// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ /* Intel(R) Ethernet Connection E800 Series Linux Driver */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "ice.h" #define DRV_VERSION "ice-0.0.1-k" #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" const char ice_drv_ver[] = DRV_VERSION; static const char ice_driver_string[] = DRV_SUMMARY; static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; MODULE_AUTHOR("Intel Corporation, "); MODULE_DESCRIPTION(DRV_SUMMARY); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); static int debug = -1; module_param(debug, int, 0644); #ifndef CONFIG_DYNAMIC_DEBUG MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); #else MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); #endif /* !CONFIG_DYNAMIC_DEBUG */ static struct workqueue_struct *ice_wq; static const struct net_device_ops ice_netdev_ops; static int ice_vsi_release(struct ice_vsi *vsi); static void ice_update_vsi_stats(struct ice_vsi *vsi); static void ice_update_pf_stats(struct ice_pf *pf); /** * ice_get_free_slot - get the next non-NULL location index in array * @array: array to search * @size: size of the array * @curr: last known occupied index to be used as a search hint * * void * is being used to keep the functionality generic. This lets us use this * function on any array of pointers. */ static int ice_get_free_slot(void *array, int size, int curr) { int **tmp_array = (int **)array; int next; if (curr < (size - 1) && !tmp_array[curr + 1]) { next = curr + 1; } else { int i = 0; while ((i < size) && (tmp_array[i])) i++; if (i == size) next = ICE_NO_VSI; else next = i; } return next; } /** * ice_search_res - Search the tracker for a block of resources * @res: pointer to the resource * @needed: size of the block needed * @id: identifier to track owner * Returns the base item index of the block, or -ENOMEM for error */ static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) { int start = res->search_hint; int end = start; id |= ICE_RES_VALID_BIT; do { /* skip already allocated entries */ if (res->list[end++] & ICE_RES_VALID_BIT) { start = end; if ((start + needed) > res->num_entries) break; } if (end == (start + needed)) { int i = start; /* there was enough, so assign it to the requestor */ while (i != end) res->list[i++] = id; if (end == res->num_entries) end = 0; res->search_hint = end; return start; } } while (1); return -ENOMEM; } /** * ice_get_res - get a block of resources * @pf: board private structure * @res: pointer to the resource * @needed: size of the block needed * @id: identifier to track owner * * Returns the base item index of the block, or -ENOMEM for error * The search_hint trick and lack of advanced fit-finding only works * because we're highly likely to have all the same sized requests. * Linear search time and any fragmentation should be minimal. */ static int ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) { int ret; if (!res || !pf) return -EINVAL; if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { dev_err(&pf->pdev->dev, "param err: needed=%d, num_entries = %d id=0x%04x\n", needed, res->num_entries, id); return -EINVAL; } /* search based on search_hint */ ret = ice_search_res(res, needed, id); if (ret < 0) { /* previous search failed. Reset search hint and try again */ res->search_hint = 0; ret = ice_search_res(res, needed, id); } return ret; } /** * ice_free_res - free a block of resources * @res: pointer to the resource * @index: starting index previously returned by ice_get_res * @id: identifier to track owner * Returns number of resources freed */ static int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) { int count = 0; int i; if (!res || index >= res->num_entries) return -EINVAL; id |= ICE_RES_VALID_BIT; for (i = index; i < res->num_entries && res->list[i] == id; i++) { res->list[i] = 0; count++; } return count; } /** * ice_add_mac_to_list - Add a mac address filter entry to the list * @vsi: the VSI to be forwarded to * @add_list: pointer to the list which contains MAC filter entries * @macaddr: the MAC address to be added. * * Adds mac address filter entry to the temp list * * Returns 0 on success or ENOMEM on failure. */ static int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, const u8 *macaddr) { struct ice_fltr_list_entry *tmp; struct ice_pf *pf = vsi->back; tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC); if (!tmp) return -ENOMEM; tmp->fltr_info.flag = ICE_FLTR_TX; tmp->fltr_info.src = vsi->vsi_num; tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num; ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); INIT_LIST_HEAD(&tmp->list_entry); list_add(&tmp->list_entry, add_list); return 0; } /** * ice_free_fltr_list - free filter lists helper * @dev: pointer to the device struct * @h: pointer to the list head to be freed * * Helper function to free filter lists previously created using * ice_add_mac_to_list */ static void ice_free_fltr_list(struct device *dev, struct list_head *h) { struct ice_fltr_list_entry *e, *tmp; list_for_each_entry_safe(e, tmp, h, list_entry) { list_del(&e->list_entry); devm_kfree(dev, e); } } /** * ice_watchdog_subtask - periodic tasks not using event driven scheduling * @pf: board private structure */ static void ice_watchdog_subtask(struct ice_pf *pf) { int i; /* if interface is down do nothing */ if (test_bit(__ICE_DOWN, pf->state) || test_bit(__ICE_CFG_BUSY, pf->state)) return; /* make sure we don't do these things too often */ if (time_before(jiffies, pf->serv_tmr_prev + pf->serv_tmr_period)) return; pf->serv_tmr_prev = jiffies; /* Update the stats for active netdevs so the network stack * can look at updated numbers whenever it cares to */ ice_update_pf_stats(pf); for (i = 0; i < pf->num_alloc_vsi; i++) if (pf->vsi[i] && pf->vsi[i]->netdev) ice_update_vsi_stats(pf->vsi[i]); } /** * ice_print_link_msg - print link up or down message * @vsi: the VSI whose link status is being queried * @isup: boolean for if the link is now up or down */ void ice_print_link_msg(struct ice_vsi *vsi, bool isup) { const char *speed; const char *fc; if (vsi->current_isup == isup) return; vsi->current_isup = isup; if (!isup) { netdev_info(vsi->netdev, "NIC Link is Down\n"); return; } switch (vsi->port_info->phy.link_info.link_speed) { case ICE_AQ_LINK_SPEED_40GB: speed = "40 G"; break; case ICE_AQ_LINK_SPEED_25GB: speed = "25 G"; break; case ICE_AQ_LINK_SPEED_20GB: speed = "20 G"; break; case ICE_AQ_LINK_SPEED_10GB: speed = "10 G"; break; case ICE_AQ_LINK_SPEED_5GB: speed = "5 G"; break; case ICE_AQ_LINK_SPEED_2500MB: speed = "2.5 G"; break; case ICE_AQ_LINK_SPEED_1000MB: speed = "1 G"; break; case ICE_AQ_LINK_SPEED_100MB: speed = "100 M"; break; default: speed = "Unknown"; break; } switch (vsi->port_info->fc.current_mode) { case ICE_FC_FULL: fc = "RX/TX"; break; case ICE_FC_TX_PAUSE: fc = "TX"; break; case ICE_FC_RX_PAUSE: fc = "RX"; break; default: fc = "Unknown"; break; } netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n", speed, fc); } /** * __ice_clean_ctrlq - helper function to clean controlq rings * @pf: ptr to struct ice_pf * @q_type: specific Control queue type */ static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) { struct ice_rq_event_info event; struct ice_hw *hw = &pf->hw; struct ice_ctl_q_info *cq; u16 pending, i = 0; const char *qtype; u32 oldval, val; switch (q_type) { case ICE_CTL_Q_ADMIN: cq = &hw->adminq; qtype = "Admin"; break; default: dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n", q_type); return 0; } /* check for error indications - PF_xx_AxQLEN register layout for * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. */ val = rd32(hw, cq->rq.len); if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | PF_FW_ARQLEN_ARQCRIT_M)) { oldval = val; if (val & PF_FW_ARQLEN_ARQVFE_M) dev_dbg(&pf->pdev->dev, "%s Receive Queue VF Error detected\n", qtype); if (val & PF_FW_ARQLEN_ARQOVFL_M) { dev_dbg(&pf->pdev->dev, "%s Receive Queue Overflow Error detected\n", qtype); } if (val & PF_FW_ARQLEN_ARQCRIT_M) dev_dbg(&pf->pdev->dev, "%s Receive Queue Critical Error detected\n", qtype); val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | PF_FW_ARQLEN_ARQCRIT_M); if (oldval != val) wr32(hw, cq->rq.len, val); } val = rd32(hw, cq->sq.len); if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | PF_FW_ATQLEN_ATQCRIT_M)) { oldval = val; if (val & PF_FW_ATQLEN_ATQVFE_M) dev_dbg(&pf->pdev->dev, "%s Send Queue VF Error detected\n", qtype); if (val & PF_FW_ATQLEN_ATQOVFL_M) { dev_dbg(&pf->pdev->dev, "%s Send Queue Overflow Error detected\n", qtype); } if (val & PF_FW_ATQLEN_ATQCRIT_M) dev_dbg(&pf->pdev->dev, "%s Send Queue Critical Error detected\n", qtype); val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | PF_FW_ATQLEN_ATQCRIT_M); if (oldval != val) wr32(hw, cq->sq.len, val); } event.buf_len = cq->rq_buf_size; event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len, GFP_KERNEL); if (!event.msg_buf) return 0; do { enum ice_status ret; ret = ice_clean_rq_elem(hw, cq, &event, &pending); if (ret == ICE_ERR_AQ_NO_WORK) break; if (ret) { dev_err(&pf->pdev->dev, "%s Receive Queue event error %d\n", qtype, ret); break; } } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); devm_kfree(&pf->pdev->dev, event.msg_buf); return pending && (i == ICE_DFLT_IRQ_WORK); } /** * ice_clean_adminq_subtask - clean the AdminQ rings * @pf: board private structure */ static void ice_clean_adminq_subtask(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; u32 val; if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) return; if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) return; clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); /* re-enable Admin queue interrupt causes */ val = rd32(hw, PFINT_FW_CTL); wr32(hw, PFINT_FW_CTL, (val | PFINT_FW_CTL_CAUSE_ENA_M)); ice_flush(hw); } /** * ice_service_task_schedule - schedule the service task to wake up * @pf: board private structure * * If not already scheduled, this puts the task into the work queue. */ static void ice_service_task_schedule(struct ice_pf *pf) { if (!test_bit(__ICE_DOWN, pf->state) && !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state)) queue_work(ice_wq, &pf->serv_task); } /** * ice_service_task_complete - finish up the service task * @pf: board private structure */ static void ice_service_task_complete(struct ice_pf *pf) { WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); /* force memory (pf->state) to sync before next service task */ smp_mb__before_atomic(); clear_bit(__ICE_SERVICE_SCHED, pf->state); } /** * ice_service_timer - timer callback to schedule service task * @t: pointer to timer_list */ static void ice_service_timer(struct timer_list *t) { struct ice_pf *pf = from_timer(pf, t, serv_tmr); mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); ice_service_task_schedule(pf); } /** * ice_service_task - manage and run subtasks * @work: pointer to work_struct contained by the PF struct */ static void ice_service_task(struct work_struct *work) { struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); unsigned long start_time = jiffies; /* subtasks */ ice_watchdog_subtask(pf); ice_clean_adminq_subtask(pf); /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ ice_service_task_complete(pf); /* If the tasks have taken longer than one service timer period * or there is more work to be done, reset the service timer to * schedule the service task now. */ if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) mod_timer(&pf->serv_tmr, jiffies); } /** * ice_set_ctrlq_len - helper function to set controlq length * @hw: pointer to the hw instance */ static void ice_set_ctrlq_len(struct ice_hw *hw) { hw->adminq.num_rq_entries = ICE_AQ_LEN; hw->adminq.num_sq_entries = ICE_AQ_LEN; hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; } /** * ice_irq_affinity_notify - Callback for affinity changes * @notify: context as to what irq was changed * @mask: the new affinity mask * * This is a callback function used by the irq_set_affinity_notifier function * so that we may register to receive changes to the irq affinity masks. */ static void ice_irq_affinity_notify(struct irq_affinity_notify *notify, const cpumask_t *mask) { struct ice_q_vector *q_vector = container_of(notify, struct ice_q_vector, affinity_notify); cpumask_copy(&q_vector->affinity_mask, mask); } /** * ice_irq_affinity_release - Callback for affinity notifier release * @ref: internal core kernel usage * * This is a callback function used by the irq_set_affinity_notifier function * to inform the current notification subscriber that they will no longer * receive notifications. */ static void ice_irq_affinity_release(struct kref __always_unused *ref) {} /** * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI * @vsi: the VSI being un-configured */ static void ice_vsi_dis_irq(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; int base = vsi->base_vector; u32 val; int i; /* disable interrupt causation from each queue */ if (vsi->tx_rings) { ice_for_each_txq(vsi, i) { if (vsi->tx_rings[i]) { u16 reg; reg = vsi->tx_rings[i]->reg_idx; val = rd32(hw, QINT_TQCTL(reg)); val &= ~QINT_TQCTL_CAUSE_ENA_M; wr32(hw, QINT_TQCTL(reg), val); } } } if (vsi->rx_rings) { ice_for_each_rxq(vsi, i) { if (vsi->rx_rings[i]) { u16 reg; reg = vsi->rx_rings[i]->reg_idx; val = rd32(hw, QINT_RQCTL(reg)); val &= ~QINT_RQCTL_CAUSE_ENA_M; wr32(hw, QINT_RQCTL(reg), val); } } } /* disable each interrupt */ if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { for (i = vsi->base_vector; i < (vsi->num_q_vectors + vsi->base_vector); i++) wr32(hw, GLINT_DYN_CTL(i), 0); ice_flush(hw); for (i = 0; i < vsi->num_q_vectors; i++) synchronize_irq(pf->msix_entries[i + base].vector); } } /** * ice_vsi_ena_irq - Enable IRQ for the given VSI * @vsi: the VSI being configured */ static int ice_vsi_ena_irq(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { int i; for (i = 0; i < vsi->num_q_vectors; i++) ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); } ice_flush(hw); return 0; } /** * ice_vsi_delete - delete a VSI from the switch * @vsi: pointer to VSI being removed */ static void ice_vsi_delete(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_vsi_ctx ctxt; enum ice_status status; ctxt.vsi_num = vsi->vsi_num; memcpy(&ctxt.info, &vsi->info, sizeof(struct ice_aqc_vsi_props)); status = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL); if (status) dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n", vsi->vsi_num); } /** * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI * @vsi: the VSI being configured * @basename: name for the vector */ static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) { int q_vectors = vsi->num_q_vectors; struct ice_pf *pf = vsi->back; int base = vsi->base_vector; int rx_int_idx = 0; int tx_int_idx = 0; int vector, err; int irq_num; for (vector = 0; vector < q_vectors; vector++) { struct ice_q_vector *q_vector = vsi->q_vectors[vector]; irq_num = pf->msix_entries[base + vector].vector; if (q_vector->tx.ring && q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "%s-%s-%d", basename, "TxRx", rx_int_idx++); tx_int_idx++; } else if (q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "%s-%s-%d", basename, "rx", rx_int_idx++); } else if (q_vector->tx.ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "%s-%s-%d", basename, "tx", tx_int_idx++); } else { /* skip this unused q_vector */ continue; } err = devm_request_irq(&pf->pdev->dev, pf->msix_entries[base + vector].vector, vsi->irq_handler, 0, q_vector->name, q_vector); if (err) { netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", err); goto free_q_irqs; } /* register for affinity change notifications */ q_vector->affinity_notify.notify = ice_irq_affinity_notify; q_vector->affinity_notify.release = ice_irq_affinity_release; irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); /* assign the mask for this irq */ irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); } vsi->irqs_ready = true; return 0; free_q_irqs: while (vector) { vector--; irq_num = pf->msix_entries[base + vector].vector, irq_set_affinity_notifier(irq_num, NULL); irq_set_affinity_hint(irq_num, NULL); devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]); } return err; } /** * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type * @vsi: the VSI being configured */ static void ice_vsi_set_rss_params(struct ice_vsi *vsi) { struct ice_hw_common_caps *cap; struct ice_pf *pf = vsi->back; if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { vsi->rss_size = 1; return; } cap = &pf->hw.func_caps.common_cap; switch (vsi->type) { case ICE_VSI_PF: /* PF VSI will inherit RSS instance of PF */ vsi->rss_table_size = cap->rss_table_size; vsi->rss_size = min_t(int, num_online_cpus(), BIT(cap->rss_table_entry_width)); vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; break; default: dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); break; } } /** * ice_vsi_setup_q_map - Setup a VSI queue map * @vsi: the VSI being configured * @ctxt: VSI context structure */ static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) { u16 offset = 0, qmap = 0, numq_tc; u16 pow = 0, max_rss = 0, qcount; u16 qcount_tx = vsi->alloc_txq; u16 qcount_rx = vsi->alloc_rxq; bool ena_tc0 = false; int i; /* at least TC0 should be enabled by default */ if (vsi->tc_cfg.numtc) { if (!(vsi->tc_cfg.ena_tc & BIT(0))) ena_tc0 = true; } else { ena_tc0 = true; } if (ena_tc0) { vsi->tc_cfg.numtc++; vsi->tc_cfg.ena_tc |= 1; } numq_tc = qcount_rx / vsi->tc_cfg.numtc; /* TC mapping is a function of the number of Rx queues assigned to the * VSI for each traffic class and the offset of these queues. * The first 10 bits are for queue offset for TC0, next 4 bits for no:of * queues allocated to TC0. No:of queues is a power-of-2. * * If TC is not enabled, the queue offset is set to 0, and allocate one * queue, this way, traffic for the given TC will be sent to the default * queue. * * Setup number and offset of Rx queues for all TCs for the VSI */ /* qcount will change if RSS is enabled */ if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { if (vsi->type == ICE_VSI_PF) max_rss = ICE_MAX_LG_RSS_QS; else max_rss = ICE_MAX_SMALL_RSS_QS; qcount = min_t(int, numq_tc, max_rss); qcount = min_t(int, qcount, vsi->rss_size); } else { qcount = numq_tc; } /* find higher power-of-2 of qcount */ pow = ilog2(qcount); if (!is_power_of_2(qcount)) pow++; for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) { if (!(vsi->tc_cfg.ena_tc & BIT(i))) { /* TC is not enabled */ vsi->tc_cfg.tc_info[i].qoffset = 0; vsi->tc_cfg.tc_info[i].qcount = 1; ctxt->info.tc_mapping[i] = 0; continue; } /* TC is enabled */ vsi->tc_cfg.tc_info[i].qoffset = offset; vsi->tc_cfg.tc_info[i].qcount = qcount; qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & ICE_AQ_VSI_TC_Q_OFFSET_M) | ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); offset += qcount; ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); } vsi->num_txq = qcount_tx; vsi->num_rxq = offset; /* Rx queue mapping */ ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); /* q_mapping buffer holds the info for the first queue allocated for * this VSI in the PF space and also the number of queues associated * with this VSI. */ ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); } /** * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI * @ctxt: the VSI context being set * * This initializes a default VSI context for all sections except the Queues. */ static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) { u32 table = 0; memset(&ctxt->info, 0, sizeof(ctxt->info)); /* VSI's should be allocated from shared pool */ ctxt->alloc_from_pool = true; /* Src pruning enabled by default */ ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; /* Traffic from VSI can be sent to LAN */ ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; /* Allow all packets untagged/tagged */ ctxt->info.port_vlan_flags = ((ICE_AQ_VSI_PVLAN_MODE_ALL & ICE_AQ_VSI_PVLAN_MODE_M) >> ICE_AQ_VSI_PVLAN_MODE_S); /* Show VLAN/UP from packets in Rx descriptors */ ctxt->info.port_vlan_flags |= ((ICE_AQ_VSI_PVLAN_EMOD_STR_BOTH & ICE_AQ_VSI_PVLAN_EMOD_M) >> ICE_AQ_VSI_PVLAN_EMOD_S); /* Have 1:1 UP mapping for both ingress/egress tables */ table |= ICE_UP_TABLE_TRANSLATE(0, 0); table |= ICE_UP_TABLE_TRANSLATE(1, 1); table |= ICE_UP_TABLE_TRANSLATE(2, 2); table |= ICE_UP_TABLE_TRANSLATE(3, 3); table |= ICE_UP_TABLE_TRANSLATE(4, 4); table |= ICE_UP_TABLE_TRANSLATE(5, 5); table |= ICE_UP_TABLE_TRANSLATE(6, 6); table |= ICE_UP_TABLE_TRANSLATE(7, 7); ctxt->info.ingress_table = cpu_to_le32(table); ctxt->info.egress_table = cpu_to_le32(table); /* Have 1:1 UP mapping for outer to inner UP table */ ctxt->info.outer_up_table = cpu_to_le32(table); /* No Outer tag support outer_tag_flags remains to zero */ } /** * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI * @ctxt: the VSI context being set * @vsi: the VSI being configured */ static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) { u8 lut_type, hash_type; switch (vsi->type) { case ICE_VSI_PF: /* PF VSI will inherit RSS instance of PF */ lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; break; default: dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", vsi->type); return; } ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & ICE_AQ_VSI_Q_OPT_RSS_HASH_M); } /** * ice_vsi_add - Create a new VSI or fetch preallocated VSI * @vsi: the VSI being configured * * This initializes a VSI context depending on the VSI type to be added and * passes it down to the add_vsi aq command to create a new VSI. */ static int ice_vsi_add(struct ice_vsi *vsi) { struct ice_vsi_ctx ctxt = { 0 }; struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; int ret = 0; switch (vsi->type) { case ICE_VSI_PF: ctxt.flags = ICE_AQ_VSI_TYPE_PF; break; default: return -ENODEV; } ice_set_dflt_vsi_ctx(&ctxt); /* if the switch is in VEB mode, allow VSI loopback */ if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; /* Set LUT type and HASH type if RSS is enabled */ if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) ice_set_rss_vsi_ctx(&ctxt, vsi); ctxt.info.sw_id = vsi->port_info->sw_id; ice_vsi_setup_q_map(vsi, &ctxt); ret = ice_aq_add_vsi(hw, &ctxt, NULL); if (ret) { dev_err(&vsi->back->pdev->dev, "Add VSI AQ call failed, err %d\n", ret); return -EIO; } vsi->info = ctxt.info; vsi->vsi_num = ctxt.vsi_num; return ret; } /** * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW * @vsi: the VSI being cleaned up */ static void ice_vsi_release_msix(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; u16 vector = vsi->base_vector; struct ice_hw *hw = &pf->hw; u32 txq = 0; u32 rxq = 0; int i, q; for (i = 0; i < vsi->num_q_vectors; i++, vector++) { struct ice_q_vector *q_vector = vsi->q_vectors[i]; wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), 0); wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), 0); for (q = 0; q < q_vector->num_ring_tx; q++) { wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); txq++; } for (q = 0; q < q_vector->num_ring_rx; q++) { wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); rxq++; } } ice_flush(hw); } /** * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI * @vsi: the VSI having rings deallocated */ static void ice_vsi_clear_rings(struct ice_vsi *vsi) { int i; if (vsi->tx_rings) { for (i = 0; i < vsi->alloc_txq; i++) { if (vsi->tx_rings[i]) { kfree_rcu(vsi->tx_rings[i], rcu); vsi->tx_rings[i] = NULL; } } } if (vsi->rx_rings) { for (i = 0; i < vsi->alloc_rxq; i++) { if (vsi->rx_rings[i]) { kfree_rcu(vsi->rx_rings[i], rcu); vsi->rx_rings[i] = NULL; } } } } /** * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI * @vsi: VSI which is having rings allocated */ static int ice_vsi_alloc_rings(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int i; /* Allocate tx_rings */ for (i = 0; i < vsi->alloc_txq; i++) { struct ice_ring *ring; /* allocate with kzalloc(), free with kfree_rcu() */ ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) goto err_out; ring->q_index = i; ring->reg_idx = vsi->txq_map[i]; ring->ring_active = false; ring->vsi = vsi; ring->netdev = vsi->netdev; ring->dev = &pf->pdev->dev; ring->count = vsi->num_desc; vsi->tx_rings[i] = ring; } /* Allocate rx_rings */ for (i = 0; i < vsi->alloc_rxq; i++) { struct ice_ring *ring; /* allocate with kzalloc(), free with kfree_rcu() */ ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) goto err_out; ring->q_index = i; ring->reg_idx = vsi->rxq_map[i]; ring->ring_active = false; ring->vsi = vsi; ring->netdev = vsi->netdev; ring->dev = &pf->pdev->dev; ring->count = vsi->num_desc; vsi->rx_rings[i] = ring; } return 0; err_out: ice_vsi_clear_rings(vsi); return -ENOMEM; } /** * ice_vsi_free_irq - Free the irq association with the OS * @vsi: the VSI being configured */ static void ice_vsi_free_irq(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int base = vsi->base_vector; if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { int i; if (!vsi->q_vectors || !vsi->irqs_ready) return; vsi->irqs_ready = false; for (i = 0; i < vsi->num_q_vectors; i++) { u16 vector = i + base; int irq_num; irq_num = pf->msix_entries[vector].vector; /* free only the irqs that were actually requested */ if (!vsi->q_vectors[i] || !(vsi->q_vectors[i]->num_ring_tx || vsi->q_vectors[i]->num_ring_rx)) continue; /* clear the affinity notifier in the IRQ descriptor */ irq_set_affinity_notifier(irq_num, NULL); /* clear the affinity_mask in the IRQ descriptor */ irq_set_affinity_hint(irq_num, NULL); synchronize_irq(irq_num); devm_free_irq(&pf->pdev->dev, irq_num, vsi->q_vectors[i]); } ice_vsi_release_msix(vsi); } } /** * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW * @vsi: the VSI being configured */ static void ice_vsi_cfg_msix(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; u16 vector = vsi->base_vector; struct ice_hw *hw = &pf->hw; u32 txq = 0, rxq = 0; int i, q, itr; u8 itr_gran; for (i = 0; i < vsi->num_q_vectors; i++, vector++) { struct ice_q_vector *q_vector = vsi->q_vectors[i]; itr_gran = hw->itr_gran_200; if (q_vector->num_ring_rx) { q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[rxq]->rx_itr_setting, itr_gran); q_vector->rx.latency_range = ICE_LOW_LATENCY; } if (q_vector->num_ring_tx) { q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[txq]->tx_itr_setting, itr_gran); q_vector->tx.latency_range = ICE_LOW_LATENCY; } wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), q_vector->rx.itr); wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), q_vector->tx.itr); /* Both Transmit Queue Interrupt Cause Control register * and Receive Queue Interrupt Cause control register * expects MSIX_INDX field to be the vector index * within the function space and not the absolute * vector index across PF or across device. * For SR-IOV VF VSIs queue vector index always starts * with 1 since first vector index(0) is used for OICR * in VF space. Since VMDq and other PF VSIs are withtin * the PF function space, use the vector index thats * tracked for this PF. */ for (q = 0; q < q_vector->num_ring_tx; q++) { u32 val; itr = ICE_TX_ITR; val = QINT_TQCTL_CAUSE_ENA_M | (itr << QINT_TQCTL_ITR_INDX_S) | (vector << QINT_TQCTL_MSIX_INDX_S); wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); txq++; } for (q = 0; q < q_vector->num_ring_rx; q++) { u32 val; itr = ICE_RX_ITR; val = QINT_RQCTL_CAUSE_ENA_M | (itr << QINT_RQCTL_ITR_INDX_S) | (vector << QINT_RQCTL_MSIX_INDX_S); wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); rxq++; } } ice_flush(hw); } /** * ice_ena_misc_vector - enable the non-queue interrupts * @pf: board private structure */ static void ice_ena_misc_vector(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; u32 val; /* clear things first */ wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ rd32(hw, PFINT_OICR); /* read to clear */ val = (PFINT_OICR_HLP_RDY_M | PFINT_OICR_CPM_RDY_M | PFINT_OICR_ECC_ERR_M | PFINT_OICR_MAL_DETECT_M | PFINT_OICR_GRST_M | PFINT_OICR_PCI_EXCEPTION_M | PFINT_OICR_GPIO_M | PFINT_OICR_STORM_DETECT_M | PFINT_OICR_HMC_ERR_M); wr32(hw, PFINT_OICR_ENA, val); /* SW_ITR_IDX = 0, but don't change INTENA */ wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); } /** * ice_misc_intr - misc interrupt handler * @irq: interrupt number * @data: pointer to a q_vector */ static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) { struct ice_pf *pf = (struct ice_pf *)data; struct ice_hw *hw = &pf->hw; irqreturn_t ret = IRQ_NONE; u32 oicr, ena_mask; set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); oicr = rd32(hw, PFINT_OICR); ena_mask = rd32(hw, PFINT_OICR_ENA); if (!(oicr & PFINT_OICR_INTEVENT_M)) goto ena_intr; if (oicr & PFINT_OICR_HMC_ERR_M) { ena_mask &= ~PFINT_OICR_HMC_ERR_M; dev_dbg(&pf->pdev->dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", rd32(hw, PFHMC_ERRORINFO), rd32(hw, PFHMC_ERRORDATA)); } /* Report and mask off any remaining unexpected interrupts */ oicr &= ena_mask; if (oicr) { dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n", oicr); /* If a critical error is pending there is no choice but to * reset the device. */ if (oicr & (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_PCI_EXCEPTION_M | PFINT_OICR_ECC_ERR_M)) set_bit(__ICE_PFR_REQ, pf->state); ena_mask &= ~oicr; } ret = IRQ_HANDLED; ena_intr: /* re-enable interrupt causes that are not handled during this pass */ wr32(hw, PFINT_OICR_ENA, ena_mask); if (!test_bit(__ICE_DOWN, pf->state)) { ice_service_task_schedule(pf); ice_irq_dynamic_ena(hw, NULL, NULL); } return ret; } /** * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors * @vsi: the VSI being configured * * This function maps descriptor rings to the queue-specific vectors allotted * through the MSI-X enabling code. On a constrained vector budget, we map Tx * and Rx rings to the vector as "efficiently" as possible. */ static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) { int q_vectors = vsi->num_q_vectors; int tx_rings_rem, rx_rings_rem; int v_id; /* initially assigning remaining rings count to VSIs num queue value */ tx_rings_rem = vsi->num_txq; rx_rings_rem = vsi->num_rxq; for (v_id = 0; v_id < q_vectors; v_id++) { struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; int tx_rings_per_v, rx_rings_per_v, q_id, q_base; /* Tx rings mapping to vector */ tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id); q_vector->num_ring_tx = tx_rings_per_v; q_vector->tx.ring = NULL; q_base = vsi->num_txq - tx_rings_rem; for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { struct ice_ring *tx_ring = vsi->tx_rings[q_id]; tx_ring->q_vector = q_vector; tx_ring->next = q_vector->tx.ring; q_vector->tx.ring = tx_ring; } tx_rings_rem -= tx_rings_per_v; /* Rx rings mapping to vector */ rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id); q_vector->num_ring_rx = rx_rings_per_v; q_vector->rx.ring = NULL; q_base = vsi->num_rxq - rx_rings_rem; for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { struct ice_ring *rx_ring = vsi->rx_rings[q_id]; rx_ring->q_vector = q_vector; rx_ring->next = q_vector->rx.ring; q_vector->rx.ring = rx_ring; } rx_rings_rem -= rx_rings_per_v; } } /** * ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI * @vsi: the VSI being configured * * Return 0 on success and a negative value on error */ static void ice_vsi_set_num_qs(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; switch (vsi->type) { case ICE_VSI_PF: vsi->alloc_txq = pf->num_lan_tx; vsi->alloc_rxq = pf->num_lan_rx; vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE); vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx); break; default: dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", vsi->type); break; } } /** * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi * @vsi: VSI pointer * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. * * On error: returns error code (negative) * On success: returns 0 */ static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors) { struct ice_pf *pf = vsi->back; /* allocate memory for both Tx and Rx ring pointers */ vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq, sizeof(struct ice_ring *), GFP_KERNEL); if (!vsi->tx_rings) goto err_txrings; vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq, sizeof(struct ice_ring *), GFP_KERNEL); if (!vsi->rx_rings) goto err_rxrings; if (alloc_qvectors) { /* allocate memory for q_vector pointers */ vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors, sizeof(struct ice_q_vector *), GFP_KERNEL); if (!vsi->q_vectors) goto err_vectors; } return 0; err_vectors: devm_kfree(&pf->pdev->dev, vsi->rx_rings); err_rxrings: devm_kfree(&pf->pdev->dev, vsi->tx_rings); err_txrings: return -ENOMEM; } /** * ice_msix_clean_rings - MSIX mode Interrupt Handler * @irq: interrupt number * @data: pointer to a q_vector */ static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) { struct ice_q_vector *q_vector = (struct ice_q_vector *)data; if (!q_vector->tx.ring && !q_vector->rx.ring) return IRQ_HANDLED; napi_schedule(&q_vector->napi); return IRQ_HANDLED; } /** * ice_vsi_alloc - Allocates the next available struct vsi in the PF * @pf: board private structure * @type: type of VSI * * returns a pointer to a VSI on success, NULL on failure. */ static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type) { struct ice_vsi *vsi = NULL; /* Need to protect the allocation of the VSIs at the PF level */ mutex_lock(&pf->sw_mutex); /* If we have already allocated our maximum number of VSIs, * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index * is available to be populated */ if (pf->next_vsi == ICE_NO_VSI) { dev_dbg(&pf->pdev->dev, "out of VSI slots!\n"); goto unlock_pf; } vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL); if (!vsi) goto unlock_pf; vsi->type = type; vsi->back = pf; set_bit(__ICE_DOWN, vsi->state); vsi->idx = pf->next_vsi; vsi->work_lmt = ICE_DFLT_IRQ_WORK; ice_vsi_set_num_qs(vsi); switch (vsi->type) { case ICE_VSI_PF: if (ice_vsi_alloc_arrays(vsi, true)) goto err_rings; /* Setup default MSIX irq handler for VSI */ vsi->irq_handler = ice_msix_clean_rings; break; default: dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); goto unlock_pf; } /* fill VSI slot in the PF struct */ pf->vsi[pf->next_vsi] = vsi; /* prepare pf->next_vsi for next use */ pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, pf->next_vsi); goto unlock_pf; err_rings: devm_kfree(&pf->pdev->dev, vsi); vsi = NULL; unlock_pf: mutex_unlock(&pf->sw_mutex); return vsi; } /** * ice_free_irq_msix_misc - Unroll misc vector setup * @pf: board private structure */ static void ice_free_irq_msix_misc(struct ice_pf *pf) { /* disable OICR interrupt */ wr32(&pf->hw, PFINT_OICR_ENA, 0); ice_flush(&pf->hw); if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); devm_free_irq(&pf->pdev->dev, pf->msix_entries[pf->oicr_idx].vector, pf); } ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); } /** * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events * @pf: board private structure * * This sets up the handler for MSIX 0, which is used to manage the * non-queue interrupts, e.g. AdminQ and errors. This is not used * when in MSI or Legacy interrupt mode. */ static int ice_req_irq_msix_misc(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; int oicr_idx, err = 0; u8 itr_gran; u32 val; if (!pf->int_name[0]) snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", dev_driver_string(&pf->pdev->dev), dev_name(&pf->pdev->dev)); /* reserve one vector in irq_tracker for misc interrupts */ oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); if (oicr_idx < 0) return oicr_idx; pf->oicr_idx = oicr_idx; err = devm_request_irq(&pf->pdev->dev, pf->msix_entries[pf->oicr_idx].vector, ice_misc_intr, 0, pf->int_name, pf); if (err) { dev_err(&pf->pdev->dev, "devm_request_irq for %s failed: %d\n", pf->int_name, err); ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); return err; } ice_ena_misc_vector(pf); val = (pf->oicr_idx & PFINT_OICR_CTL_MSIX_INDX_M) | (ICE_RX_ITR & PFINT_OICR_CTL_ITR_INDX_M) | PFINT_OICR_CTL_CAUSE_ENA_M; wr32(hw, PFINT_OICR_CTL, val); /* This enables Admin queue Interrupt causes */ val = (pf->oicr_idx & PFINT_FW_CTL_MSIX_INDX_M) | (ICE_RX_ITR & PFINT_FW_CTL_ITR_INDX_M) | PFINT_FW_CTL_CAUSE_ENA_M; wr32(hw, PFINT_FW_CTL, val); itr_gran = hw->itr_gran_200; wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), ITR_TO_REG(ICE_ITR_8K, itr_gran)); ice_flush(hw); ice_irq_dynamic_ena(hw, NULL, NULL); return 0; } /** * ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI * @vsi: the VSI getting queues * * Return 0 on success and a negative value on error */ static int ice_vsi_get_qs_contig(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int offset, ret = 0; mutex_lock(&pf->avail_q_mutex); /* look for contiguous block of queues for tx */ offset = bitmap_find_next_zero_area(pf->avail_txqs, ICE_MAX_TXQS, 0, vsi->alloc_txq, 0); if (offset < ICE_MAX_TXQS) { int i; bitmap_set(pf->avail_txqs, offset, vsi->alloc_txq); for (i = 0; i < vsi->alloc_txq; i++) vsi->txq_map[i] = i + offset; } else { ret = -ENOMEM; vsi->tx_mapping_mode = ICE_VSI_MAP_SCATTER; } /* look for contiguous block of queues for rx */ offset = bitmap_find_next_zero_area(pf->avail_rxqs, ICE_MAX_RXQS, 0, vsi->alloc_rxq, 0); if (offset < ICE_MAX_RXQS) { int i; bitmap_set(pf->avail_rxqs, offset, vsi->alloc_rxq); for (i = 0; i < vsi->alloc_rxq; i++) vsi->rxq_map[i] = i + offset; } else { ret = -ENOMEM; vsi->rx_mapping_mode = ICE_VSI_MAP_SCATTER; } mutex_unlock(&pf->avail_q_mutex); return ret; } /** * ice_vsi_get_qs_scatter - Assign a scattered queues to VSI * @vsi: the VSI getting queues * * Return 0 on success and a negative value on error */ static int ice_vsi_get_qs_scatter(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int i, index = 0; mutex_lock(&pf->avail_q_mutex); if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) { for (i = 0; i < vsi->alloc_txq; i++) { index = find_next_zero_bit(pf->avail_txqs, ICE_MAX_TXQS, index); if (index < ICE_MAX_TXQS) { set_bit(index, pf->avail_txqs); vsi->txq_map[i] = index; } else { goto err_scatter_tx; } } } if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) { for (i = 0; i < vsi->alloc_rxq; i++) { index = find_next_zero_bit(pf->avail_rxqs, ICE_MAX_RXQS, index); if (index < ICE_MAX_RXQS) { set_bit(index, pf->avail_rxqs); vsi->rxq_map[i] = index; } else { goto err_scatter_rx; } } } mutex_unlock(&pf->avail_q_mutex); return 0; err_scatter_rx: /* unflag any queues we have grabbed (i is failed position) */ for (index = 0; index < i; index++) { clear_bit(vsi->rxq_map[index], pf->avail_rxqs); vsi->rxq_map[index] = 0; } i = vsi->alloc_txq; err_scatter_tx: /* i is either position of failed attempt or vsi->alloc_txq */ for (index = 0; index < i; index++) { clear_bit(vsi->txq_map[index], pf->avail_txqs); vsi->txq_map[index] = 0; } mutex_unlock(&pf->avail_q_mutex); return -ENOMEM; } /** * ice_vsi_get_qs - Assign queues from PF to VSI * @vsi: the VSI to assign queues to * * Returns 0 on success and a negative value on error */ static int ice_vsi_get_qs(struct ice_vsi *vsi) { int ret = 0; vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; /* NOTE: ice_vsi_get_qs_contig() will set the rx/tx mapping * modes individually to scatter if assigning contiguous queues * to rx or tx fails */ ret = ice_vsi_get_qs_contig(vsi); if (ret < 0) { if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) vsi->alloc_txq = max_t(u16, vsi->alloc_txq, ICE_MAX_SCATTER_TXQS); if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) vsi->alloc_rxq = max_t(u16, vsi->alloc_rxq, ICE_MAX_SCATTER_RXQS); ret = ice_vsi_get_qs_scatter(vsi); } return ret; } /** * ice_vsi_put_qs - Release queues from VSI to PF * @vsi: the VSI thats going to release queues */ static void ice_vsi_put_qs(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int i; mutex_lock(&pf->avail_q_mutex); for (i = 0; i < vsi->alloc_txq; i++) { clear_bit(vsi->txq_map[i], pf->avail_txqs); vsi->txq_map[i] = ICE_INVAL_Q_INDEX; } for (i = 0; i < vsi->alloc_rxq; i++) { clear_bit(vsi->rxq_map[i], pf->avail_rxqs); vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; } mutex_unlock(&pf->avail_q_mutex); } /** * ice_free_q_vector - Free memory allocated for a specific interrupt vector * @vsi: VSI having the memory freed * @v_idx: index of the vector to be freed */ static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) { struct ice_q_vector *q_vector; struct ice_ring *ring; if (!vsi->q_vectors[v_idx]) { dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n", v_idx); return; } q_vector = vsi->q_vectors[v_idx]; ice_for_each_ring(ring, q_vector->tx) ring->q_vector = NULL; ice_for_each_ring(ring, q_vector->rx) ring->q_vector = NULL; /* only VSI with an associated netdev is set up with NAPI */ if (vsi->netdev) netif_napi_del(&q_vector->napi); devm_kfree(&vsi->back->pdev->dev, q_vector); vsi->q_vectors[v_idx] = NULL; } /** * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors * @vsi: the VSI having memory freed */ static void ice_vsi_free_q_vectors(struct ice_vsi *vsi) { int v_idx; for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) ice_free_q_vector(vsi, v_idx); } /** * ice_cfg_netdev - Setup the netdev flags * @vsi: the VSI being configured * * Returns 0 on success, negative value on failure */ static int ice_cfg_netdev(struct ice_vsi *vsi) { netdev_features_t csumo_features; netdev_features_t vlano_features; netdev_features_t dflt_features; netdev_features_t tso_features; struct ice_netdev_priv *np; struct net_device *netdev; u8 mac_addr[ETH_ALEN]; netdev = alloc_etherdev_mqs(sizeof(struct ice_netdev_priv), vsi->alloc_txq, vsi->alloc_rxq); if (!netdev) return -ENOMEM; vsi->netdev = netdev; np = netdev_priv(netdev); np->vsi = vsi; dflt_features = NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_RXHASH; csumo_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; tso_features = NETIF_F_TSO; /* set features that user can change */ netdev->hw_features = dflt_features | csumo_features | vlano_features | tso_features; /* enable features */ netdev->features |= netdev->hw_features; /* encap and VLAN devices inherit default, csumo and tso features */ netdev->hw_enc_features |= dflt_features | csumo_features | tso_features; netdev->vlan_features |= dflt_features | csumo_features | tso_features; if (vsi->type == ICE_VSI_PF) { SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev); ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); ether_addr_copy(netdev->dev_addr, mac_addr); ether_addr_copy(netdev->perm_addr, mac_addr); } netdev->priv_flags |= IFF_UNICAST_FLT; /* assign netdev_ops */ netdev->netdev_ops = &ice_netdev_ops; /* setup watchdog timeout value to be 5 second */ netdev->watchdog_timeo = 5 * HZ; ice_set_ethtool_ops(netdev); netdev->min_mtu = ETH_MIN_MTU; netdev->max_mtu = ICE_MAX_MTU; return 0; } /** * ice_vsi_free_arrays - clean up vsi resources * @vsi: pointer to VSI being cleared * @free_qvectors: bool to specify if q_vectors should be deallocated */ static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors) { struct ice_pf *pf = vsi->back; /* free the ring and vector containers */ if (free_qvectors && vsi->q_vectors) { devm_kfree(&pf->pdev->dev, vsi->q_vectors); vsi->q_vectors = NULL; } if (vsi->tx_rings) { devm_kfree(&pf->pdev->dev, vsi->tx_rings); vsi->tx_rings = NULL; } if (vsi->rx_rings) { devm_kfree(&pf->pdev->dev, vsi->rx_rings); vsi->rx_rings = NULL; } } /** * ice_vsi_clear - clean up and deallocate the provided vsi * @vsi: pointer to VSI being cleared * * This deallocates the vsi's queue resources, removes it from the PF's * VSI array if necessary, and deallocates the VSI * * Returns 0 on success, negative on failure */ static int ice_vsi_clear(struct ice_vsi *vsi) { struct ice_pf *pf = NULL; if (!vsi) return 0; if (!vsi->back) return -EINVAL; pf = vsi->back; if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); return -EINVAL; } mutex_lock(&pf->sw_mutex); /* updates the PF for this cleared vsi */ pf->vsi[vsi->idx] = NULL; if (vsi->idx < pf->next_vsi) pf->next_vsi = vsi->idx; ice_vsi_free_arrays(vsi, true); mutex_unlock(&pf->sw_mutex); devm_kfree(&pf->pdev->dev, vsi); return 0; } /** * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector * @vsi: the VSI being configured * @v_idx: index of the vector in the vsi struct * * We allocate one q_vector. If allocation fails we return -ENOMEM. */ static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx) { struct ice_pf *pf = vsi->back; struct ice_q_vector *q_vector; /* allocate q_vector */ q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL); if (!q_vector) return -ENOMEM; q_vector->vsi = vsi; q_vector->v_idx = v_idx; /* only set affinity_mask if the CPU is online */ if (cpu_online(v_idx)) cpumask_set_cpu(v_idx, &q_vector->affinity_mask); if (vsi->netdev) netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, NAPI_POLL_WEIGHT); /* tie q_vector and vsi together */ vsi->q_vectors[v_idx] = q_vector; return 0; } /** * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors * @vsi: the VSI being configured * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. */ static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int v_idx = 0, num_q_vectors; int err; if (vsi->q_vectors[0]) { dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); return -EEXIST; } if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { num_q_vectors = vsi->num_q_vectors; } else { err = -EINVAL; goto err_out; } for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { err = ice_vsi_alloc_q_vector(vsi, v_idx); if (err) goto err_out; } return 0; err_out: while (v_idx--) ice_free_q_vector(vsi, v_idx); dev_err(&pf->pdev->dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", vsi->num_q_vectors, vsi->vsi_num, err); vsi->num_q_vectors = 0; return err; } /** * ice_vsi_setup_vector_base - Set up the base vector for the given VSI * @vsi: ptr to the VSI * * This should only be called after ice_vsi_alloc() which allocates the * corresponding SW VSI structure and initializes num_queue_pairs for the * newly allocated VSI. * * Returns 0 on success or negative on failure */ static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int num_q_vectors = 0; if (vsi->base_vector) { dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", vsi->vsi_num, vsi->base_vector); return -EEXIST; } if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) return -ENOENT; switch (vsi->type) { case ICE_VSI_PF: num_q_vectors = vsi->num_q_vectors; break; default: dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", vsi->type); break; } if (num_q_vectors) vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx); if (vsi->base_vector < 0) { dev_err(&pf->pdev->dev, "Failed to get tracking for %d vectors for VSI %d, err=%d\n", num_q_vectors, vsi->vsi_num, vsi->base_vector); return -ENOENT; } return 0; } /** * ice_fill_rss_lut - Fill the RSS lookup table with default values * @lut: Lookup table * @rss_table_size: Lookup table size * @rss_size: Range of queue number for hashing */ void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) { u16 i; for (i = 0; i < rss_table_size; i++) lut[i] = i % rss_size; } /** * ice_vsi_cfg_rss - Configure RSS params for a VSI * @vsi: VSI to be configured */ static int ice_vsi_cfg_rss(struct ice_vsi *vsi) { u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE]; struct ice_aqc_get_set_rss_keys *key; struct ice_pf *pf = vsi->back; enum ice_status status; int err = 0; u8 *lut; vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL); if (!lut) return -ENOMEM; if (vsi->rss_lut_user) memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); else ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); status = ice_aq_set_rss_lut(&pf->hw, vsi->vsi_num, vsi->rss_lut_type, lut, vsi->rss_table_size); if (status) { dev_err(&vsi->back->pdev->dev, "set_rss_lut failed, error %d\n", status); err = -EIO; goto ice_vsi_cfg_rss_exit; } key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL); if (!key) { err = -ENOMEM; goto ice_vsi_cfg_rss_exit; } if (vsi->rss_hkey_user) memcpy(seed, vsi->rss_hkey_user, ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); else netdev_rss_key_fill((void *)seed, ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); memcpy(&key->standard_rss_key, seed, ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); status = ice_aq_set_rss_key(&pf->hw, vsi->vsi_num, key); if (status) { dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n", status); err = -EIO; } devm_kfree(&pf->pdev->dev, key); ice_vsi_cfg_rss_exit: devm_kfree(&pf->pdev->dev, lut); return err; } /** * ice_vsi_setup - Set up a VSI by a given type * @pf: board private structure * @type: VSI type * @pi: pointer to the port_info instance * * This allocates the sw VSI structure and its queue resources. * * Returns pointer to the successfully allocated and configure VSI sw struct on * success, otherwise returns NULL on failure. */ static struct ice_vsi * ice_vsi_setup(struct ice_pf *pf, enum ice_vsi_type type, struct ice_port_info *pi) { u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; struct device *dev = &pf->pdev->dev; struct ice_vsi_ctx ctxt = { 0 }; struct ice_vsi *vsi; int ret, i; vsi = ice_vsi_alloc(pf, type); if (!vsi) { dev_err(dev, "could not allocate VSI\n"); return NULL; } vsi->port_info = pi; vsi->vsw = pf->first_sw; if (ice_vsi_get_qs(vsi)) { dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", vsi->idx); goto err_get_qs; } /* set RSS capabilities */ ice_vsi_set_rss_params(vsi); /* create the VSI */ ret = ice_vsi_add(vsi); if (ret) goto err_vsi; ctxt.vsi_num = vsi->vsi_num; switch (vsi->type) { case ICE_VSI_PF: ret = ice_cfg_netdev(vsi); if (ret) goto err_cfg_netdev; ret = register_netdev(vsi->netdev); if (ret) goto err_register_netdev; netif_carrier_off(vsi->netdev); /* make sure transmit queues start off as stopped */ netif_tx_stop_all_queues(vsi->netdev); ret = ice_vsi_alloc_q_vectors(vsi); if (ret) goto err_msix; ret = ice_vsi_setup_vector_base(vsi); if (ret) goto err_rings; ret = ice_vsi_alloc_rings(vsi); if (ret) goto err_rings; ice_vsi_map_rings_to_vectors(vsi); /* Do not exit if configuring RSS had an issue, at least * receive traffic on first queue. Hence no need to capture * return value */ if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) ice_vsi_cfg_rss(vsi); break; default: /* if vsi type is not recognized, clean up the resources and * exit */ goto err_rings; } ice_vsi_set_tc_cfg(vsi); /* configure VSI nodes based on number of queues and TC's */ for (i = 0; i < vsi->tc_cfg.numtc; i++) max_txqs[i] = vsi->num_txq; ret = ice_cfg_vsi_lan(vsi->port_info, vsi->vsi_num, vsi->tc_cfg.ena_tc, max_txqs); if (ret) { dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n"); goto err_rings; } return vsi; err_rings: ice_vsi_free_q_vectors(vsi); err_msix: if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED) unregister_netdev(vsi->netdev); err_register_netdev: if (vsi->netdev) { free_netdev(vsi->netdev); vsi->netdev = NULL; } err_cfg_netdev: ret = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL); if (ret) dev_err(&vsi->back->pdev->dev, "Free VSI AQ call failed, err %d\n", ret); err_vsi: ice_vsi_put_qs(vsi); err_get_qs: pf->q_left_tx += vsi->alloc_txq; pf->q_left_rx += vsi->alloc_rxq; ice_vsi_clear(vsi); return NULL; } /** * ice_vsi_add_vlan - Add vsi membership for given vlan * @vsi: the vsi being configured * @vid: vlan id to be added */ static int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) { struct ice_fltr_list_entry *tmp; struct ice_pf *pf = vsi->back; LIST_HEAD(tmp_add_list); enum ice_status status; int err = 0; tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL); if (!tmp) return -ENOMEM; tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; tmp->fltr_info.flag = ICE_FLTR_TX; tmp->fltr_info.src = vsi->vsi_num; tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num; tmp->fltr_info.l_data.vlan.vlan_id = vid; INIT_LIST_HEAD(&tmp->list_entry); list_add(&tmp->list_entry, &tmp_add_list); status = ice_add_vlan(&pf->hw, &tmp_add_list); if (status) { err = -ENODEV; dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n", vid, vsi->vsi_num); } ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); return err; } /** * ice_vlan_rx_add_vid - Add a vlan id filter to HW offload * @netdev: network interface to be adjusted * @proto: unused protocol * @vid: vlan id to be added * * net_device_ops implementation for adding vlan ids */ static int ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; int ret = 0; if (vid >= VLAN_N_VID) { netdev_err(netdev, "VLAN id requested %d is out of range %d\n", vid, VLAN_N_VID); return -EINVAL; } if (vsi->info.pvid) return -EINVAL; /* Add all VLAN ids including 0 to the switch filter. VLAN id 0 is * needed to continue allowing all untagged packets since VLAN prune * list is applied to all packets by the switch */ ret = ice_vsi_add_vlan(vsi, vid); if (!ret) set_bit(vid, vsi->active_vlans); return ret; } /** * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN * @vsi: the VSI being configured * @vid: VLAN id to be removed */ static void ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) { struct ice_fltr_list_entry *list; struct ice_pf *pf = vsi->back; LIST_HEAD(tmp_add_list); list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); if (!list) return; list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; list->fltr_info.fwd_id.vsi_id = vsi->vsi_num; list->fltr_info.fltr_act = ICE_FWD_TO_VSI; list->fltr_info.l_data.vlan.vlan_id = vid; list->fltr_info.flag = ICE_FLTR_TX; list->fltr_info.src = vsi->vsi_num; INIT_LIST_HEAD(&list->list_entry); list_add(&list->list_entry, &tmp_add_list); if (ice_remove_vlan(&pf->hw, &tmp_add_list)) dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n", vid, vsi->vsi_num); ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); } /** * ice_vlan_rx_kill_vid - Remove a vlan id filter from HW offload * @netdev: network interface to be adjusted * @proto: unused protocol * @vid: vlan id to be removed * * net_device_ops implementation for removing vlan ids */ static int ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; if (vsi->info.pvid) return -EINVAL; /* return code is ignored as there is nothing a user * can do about failure to remove and a log message was * already printed from the other function */ ice_vsi_kill_vlan(vsi, vid); clear_bit(vid, vsi->active_vlans); return 0; } /** * ice_setup_pf_sw - Setup the HW switch on startup or after reset * @pf: board private structure * * Returns 0 on success, negative value on failure */ static int ice_setup_pf_sw(struct ice_pf *pf) { LIST_HEAD(tmp_add_list); u8 broadcast[ETH_ALEN]; struct ice_vsi *vsi; int status = 0; vsi = ice_vsi_setup(pf, ICE_VSI_PF, pf->hw.port_info); if (!vsi) { status = -ENOMEM; goto error_exit; } /* tmp_add_list contains a list of MAC addresses for which MAC * filters need to be programmed. Add the VSI's unicast MAC to * this list */ status = ice_add_mac_to_list(vsi, &tmp_add_list, vsi->port_info->mac.perm_addr); if (status) goto error_exit; /* VSI needs to receive broadcast traffic, so add the broadcast * MAC address to the list. */ eth_broadcast_addr(broadcast); status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast); if (status) goto error_exit; /* program MAC filters for entries in tmp_add_list */ status = ice_add_mac(&pf->hw, &tmp_add_list); if (status) { dev_err(&pf->pdev->dev, "Could not add MAC filters\n"); status = -ENOMEM; goto error_exit; } ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); return status; error_exit: ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); if (vsi) { ice_vsi_free_q_vectors(vsi); if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED) unregister_netdev(vsi->netdev); if (vsi->netdev) { free_netdev(vsi->netdev); vsi->netdev = NULL; } ice_vsi_delete(vsi); ice_vsi_put_qs(vsi); pf->q_left_tx += vsi->alloc_txq; pf->q_left_rx += vsi->alloc_rxq; ice_vsi_clear(vsi); } return status; } /** * ice_determine_q_usage - Calculate queue distribution * @pf: board private structure * * Return -ENOMEM if we don't get enough queues for all ports */ static void ice_determine_q_usage(struct ice_pf *pf) { u16 q_left_tx, q_left_rx; q_left_tx = pf->hw.func_caps.common_cap.num_txq; q_left_rx = pf->hw.func_caps.common_cap.num_rxq; pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus()); /* only 1 rx queue unless RSS is enabled */ if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) pf->num_lan_rx = 1; else pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus()); pf->q_left_tx = q_left_tx - pf->num_lan_tx; pf->q_left_rx = q_left_rx - pf->num_lan_rx; } /** * ice_deinit_pf - Unrolls initialziations done by ice_init_pf * @pf: board private structure to initialize */ static void ice_deinit_pf(struct ice_pf *pf) { if (pf->serv_tmr.function) del_timer_sync(&pf->serv_tmr); if (pf->serv_task.func) cancel_work_sync(&pf->serv_task); mutex_destroy(&pf->sw_mutex); mutex_destroy(&pf->avail_q_mutex); } /** * ice_init_pf - Initialize general software structures (struct ice_pf) * @pf: board private structure to initialize */ static void ice_init_pf(struct ice_pf *pf) { bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS); set_bit(ICE_FLAG_MSIX_ENA, pf->flags); mutex_init(&pf->sw_mutex); mutex_init(&pf->avail_q_mutex); /* Clear avail_[t|r]x_qs bitmaps (set all to avail) */ mutex_lock(&pf->avail_q_mutex); bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS); bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS); mutex_unlock(&pf->avail_q_mutex); if (pf->hw.func_caps.common_cap.rss_table_size) set_bit(ICE_FLAG_RSS_ENA, pf->flags); /* setup service timer and periodic service task */ timer_setup(&pf->serv_tmr, ice_service_timer, 0); pf->serv_tmr_period = HZ; INIT_WORK(&pf->serv_task, ice_service_task); clear_bit(__ICE_SERVICE_SCHED, pf->state); } /** * ice_ena_msix_range - Request a range of MSIX vectors from the OS * @pf: board private structure * * compute the number of MSIX vectors required (v_budget) and request from * the OS. Return the number of vectors reserved or negative on failure */ static int ice_ena_msix_range(struct ice_pf *pf) { int v_left, v_actual, v_budget = 0; int needed, err, i; v_left = pf->hw.func_caps.common_cap.num_msix_vectors; /* reserve one vector for miscellaneous handler */ needed = 1; v_budget += needed; v_left -= needed; /* reserve vectors for LAN traffic */ pf->num_lan_msix = min_t(int, num_online_cpus(), v_left); v_budget += pf->num_lan_msix; pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget, sizeof(struct msix_entry), GFP_KERNEL); if (!pf->msix_entries) { err = -ENOMEM; goto exit_err; } for (i = 0; i < v_budget; i++) pf->msix_entries[i].entry = i; /* actually reserve the vectors */ v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, ICE_MIN_MSIX, v_budget); if (v_actual < 0) { dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n"); err = v_actual; goto msix_err; } if (v_actual < v_budget) { dev_warn(&pf->pdev->dev, "not enough vectors. requested = %d, obtained = %d\n", v_budget, v_actual); if (v_actual >= (pf->num_lan_msix + 1)) { pf->num_avail_msix = v_actual - (pf->num_lan_msix + 1); } else if (v_actual >= 2) { pf->num_lan_msix = 1; pf->num_avail_msix = v_actual - 2; } else { pci_disable_msix(pf->pdev); err = -ERANGE; goto msix_err; } } return v_actual; msix_err: devm_kfree(&pf->pdev->dev, pf->msix_entries); goto exit_err; exit_err: pf->num_lan_msix = 0; clear_bit(ICE_FLAG_MSIX_ENA, pf->flags); return err; } /** * ice_dis_msix - Disable MSI-X interrupt setup in OS * @pf: board private structure */ static void ice_dis_msix(struct ice_pf *pf) { pci_disable_msix(pf->pdev); devm_kfree(&pf->pdev->dev, pf->msix_entries); pf->msix_entries = NULL; clear_bit(ICE_FLAG_MSIX_ENA, pf->flags); } /** * ice_init_interrupt_scheme - Determine proper interrupt scheme * @pf: board private structure to initialize */ static int ice_init_interrupt_scheme(struct ice_pf *pf) { int vectors = 0; ssize_t size; if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) vectors = ice_ena_msix_range(pf); else return -ENODEV; if (vectors < 0) return vectors; /* set up vector assignment tracking */ size = sizeof(struct ice_res_tracker) + (sizeof(u16) * vectors); pf->irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL); if (!pf->irq_tracker) { ice_dis_msix(pf); return -ENOMEM; } pf->irq_tracker->num_entries = vectors; return 0; } /** * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme * @pf: board private structure */ static void ice_clear_interrupt_scheme(struct ice_pf *pf) { if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) ice_dis_msix(pf); devm_kfree(&pf->pdev->dev, pf->irq_tracker); pf->irq_tracker = NULL; } /** * ice_probe - Device initialization routine * @pdev: PCI device information struct * @ent: entry in ice_pci_tbl * * Returns 0 on success, negative on failure */ static int ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) { struct ice_pf *pf; struct ice_hw *hw; int err; /* this driver uses devres, see Documentation/driver-model/devres.txt */ err = pcim_enable_device(pdev); if (err) return err; err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); if (err) { dev_err(&pdev->dev, "I/O map error %d\n", err); return err; } pf = devm_kzalloc(&pdev->dev, sizeof(*pf), GFP_KERNEL); if (!pf) return -ENOMEM; /* set up for high or low dma */ err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err); return err; } pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); pf->pdev = pdev; pci_set_drvdata(pdev, pf); set_bit(__ICE_DOWN, pf->state); hw = &pf->hw; hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; hw->back = pf; hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; hw->bus.device = PCI_SLOT(pdev->devfn); hw->bus.func = PCI_FUNC(pdev->devfn); ice_set_ctrlq_len(hw); pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); #ifndef CONFIG_DYNAMIC_DEBUG if (debug < -1) hw->debug_mask = debug; #endif err = ice_init_hw(hw); if (err) { dev_err(&pdev->dev, "ice_init_hw failed: %d\n", err); err = -EIO; goto err_exit_unroll; } dev_info(&pdev->dev, "firmware %d.%d.%05d api %d.%d\n", hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build, hw->api_maj_ver, hw->api_min_ver); ice_init_pf(pf); ice_determine_q_usage(pf); pf->num_alloc_vsi = min_t(u16, ICE_MAX_VSI_ALLOC, hw->func_caps.guaranteed_num_vsi); if (!pf->num_alloc_vsi) { err = -EIO; goto err_init_pf_unroll; } pf->vsi = devm_kcalloc(&pdev->dev, pf->num_alloc_vsi, sizeof(struct ice_vsi *), GFP_KERNEL); if (!pf->vsi) { err = -ENOMEM; goto err_init_pf_unroll; } err = ice_init_interrupt_scheme(pf); if (err) { dev_err(&pdev->dev, "ice_init_interrupt_scheme failed: %d\n", err); err = -EIO; goto err_init_interrupt_unroll; } /* In case of MSIX we are going to setup the misc vector right here * to handle admin queue events etc. In case of legacy and MSI * the misc functionality and queue processing is combined in * the same vector and that gets setup at open. */ if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { err = ice_req_irq_msix_misc(pf); if (err) { dev_err(&pdev->dev, "setup of misc vector failed: %d\n", err); goto err_init_interrupt_unroll; } } /* create switch struct for the switch element created by FW on boot */ pf->first_sw = devm_kzalloc(&pdev->dev, sizeof(struct ice_sw), GFP_KERNEL); if (!pf->first_sw) { err = -ENOMEM; goto err_msix_misc_unroll; } pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; pf->first_sw->pf = pf; /* record the sw_id available for later use */ pf->first_sw->sw_id = hw->port_info->sw_id; err = ice_setup_pf_sw(pf); if (err) { dev_err(&pdev->dev, "probe failed due to setup pf switch:%d\n", err); goto err_alloc_sw_unroll; } /* Driver is mostly up */ clear_bit(__ICE_DOWN, pf->state); /* since everything is good, start the service timer */ mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); return 0; err_alloc_sw_unroll: set_bit(__ICE_DOWN, pf->state); devm_kfree(&pf->pdev->dev, pf->first_sw); err_msix_misc_unroll: ice_free_irq_msix_misc(pf); err_init_interrupt_unroll: ice_clear_interrupt_scheme(pf); devm_kfree(&pdev->dev, pf->vsi); err_init_pf_unroll: ice_deinit_pf(pf); ice_deinit_hw(hw); err_exit_unroll: pci_disable_pcie_error_reporting(pdev); return err; } /** * ice_remove - Device removal routine * @pdev: PCI device information struct */ static void ice_remove(struct pci_dev *pdev) { struct ice_pf *pf = pci_get_drvdata(pdev); int i = 0; int err; if (!pf) return; set_bit(__ICE_DOWN, pf->state); for (i = 0; i < pf->num_alloc_vsi; i++) { if (!pf->vsi[i]) continue; err = ice_vsi_release(pf->vsi[i]); if (err) dev_dbg(&pf->pdev->dev, "Failed to release VSI index %d (err %d)\n", i, err); } ice_free_irq_msix_misc(pf); ice_clear_interrupt_scheme(pf); ice_deinit_pf(pf); ice_deinit_hw(&pf->hw); pci_disable_pcie_error_reporting(pdev); } /* ice_pci_tbl - PCI Device ID Table * * Wildcard entries (PCI_ANY_ID) should come last * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static const struct pci_device_id ice_pci_tbl[] = { { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_BACKPLANE), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_QSFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_10G_BASE_T), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SGMII), 0 }, /* required last entry */ { 0, } }; MODULE_DEVICE_TABLE(pci, ice_pci_tbl); static struct pci_driver ice_driver = { .name = KBUILD_MODNAME, .id_table = ice_pci_tbl, .probe = ice_probe, .remove = ice_remove, }; /** * ice_module_init - Driver registration routine * * ice_module_init is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. */ static int __init ice_module_init(void) { int status; pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); pr_info("%s\n", ice_copyright); ice_wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, KBUILD_MODNAME); if (!ice_wq) { pr_err("Failed to create workqueue\n"); return -ENOMEM; } status = pci_register_driver(&ice_driver); if (status) { pr_err("failed to register pci driver, err %d\n", status); destroy_workqueue(ice_wq); } return status; } module_init(ice_module_init); /** * ice_module_exit - Driver exit cleanup routine * * ice_module_exit is called just before the driver is removed * from memory. */ static void __exit ice_module_exit(void) { pci_unregister_driver(&ice_driver); destroy_workqueue(ice_wq); pr_info("module unloaded\n"); } module_exit(ice_module_exit); /** * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx * @vsi: the vsi being changed */ static int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) { struct device *dev = &vsi->back->pdev->dev; struct ice_hw *hw = &vsi->back->hw; struct ice_vsi_ctx ctxt = { 0 }; enum ice_status status; /* Here we are configuring the VSI to let the driver add VLAN tags by * setting port_vlan_flags to ICE_AQ_VSI_PVLAN_MODE_ALL. The actual VLAN * tag insertion happens in the Tx hot path, in ice_tx_map. */ ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_MODE_ALL; ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); ctxt.vsi_num = vsi->vsi_num; status = ice_aq_update_vsi(hw, &ctxt, NULL); if (status) { dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", status, hw->adminq.sq_last_status); return -EIO; } vsi->info.port_vlan_flags = ctxt.info.port_vlan_flags; return 0; } /** * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx * @vsi: the vsi being changed * @ena: boolean value indicating if this is a enable or disable request */ static int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) { struct device *dev = &vsi->back->pdev->dev; struct ice_hw *hw = &vsi->back->hw; struct ice_vsi_ctx ctxt = { 0 }; enum ice_status status; /* Here we are configuring what the VSI should do with the VLAN tag in * the Rx packet. We can either leave the tag in the packet or put it in * the Rx descriptor. */ if (ena) { /* Strip VLAN tag from Rx packet and put it in the desc */ ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_EMOD_STR_BOTH; } else { /* Disable stripping. Leave tag in packet */ ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_EMOD_NOTHING; } ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); ctxt.vsi_num = vsi->vsi_num; status = ice_aq_update_vsi(hw, &ctxt, NULL); if (status) { dev_err(dev, "update VSI for VALN strip failed, ena = %d err %d aq_err %d\n", ena, status, hw->adminq.sq_last_status); return -EIO; } vsi->info.port_vlan_flags = ctxt.info.port_vlan_flags; return 0; } /** * ice_set_features - set the netdev feature flags * @netdev: ptr to the netdev being adjusted * @features: the feature set that the stack is suggesting */ static int ice_set_features(struct net_device *netdev, netdev_features_t features) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; int ret = 0; if ((features & NETIF_F_HW_VLAN_CTAG_RX) && !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) ret = ice_vsi_manage_vlan_stripping(vsi, true); else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) ret = ice_vsi_manage_vlan_stripping(vsi, false); else if ((features & NETIF_F_HW_VLAN_CTAG_TX) && !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) ret = ice_vsi_manage_vlan_insertion(vsi); else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) ret = ice_vsi_manage_vlan_insertion(vsi); return ret; } /** * ice_vsi_vlan_setup - Setup vlan offload properties on a VSI * @vsi: VSI to setup vlan properties for */ static int ice_vsi_vlan_setup(struct ice_vsi *vsi) { int ret = 0; if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ret = ice_vsi_manage_vlan_stripping(vsi, true); if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) ret = ice_vsi_manage_vlan_insertion(vsi); return ret; } /** * ice_restore_vlan - Reinstate VLANs when vsi/netdev comes back up * @vsi: the VSI being brought back up */ static int ice_restore_vlan(struct ice_vsi *vsi) { int err; u16 vid; if (!vsi->netdev) return -EINVAL; err = ice_vsi_vlan_setup(vsi); if (err) return err; for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) { err = ice_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q), vid); if (err) break; } return err; } /** * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance * @ring: The Tx ring to configure * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized * @pf_q: queue index in the PF space * * Configure the Tx descriptor ring in TLAN context. */ static void ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) { struct ice_vsi *vsi = ring->vsi; struct ice_hw *hw = &vsi->back->hw; tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; tlan_ctx->port_num = vsi->port_info->lport; /* Transmit Queue Length */ tlan_ctx->qlen = ring->count; /* PF number */ tlan_ctx->pf_num = hw->pf_id; /* queue belongs to a specific VSI type * VF / VM index should be programmed per vmvf_type setting: * for vmvf_type = VF, it is VF number between 0-256 * for vmvf_type = VM, it is VM number between 0-767 * for PF or EMP this field should be set to zero */ switch (vsi->type) { case ICE_VSI_PF: tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; break; default: return; } /* make sure the context is associated with the right VSI */ tlan_ctx->src_vsi = vsi->vsi_num; tlan_ctx->tso_ena = ICE_TX_LEGACY; tlan_ctx->tso_qnum = pf_q; /* Legacy or Advanced Host Interface: * 0: Advanced Host Interface * 1: Legacy Host Interface */ tlan_ctx->legacy_int = ICE_TX_LEGACY; } /** * ice_vsi_cfg_txqs - Configure the VSI for Tx * @vsi: the VSI being configured * * Return 0 on success and a negative value on error * Configure the Tx VSI for operation. */ static int ice_vsi_cfg_txqs(struct ice_vsi *vsi) { struct ice_aqc_add_tx_qgrp *qg_buf; struct ice_aqc_add_txqs_perq *txq; struct ice_pf *pf = vsi->back; enum ice_status status; u16 buf_len, i, pf_q; int err = 0, tc = 0; u8 num_q_grps; buf_len = sizeof(struct ice_aqc_add_tx_qgrp); qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL); if (!qg_buf) return -ENOMEM; if (vsi->num_txq > ICE_MAX_TXQ_PER_TXQG) { err = -EINVAL; goto err_cfg_txqs; } qg_buf->num_txqs = 1; num_q_grps = 1; /* set up and configure the tx queues */ ice_for_each_txq(vsi, i) { struct ice_tlan_ctx tlan_ctx = { 0 }; pf_q = vsi->txq_map[i]; ice_setup_tx_ctx(vsi->tx_rings[i], &tlan_ctx, pf_q); /* copy context contents into the qg_buf */ qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, ice_tlan_ctx_info); /* init queue specific tail reg. It is referred as transmit * comm scheduler queue doorbell. */ vsi->tx_rings[i]->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q); status = ice_ena_vsi_txq(vsi->port_info, vsi->vsi_num, tc, num_q_grps, qg_buf, buf_len, NULL); if (status) { dev_err(&vsi->back->pdev->dev, "Failed to set LAN Tx queue context, error: %d\n", status); err = -ENODEV; goto err_cfg_txqs; } /* Add Tx Queue TEID into the VSI tx ring from the response * This will complete configuring and enabling the queue. */ txq = &qg_buf->txqs[0]; if (pf_q == le16_to_cpu(txq->txq_id)) vsi->tx_rings[i]->txq_teid = le32_to_cpu(txq->q_teid); } err_cfg_txqs: devm_kfree(&pf->pdev->dev, qg_buf); return err; } /** * ice_setup_rx_ctx - Configure a receive ring context * @ring: The Rx ring to configure * * Configure the Rx descriptor ring in RLAN context. */ static int ice_setup_rx_ctx(struct ice_ring *ring) { struct ice_vsi *vsi = ring->vsi; struct ice_hw *hw = &vsi->back->hw; u32 rxdid = ICE_RXDID_FLEX_NIC; struct ice_rlan_ctx rlan_ctx; u32 regval; u16 pf_q; int err; /* what is RX queue number in global space of 2K rx queues */ pf_q = vsi->rxq_map[ring->q_index]; /* clear the context structure first */ memset(&rlan_ctx, 0, sizeof(rlan_ctx)); rlan_ctx.base = ring->dma >> 7; rlan_ctx.qlen = ring->count; /* Receive Packet Data Buffer Size. * The Packet Data Buffer Size is defined in 128 byte units. */ rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; /* use 32 byte descriptors */ rlan_ctx.dsize = 1; /* Strip the Ethernet CRC bytes before the packet is posted to host * memory. */ rlan_ctx.crcstrip = 1; /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ rlan_ctx.l2tsel = 1; rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; /* This controls whether VLAN is stripped from inner headers * The VLAN in the inner L2 header is stripped to the receive * descriptor if enabled by this flag. */ rlan_ctx.showiv = 0; /* Max packet size for this queue - must not be set to a larger value * than 5 x DBUF */ rlan_ctx.rxmax = min_t(u16, vsi->max_frame, ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len); /* Rx queue threshold in units of 64 */ rlan_ctx.lrxqthresh = 1; /* Enable Flexible Descriptors in the queue context which * allows this driver to select a specific receive descriptor format */ regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & QRXFLXP_CNTXT_RXDID_IDX_M; /* increasing context priority to pick up profile id; * default is 0x01; setting to 0x03 to ensure profile * is programming if prev context is of same priority */ regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) & QRXFLXP_CNTXT_RXDID_PRIO_M; wr32(hw, QRXFLXP_CNTXT(pf_q), regval); /* Absolute queue number out of 2K needs to be passed */ err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); if (err) { dev_err(&vsi->back->pdev->dev, "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", pf_q, err); return -EIO; } /* init queue specific tail register */ ring->tail = hw->hw_addr + QRX_TAIL(pf_q); writel(0, ring->tail); ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring)); return 0; } /** * ice_vsi_cfg_rxqs - Configure the VSI for Rx * @vsi: the VSI being configured * * Return 0 on success and a negative value on error * Configure the Rx VSI for operation. */ static int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) { int err = 0; u16 i; if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN) vsi->max_frame = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; else vsi->max_frame = ICE_RXBUF_2048; vsi->rx_buf_len = ICE_RXBUF_2048; /* set up individual rings */ for (i = 0; i < vsi->num_rxq && !err; i++) err = ice_setup_rx_ctx(vsi->rx_rings[i]); if (err) { dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n"); return -EIO; } return err; } /** * ice_vsi_cfg - Setup the VSI * @vsi: the VSI being configured * * Return 0 on success and negative value on error */ static int ice_vsi_cfg(struct ice_vsi *vsi) { int err; err = ice_restore_vlan(vsi); if (err) return err; err = ice_vsi_cfg_txqs(vsi); if (!err) err = ice_vsi_cfg_rxqs(vsi); return err; } /** * ice_vsi_stop_tx_rings - Disable Tx rings * @vsi: the VSI being configured */ static int ice_vsi_stop_tx_rings(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; enum ice_status status; u32 *q_teids, val; u16 *q_ids, i; int err = 0; if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) return -EINVAL; q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids), GFP_KERNEL); if (!q_teids) return -ENOMEM; q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids), GFP_KERNEL); if (!q_ids) { err = -ENOMEM; goto err_alloc_q_ids; } /* set up the tx queue list to be disabled */ ice_for_each_txq(vsi, i) { u16 v_idx; if (!vsi->tx_rings || !vsi->tx_rings[i]) { err = -EINVAL; goto err_out; } q_ids[i] = vsi->txq_map[i]; q_teids[i] = vsi->tx_rings[i]->txq_teid; /* clear cause_ena bit for disabled queues */ val = rd32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); val &= ~QINT_TQCTL_CAUSE_ENA_M; wr32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); /* software is expected to wait for 100 ns */ ndelay(100); /* trigger a software interrupt for the vector associated to * the queue to schedule napi handler */ v_idx = vsi->tx_rings[i]->q_vector->v_idx; wr32(hw, GLINT_DYN_CTL(vsi->base_vector + v_idx), GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M); } status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids, NULL); if (status) { dev_err(&pf->pdev->dev, "Failed to disable LAN Tx queues, error: %d\n", status); err = -ENODEV; } err_out: devm_kfree(&pf->pdev->dev, q_ids); err_alloc_q_ids: devm_kfree(&pf->pdev->dev, q_teids); return err; } /** * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled * @pf: the PF being configured * @pf_q: the PF queue * @ena: enable or disable state of the queue * * This routine will wait for the given Rx queue of the PF to reach the * enabled or disabled state. * Returns -ETIMEDOUT in case of failing to reach the requested state after * multiple retries; else will return 0 in case of success. */ static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) { int i; for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) { u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q)); if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) break; usleep_range(10, 20); } if (i >= ICE_Q_WAIT_RETRY_LIMIT) return -ETIMEDOUT; return 0; } /** * ice_vsi_ctrl_rx_rings - Start or stop a VSI's rx rings * @vsi: the VSI being configured * @ena: start or stop the rx rings */ static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; int i, j, ret = 0; for (i = 0; i < vsi->num_rxq; i++) { int pf_q = vsi->rxq_map[i]; u32 rx_reg; for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) { rx_reg = rd32(hw, QRX_CTRL(pf_q)); if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) == ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1)) break; usleep_range(1000, 2000); } /* Skip if the queue is already in the requested state */ if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) continue; /* turn on/off the queue */ if (ena) rx_reg |= QRX_CTRL_QENA_REQ_M; else rx_reg &= ~QRX_CTRL_QENA_REQ_M; wr32(hw, QRX_CTRL(pf_q), rx_reg); /* wait for the change to finish */ ret = ice_pf_rxq_wait(pf, pf_q, ena); if (ret) { dev_err(&pf->pdev->dev, "VSI idx %d Rx ring %d %sable timeout\n", vsi->idx, pf_q, (ena ? "en" : "dis")); break; } } return ret; } /** * ice_vsi_start_rx_rings - start VSI's rx rings * @vsi: the VSI whose rings are to be started * * Returns 0 on success and a negative value on error */ static int ice_vsi_start_rx_rings(struct ice_vsi *vsi) { return ice_vsi_ctrl_rx_rings(vsi, true); } /** * ice_vsi_stop_rx_rings - stop VSI's rx rings * @vsi: the VSI * * Returns 0 on success and a negative value on error */ static int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) { return ice_vsi_ctrl_rx_rings(vsi, false); } /** * ice_vsi_stop_tx_rx_rings - stop VSI's tx and rx rings * @vsi: the VSI * Returns 0 on success and a negative value on error */ static int ice_vsi_stop_tx_rx_rings(struct ice_vsi *vsi) { int err_tx, err_rx; err_tx = ice_vsi_stop_tx_rings(vsi); if (err_tx) dev_dbg(&vsi->back->pdev->dev, "Failed to disable Tx rings\n"); err_rx = ice_vsi_stop_rx_rings(vsi); if (err_rx) dev_dbg(&vsi->back->pdev->dev, "Failed to disable Rx rings\n"); if (err_tx || err_rx) return -EIO; return 0; } /** * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI * @vsi: the VSI being configured */ static void ice_napi_enable_all(struct ice_vsi *vsi) { int q_idx; if (!vsi->netdev) return; for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) napi_enable(&vsi->q_vectors[q_idx]->napi); } /** * ice_up_complete - Finish the last steps of bringing up a connection * @vsi: The VSI being configured * * Return 0 on success and negative value on error */ static int ice_up_complete(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int err; if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) ice_vsi_cfg_msix(vsi); else return -ENOTSUPP; /* Enable only Rx rings, Tx rings were enabled by the FW when the * Tx queue group list was configured and the context bits were * programmed using ice_vsi_cfg_txqs */ err = ice_vsi_start_rx_rings(vsi); if (err) return err; clear_bit(__ICE_DOWN, vsi->state); ice_napi_enable_all(vsi); ice_vsi_ena_irq(vsi); if (vsi->port_info && (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && vsi->netdev) { ice_print_link_msg(vsi, true); netif_tx_start_all_queues(vsi->netdev); netif_carrier_on(vsi->netdev); } ice_service_task_schedule(pf); return err; } /** * ice_up - Bring the connection back up after being down * @vsi: VSI being configured */ int ice_up(struct ice_vsi *vsi) { int err; err = ice_vsi_cfg(vsi); if (!err) err = ice_up_complete(vsi); return err; } /** * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring * @ring: Tx or Rx ring to read stats from * @pkts: packets stats counter * @bytes: bytes stats counter * * This function fetches stats from the ring considering the atomic operations * that needs to be performed to read u64 values in 32 bit machine. */ static void ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) { unsigned int start; *pkts = 0; *bytes = 0; if (!ring) return; do { start = u64_stats_fetch_begin_irq(&ring->syncp); *pkts = ring->stats.pkts; *bytes = ring->stats.bytes; } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); } /** * ice_stat_update40 - read 40 bit stat from the chip and update stat values * @hw: ptr to the hardware info * @hireg: high 32 bit HW register to read from * @loreg: low 32 bit HW register to read from * @prev_stat_loaded: bool to specify if previous stats are loaded * @prev_stat: ptr to previous loaded stat value * @cur_stat: ptr to current stat value */ static void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg, bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat) { u64 new_data; new_data = rd32(hw, loreg); new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; /* device stats are not reset at PFR, they likely will not be zeroed * when the driver starts. So save the first values read and use them as * offsets to be subtracted from the raw values in order to report stats * that count from zero. */ if (!prev_stat_loaded) *prev_stat = new_data; if (likely(new_data >= *prev_stat)) *cur_stat = new_data - *prev_stat; else /* to manage the potential roll-over */ *cur_stat = (new_data + BIT_ULL(40)) - *prev_stat; *cur_stat &= 0xFFFFFFFFFFULL; } /** * ice_stat_update32 - read 32 bit stat from the chip and update stat values * @hw: ptr to the hardware info * @reg: HW register to read from * @prev_stat_loaded: bool to specify if previous stats are loaded * @prev_stat: ptr to previous loaded stat value * @cur_stat: ptr to current stat value */ static void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat) { u32 new_data; new_data = rd32(hw, reg); /* device stats are not reset at PFR, they likely will not be zeroed * when the driver starts. So save the first values read and use them as * offsets to be subtracted from the raw values in order to report stats * that count from zero. */ if (!prev_stat_loaded) *prev_stat = new_data; if (likely(new_data >= *prev_stat)) *cur_stat = new_data - *prev_stat; else /* to manage the potential roll-over */ *cur_stat = (new_data + BIT_ULL(32)) - *prev_stat; } /** * ice_update_eth_stats - Update VSI-specific ethernet statistics counters * @vsi: the VSI to be updated */ static void ice_update_eth_stats(struct ice_vsi *vsi) { struct ice_eth_stats *prev_es, *cur_es; struct ice_hw *hw = &vsi->back->hw; u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ prev_es = &vsi->eth_stats_prev; cur_es = &vsi->eth_stats; ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_bytes, &cur_es->rx_bytes); ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_unicast, &cur_es->rx_unicast); ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_multicast, &cur_es->rx_multicast); ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_broadcast, &cur_es->rx_broadcast); ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_discards, &cur_es->rx_discards); ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_bytes, &cur_es->tx_bytes); ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_unicast, &cur_es->tx_unicast); ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_multicast, &cur_es->tx_multicast); ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_broadcast, &cur_es->tx_broadcast); ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_errors, &cur_es->tx_errors); vsi->stat_offsets_loaded = true; } /** * ice_update_vsi_ring_stats - Update VSI stats counters * @vsi: the VSI to be updated */ static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) { struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; struct ice_ring *ring; u64 pkts, bytes; int i; /* reset netdev stats */ vsi_stats->tx_packets = 0; vsi_stats->tx_bytes = 0; vsi_stats->rx_packets = 0; vsi_stats->rx_bytes = 0; /* reset non-netdev (extended) stats */ vsi->tx_restart = 0; vsi->tx_busy = 0; vsi->tx_linearize = 0; vsi->rx_buf_failed = 0; vsi->rx_page_failed = 0; rcu_read_lock(); /* update Tx rings counters */ ice_for_each_txq(vsi, i) { ring = READ_ONCE(vsi->tx_rings[i]); ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); vsi_stats->tx_packets += pkts; vsi_stats->tx_bytes += bytes; vsi->tx_restart += ring->tx_stats.restart_q; vsi->tx_busy += ring->tx_stats.tx_busy; vsi->tx_linearize += ring->tx_stats.tx_linearize; } /* update Rx rings counters */ ice_for_each_rxq(vsi, i) { ring = READ_ONCE(vsi->rx_rings[i]); ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); vsi_stats->rx_packets += pkts; vsi_stats->rx_bytes += bytes; vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; } rcu_read_unlock(); } /** * ice_update_vsi_stats - Update VSI stats counters * @vsi: the VSI to be updated */ static void ice_update_vsi_stats(struct ice_vsi *vsi) { struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; struct ice_eth_stats *cur_es = &vsi->eth_stats; struct ice_pf *pf = vsi->back; if (test_bit(__ICE_DOWN, vsi->state) || test_bit(__ICE_CFG_BUSY, pf->state)) return; /* get stats as recorded by Tx/Rx rings */ ice_update_vsi_ring_stats(vsi); /* get VSI stats as recorded by the hardware */ ice_update_eth_stats(vsi); cur_ns->tx_errors = cur_es->tx_errors; cur_ns->rx_dropped = cur_es->rx_discards; cur_ns->tx_dropped = cur_es->tx_discards; cur_ns->multicast = cur_es->rx_multicast; /* update some more netdev stats if this is main VSI */ if (vsi->type == ICE_VSI_PF) { cur_ns->rx_crc_errors = pf->stats.crc_errors; cur_ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; cur_ns->rx_length_errors = pf->stats.rx_len_errors; } } /** * ice_update_pf_stats - Update PF port stats counters * @pf: PF whose stats needs to be updated */ static void ice_update_pf_stats(struct ice_pf *pf) { struct ice_hw_port_stats *prev_ps, *cur_ps; struct ice_hw *hw = &pf->hw; u8 pf_id; prev_ps = &pf->stats_prev; cur_ps = &pf->stats; pf_id = hw->pf_id; ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id), pf->stat_prev_loaded, &prev_ps->eth.rx_bytes, &cur_ps->eth.rx_bytes); ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id), pf->stat_prev_loaded, &prev_ps->eth.rx_unicast, &cur_ps->eth.rx_unicast); ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id), pf->stat_prev_loaded, &prev_ps->eth.rx_multicast, &cur_ps->eth.rx_multicast); ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id), pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast, &cur_ps->eth.rx_broadcast); ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id), pf->stat_prev_loaded, &prev_ps->eth.tx_bytes, &cur_ps->eth.tx_bytes); ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id), pf->stat_prev_loaded, &prev_ps->eth.tx_unicast, &cur_ps->eth.tx_unicast); ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id), pf->stat_prev_loaded, &prev_ps->eth.tx_multicast, &cur_ps->eth.tx_multicast); ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id), pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast, &cur_ps->eth.tx_broadcast); ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded, &prev_ps->tx_dropped_link_down, &cur_ps->tx_dropped_link_down); ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id), pf->stat_prev_loaded, &prev_ps->rx_size_64, &cur_ps->rx_size_64); ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id), pf->stat_prev_loaded, &prev_ps->rx_size_127, &cur_ps->rx_size_127); ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id), pf->stat_prev_loaded, &prev_ps->rx_size_255, &cur_ps->rx_size_255); ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id), pf->stat_prev_loaded, &prev_ps->rx_size_511, &cur_ps->rx_size_511); ice_stat_update40(hw, GLPRT_PRC1023H(pf_id), GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded, &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); ice_stat_update40(hw, GLPRT_PRC1522H(pf_id), GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded, &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); ice_stat_update40(hw, GLPRT_PRC9522H(pf_id), GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded, &prev_ps->rx_size_big, &cur_ps->rx_size_big); ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id), pf->stat_prev_loaded, &prev_ps->tx_size_64, &cur_ps->tx_size_64); ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id), pf->stat_prev_loaded, &prev_ps->tx_size_127, &cur_ps->tx_size_127); ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id), pf->stat_prev_loaded, &prev_ps->tx_size_255, &cur_ps->tx_size_255); ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id), pf->stat_prev_loaded, &prev_ps->tx_size_511, &cur_ps->tx_size_511); ice_stat_update40(hw, GLPRT_PTC1023H(pf_id), GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded, &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); ice_stat_update40(hw, GLPRT_PTC1522H(pf_id), GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded, &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); ice_stat_update40(hw, GLPRT_PTC9522H(pf_id), GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded, &prev_ps->tx_size_big, &cur_ps->tx_size_big); ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded, &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded, &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded, &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded, &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded, &prev_ps->crc_errors, &cur_ps->crc_errors); ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded, &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded, &prev_ps->mac_local_faults, &cur_ps->mac_local_faults); ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded, &prev_ps->mac_remote_faults, &cur_ps->mac_remote_faults); ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded, &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded, &prev_ps->rx_undersize, &cur_ps->rx_undersize); ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded, &prev_ps->rx_fragments, &cur_ps->rx_fragments); ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded, &prev_ps->rx_oversize, &cur_ps->rx_oversize); ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded, &prev_ps->rx_jabber, &cur_ps->rx_jabber); pf->stat_prev_loaded = true; } /** * ice_get_stats64 - get statistics for network device structure * @netdev: network interface device structure * @stats: main device statistics structure */ static void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct ice_netdev_priv *np = netdev_priv(netdev); struct rtnl_link_stats64 *vsi_stats; struct ice_vsi *vsi = np->vsi; vsi_stats = &vsi->net_stats; if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq) return; /* netdev packet/byte stats come from ring counter. These are obtained * by summing up ring counters (done by ice_update_vsi_ring_stats). */ ice_update_vsi_ring_stats(vsi); stats->tx_packets = vsi_stats->tx_packets; stats->tx_bytes = vsi_stats->tx_bytes; stats->rx_packets = vsi_stats->rx_packets; stats->rx_bytes = vsi_stats->rx_bytes; /* The rest of the stats can be read from the hardware but instead we * just return values that the watchdog task has already obtained from * the hardware. */ stats->multicast = vsi_stats->multicast; stats->tx_errors = vsi_stats->tx_errors; stats->tx_dropped = vsi_stats->tx_dropped; stats->rx_errors = vsi_stats->rx_errors; stats->rx_dropped = vsi_stats->rx_dropped; stats->rx_crc_errors = vsi_stats->rx_crc_errors; stats->rx_length_errors = vsi_stats->rx_length_errors; } /** * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI * @vsi: VSI having NAPI disabled */ static void ice_napi_disable_all(struct ice_vsi *vsi) { int q_idx; if (!vsi->netdev) return; for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) napi_disable(&vsi->q_vectors[q_idx]->napi); } /** * ice_down - Shutdown the connection * @vsi: The VSI being stopped */ int ice_down(struct ice_vsi *vsi) { int i, err; /* Caller of this function is expected to set the * vsi->state __ICE_DOWN bit */ if (vsi->netdev) { netif_carrier_off(vsi->netdev); netif_tx_disable(vsi->netdev); } ice_vsi_dis_irq(vsi); err = ice_vsi_stop_tx_rx_rings(vsi); ice_napi_disable_all(vsi); ice_for_each_txq(vsi, i) ice_clean_tx_ring(vsi->tx_rings[i]); ice_for_each_rxq(vsi, i) ice_clean_rx_ring(vsi->rx_rings[i]); if (err) netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", vsi->vsi_num, vsi->vsw->sw_id); return err; } /** * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources * @vsi: VSI having resources allocated * * Return 0 on success, negative on failure */ static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) { int i, err; if (!vsi->num_txq) { dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n", vsi->vsi_num); return -EINVAL; } ice_for_each_txq(vsi, i) { err = ice_setup_tx_ring(vsi->tx_rings[i]); if (err) break; } return err; } /** * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources * @vsi: VSI having resources allocated * * Return 0 on success, negative on failure */ static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) { int i, err; if (!vsi->num_rxq) { dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n", vsi->vsi_num); return -EINVAL; } ice_for_each_rxq(vsi, i) { err = ice_setup_rx_ring(vsi->rx_rings[i]); if (err) break; } return err; } /** * ice_vsi_req_irq - Request IRQ from the OS * @vsi: The VSI IRQ is being requested for * @basename: name for the vector * * Return 0 on success and a negative value on error */ static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename) { struct ice_pf *pf = vsi->back; int err = -EINVAL; if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) err = ice_vsi_req_irq_msix(vsi, basename); return err; } /** * ice_vsi_free_tx_rings - Free Tx resources for VSI queues * @vsi: the VSI having resources freed */ static void ice_vsi_free_tx_rings(struct ice_vsi *vsi) { int i; if (!vsi->tx_rings) return; ice_for_each_txq(vsi, i) if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) ice_free_tx_ring(vsi->tx_rings[i]); } /** * ice_vsi_free_rx_rings - Free Rx resources for VSI queues * @vsi: the VSI having resources freed */ static void ice_vsi_free_rx_rings(struct ice_vsi *vsi) { int i; if (!vsi->rx_rings) return; ice_for_each_rxq(vsi, i) if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) ice_free_rx_ring(vsi->rx_rings[i]); } /** * ice_vsi_open - Called when a network interface is made active * @vsi: the VSI to open * * Initialization of the VSI * * Returns 0 on success, negative value on error */ static int ice_vsi_open(struct ice_vsi *vsi) { char int_name[ICE_INT_NAME_STR_LEN]; struct ice_pf *pf = vsi->back; int err; /* allocate descriptors */ err = ice_vsi_setup_tx_rings(vsi); if (err) goto err_setup_tx; err = ice_vsi_setup_rx_rings(vsi); if (err) goto err_setup_rx; err = ice_vsi_cfg(vsi); if (err) goto err_setup_rx; snprintf(int_name, sizeof(int_name) - 1, "%s-%s", dev_driver_string(&pf->pdev->dev), vsi->netdev->name); err = ice_vsi_req_irq(vsi, int_name); if (err) goto err_setup_rx; /* Notify the stack of the actual queue counts. */ err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); if (err) goto err_set_qs; err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); if (err) goto err_set_qs; err = ice_up_complete(vsi); if (err) goto err_up_complete; return 0; err_up_complete: ice_down(vsi); err_set_qs: ice_vsi_free_irq(vsi); err_setup_rx: ice_vsi_free_rx_rings(vsi); err_setup_tx: ice_vsi_free_tx_rings(vsi); return err; } /** * ice_vsi_close - Shut down a VSI * @vsi: the VSI being shut down */ static void ice_vsi_close(struct ice_vsi *vsi) { if (!test_and_set_bit(__ICE_DOWN, vsi->state)) ice_down(vsi); ice_vsi_free_irq(vsi); ice_vsi_free_tx_rings(vsi); ice_vsi_free_rx_rings(vsi); } /** * ice_rss_clean - Delete RSS related VSI structures that hold user inputs * @vsi: the VSI being removed */ static void ice_rss_clean(struct ice_vsi *vsi) { struct ice_pf *pf; pf = vsi->back; if (vsi->rss_hkey_user) devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user); if (vsi->rss_lut_user) devm_kfree(&pf->pdev->dev, vsi->rss_lut_user); } /** * ice_vsi_release - Delete a VSI and free its resources * @vsi: the VSI being removed * * Returns 0 on success or < 0 on error */ static int ice_vsi_release(struct ice_vsi *vsi) { struct ice_pf *pf; if (!vsi->back) return -ENODEV; pf = vsi->back; if (vsi->netdev) { unregister_netdev(vsi->netdev); free_netdev(vsi->netdev); vsi->netdev = NULL; } if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) ice_rss_clean(vsi); /* Disable VSI and free resources */ ice_vsi_dis_irq(vsi); ice_vsi_close(vsi); /* reclaim interrupt vectors back to PF */ ice_free_res(vsi->back->irq_tracker, vsi->base_vector, vsi->idx); pf->num_avail_msix += vsi->num_q_vectors; ice_remove_vsi_fltr(&pf->hw, vsi->vsi_num); ice_vsi_delete(vsi); ice_vsi_free_q_vectors(vsi); ice_vsi_clear_rings(vsi); ice_vsi_put_qs(vsi); pf->q_left_tx += vsi->alloc_txq; pf->q_left_rx += vsi->alloc_rxq; ice_vsi_clear(vsi); return 0; } /** * ice_set_rss - Set RSS keys and lut * @vsi: Pointer to VSI structure * @seed: RSS hash seed * @lut: Lookup table * @lut_size: Lookup table size * * Returns 0 on success, negative on failure */ int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; enum ice_status status; if (seed) { struct ice_aqc_get_set_rss_keys *buf = (struct ice_aqc_get_set_rss_keys *)seed; status = ice_aq_set_rss_key(hw, vsi->vsi_num, buf); if (status) { dev_err(&pf->pdev->dev, "Cannot set RSS key, err %d aq_err %d\n", status, hw->adminq.rq_last_status); return -EIO; } } if (lut) { status = ice_aq_set_rss_lut(hw, vsi->vsi_num, vsi->rss_lut_type, lut, lut_size); if (status) { dev_err(&pf->pdev->dev, "Cannot set RSS lut, err %d aq_err %d\n", status, hw->adminq.rq_last_status); return -EIO; } } return 0; } /** * ice_get_rss - Get RSS keys and lut * @vsi: Pointer to VSI structure * @seed: Buffer to store the keys * @lut: Buffer to store the lookup table entries * @lut_size: Size of buffer to store the lookup table entries * * Returns 0 on success, negative on failure */ int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; enum ice_status status; if (seed) { struct ice_aqc_get_set_rss_keys *buf = (struct ice_aqc_get_set_rss_keys *)seed; status = ice_aq_get_rss_key(hw, vsi->vsi_num, buf); if (status) { dev_err(&pf->pdev->dev, "Cannot get RSS key, err %d aq_err %d\n", status, hw->adminq.rq_last_status); return -EIO; } } if (lut) { status = ice_aq_get_rss_lut(hw, vsi->vsi_num, vsi->rss_lut_type, lut, lut_size); if (status) { dev_err(&pf->pdev->dev, "Cannot get RSS lut, err %d aq_err %d\n", status, hw->adminq.rq_last_status); return -EIO; } } return 0; } /** * ice_open - Called when a network interface becomes active * @netdev: network interface device structure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the netdev watchdog is enabled, * and the stack is notified that the interface is ready. * * Returns 0 on success, negative value on failure */ static int ice_open(struct net_device *netdev) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; int err; netif_carrier_off(netdev); err = ice_vsi_open(vsi); if (err) netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", vsi->vsi_num, vsi->vsw->sw_id); return err; } /** * ice_stop - Disables a network interface * @netdev: network interface device structure * * The stop entry point is called when an interface is de-activated by the OS, * and the netdevice enters the DOWN state. The hardware is still under the * driver's control, but the netdev interface is disabled. * * Returns success only - not allowed to fail */ static int ice_stop(struct net_device *netdev) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; ice_vsi_close(vsi); return 0; } static const struct net_device_ops ice_netdev_ops = { .ndo_open = ice_open, .ndo_stop = ice_stop, .ndo_start_xmit = ice_start_xmit, .ndo_get_stats64 = ice_get_stats64, .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, .ndo_set_features = ice_set_features, };