won't get an exact baud rate and the error * could be significant enough that our new * calculation will result in a clock that will * give us a baud rate that's too far off from * what we really want. */ if (baud_rate > 100000) baud_rate = 115200; else if (baud_rate > 50000) baud_rate = 57600; else if (baud_rate > 30000) baud_rate = 38400; else if (baud_rate > 17000) baud_rate = 19200; else baud_rate = 9600; new_clk = new_baud_base / baud_rate; au_writel(new_clk, UART_BASE + UART_CLK + i * 0x00100000); au_sync_delay(10); } } /* * We don't want _any_ interrupts other than match20. Otherwise our * au1000_calibrate_delay() calculation will be off, potentially a lot. */ intc0_mask = save_local_and_disable(0); intc1_mask = save_local_and_disable(1); val = 1 << (AU1000_TOY_MATCH2_INT - AU1000_INTC0_INT_BASE); au_writel(val, IC0_MASKSET); /* unmask */ au_writel(val, IC0_WAKESET); /* enable wake-from-sleep */ au_sync(); spin_unlock_irqrestore(&pm_lock, flags); au1000_calibrate_delay(); restore_local_and_enable(0, intc0_mask); restore_local_and_enable(1, intc1_mask); return retval; } #endif static struct ctl_table pm_table[] = { { .ctl_name = CTL_UNNUMBERED, .procname = "sleep", .data = NULL, .maxlen = 0, .mode = 0600, .proc_handler = &pm_do_sleep }, #if !defined(CONFIG_SOC_AU1200) && !defined(CONFIG_SOC_AU1550) { .ctl_name = CTL_UNNUMBERED, .procname = "freq", .data = NULL, .maxlen = 0, .mode = 0600, .proc_handler = &pm_do_freq }, #endif {} }; static struct ctl_table pm_dir_table[] = { { .ctl_name = CTL_UNNUMBERED, .procname = "pm", .mode = 0555, .child = pm_table }, {} }; /* * Initialize power interface */ static int __init pm_init(void) { /* init TOY to tick at 1Hz. No need to wait for access bits * since there's plenty of time between here and the first * suspend cycle. */ if (au_readl(SYS_TOYTRIM) != 32767) { au_writel(32767, SYS_TOYTRIM); au_sync(); } register_sysctl_table(pm_dir_table); return 0; } __initcall(pm_init); #endif /* CONFIG_PM */