/* * Resizable, Scalable, Concurrent Hash Table * * Copyright (c) 2014 Thomas Graf * Copyright (c) 2008-2014 Patrick McHardy * * Based on the following paper: * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf * * Code partially derived from nft_hash * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #define HASH_DEFAULT_SIZE 64UL #define HASH_MIN_SIZE 4UL #define BUCKET_LOCKS_PER_CPU 128UL /* Base bits plus 1 bit for nulls marker */ #define HASH_RESERVED_SPACE (RHT_BASE_BITS + 1) enum { RHT_LOCK_NORMAL, RHT_LOCK_NESTED, RHT_LOCK_NESTED2, }; /* The bucket lock is selected based on the hash and protects mutations * on a group of hash buckets. * * IMPORTANT: When holding the bucket lock of both the old and new table * during expansions and shrinking, the old bucket lock must always be * acquired first. */ static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash) { return &tbl->locks[hash & tbl->locks_mask]; } #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) #define ASSERT_BUCKET_LOCK(TBL, HASH) \ BUG_ON(!lockdep_rht_bucket_is_held(TBL, HASH)) #ifdef CONFIG_PROVE_LOCKING int lockdep_rht_mutex_is_held(struct rhashtable *ht) { return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; } EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) { spinlock_t *lock = bucket_lock(tbl, hash); return (debug_locks) ? lockdep_is_held(lock) : 1; } EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); #endif static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he) { return (void *) he - ht->p.head_offset; } static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash) { return hash & (tbl->size - 1); } static u32 obj_raw_hashfn(const struct rhashtable *ht, const void *ptr) { u32 hash; if (unlikely(!ht->p.key_len)) hash = ht->p.obj_hashfn(ptr, ht->p.hash_rnd); else hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len, ht->p.hash_rnd); return hash >> HASH_RESERVED_SPACE; } static u32 key_hashfn(struct rhashtable *ht, const void *key, u32 len) { struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); u32 hash; hash = ht->p.hashfn(key, len, ht->p.hash_rnd); hash >>= HASH_RESERVED_SPACE; return rht_bucket_index(tbl, hash); } static u32 head_hashfn(const struct rhashtable *ht, const struct bucket_table *tbl, const struct rhash_head *he) { return rht_bucket_index(tbl, obj_raw_hashfn(ht, rht_obj(ht, he))); } static struct rhash_head __rcu **bucket_tail(struct bucket_table *tbl, u32 n) { struct rhash_head __rcu **pprev; for (pprev = &tbl->buckets[n]; !rht_is_a_nulls(rht_dereference_bucket(*pprev, tbl, n)); pprev = &rht_dereference_bucket(*pprev, tbl, n)->next) ; return pprev; } static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl) { unsigned int i, size; #if defined(CONFIG_PROVE_LOCKING) unsigned int nr_pcpus = 2; #else unsigned int nr_pcpus = num_possible_cpus(); #endif nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL); size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul); /* Never allocate more than one lock per bucket */ size = min_t(unsigned int, size, tbl->size); if (sizeof(spinlock_t) != 0) { #ifdef CONFIG_NUMA if (size * sizeof(spinlock_t) > PAGE_SIZE) tbl->locks = vmalloc(size * sizeof(spinlock_t)); else #endif tbl->locks = kmalloc_array(size, sizeof(spinlock_t), GFP_KERNEL); if (!tbl->locks) return -ENOMEM; for (i = 0; i < size; i++) spin_lock_init(&tbl->locks[i]); } tbl->locks_mask = size - 1; return 0; } static void bucket_table_free(const struct bucket_table *tbl) { if (tbl) kvfree(tbl->locks); kvfree(tbl); } static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, size_t nbuckets) { struct bucket_table *tbl; size_t size; int i; size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); if (tbl == NULL) tbl = vzalloc(size); if (tbl == NULL) return NULL; tbl->size = nbuckets; if (alloc_bucket_locks(ht, tbl) < 0) { bucket_table_free(tbl); return NULL; } for (i = 0; i < nbuckets; i++) INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i); return tbl; } /** * rht_grow_above_75 - returns true if nelems > 0.75 * table-size * @ht: hash table * @new_size: new table size */ bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size) { /* Expand table when exceeding 75% load */ return atomic_read(&ht->nelems) > (new_size / 4 * 3); } EXPORT_SYMBOL_GPL(rht_grow_above_75); /** * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size * @ht: hash table * @new_size: new table size */ bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size) { /* Shrink table beneath 30% load */ return atomic_read(&ht->nelems) < (new_size * 3 / 10); } EXPORT_SYMBOL_GPL(rht_shrink_below_30); static void hashtable_chain_unzip(const struct rhashtable *ht, const struct bucket_table *new_tbl, struct bucket_table *old_tbl, size_t old_hash) { struct rhash_head *he, *p, *next; spinlock_t *new_bucket_lock, *new_bucket_lock2 = NULL; unsigned int new_hash, new_hash2; ASSERT_BUCKET_LOCK(old_tbl, old_hash); /* Old bucket empty, no work needed. */ p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl, old_hash); if (rht_is_a_nulls(p)) return; new_hash = new_hash2 = head_hashfn(ht, new_tbl, p); new_bucket_lock = bucket_lock(new_tbl, new_hash); /* Advance the old bucket pointer one or more times until it * reaches a node that doesn't hash to the same bucket as the * previous node p. Call the previous node p; */ rht_for_each_continue(he, p->next, old_tbl, old_hash) { new_hash2 = head_hashfn(ht, new_tbl, he); if (new_hash != new_hash2) break; p = he; } rcu_assign_pointer(old_tbl->buckets[old_hash], p->next); spin_lock_bh_nested(new_bucket_lock, RHT_LOCK_NESTED); /* If we have encountered an entry that maps to a different bucket in * the new table, lock down that bucket as well as we might cut off * the end of the chain. */ new_bucket_lock2 = bucket_lock(new_tbl, new_hash); if (new_bucket_lock != new_bucket_lock2) spin_lock_bh_nested(new_bucket_lock2, RHT_LOCK_NESTED2); /* Find the subsequent node which does hash to the same * bucket as node P, or NULL if no such node exists. */ INIT_RHT_NULLS_HEAD(next, ht, old_hash); if (!rht_is_a_nulls(he)) { rht_for_each_continue(he, he->next, old_tbl, old_hash) { if (head_hashfn(ht, new_tbl, he) == new_hash) { next = he; break; } } } /* Set p's next pointer to that subsequent node pointer, * bypassing the nodes which do not hash to p's bucket */ rcu_assign_pointer(p->next, next); if (new_bucket_lock != new_bucket_lock2) spin_unlock_bh(new_bucket_lock2); spin_unlock_bh(new_bucket_lock); } static void link_old_to_new(struct bucket_table *new_tbl, unsigned int new_hash, struct rhash_head *entry) { spinlock_t *new_bucket_lock; new_bucket_lock = bucket_lock(new_tbl, new_hash); spin_lock_bh_nested(new_bucket_lock, RHT_LOCK_NESTED); rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), entry); spin_unlock_bh(new_bucket_lock); } /** * rhashtable_expand - Expand hash table while allowing concurrent lookups * @ht: the hash table to expand * * A secondary bucket array is allocated and the hash entries are migrated * while keeping them on both lists until the end of the RCU grace period. * * This function may only be called in a context where it is safe to call * synchronize_rcu(), e.g. not within a rcu_read_lock() section. * * The caller must ensure that no concurrent resizing occurs by holding * ht->mutex. * * It is valid to have concurrent insertions and deletions protected by per * bucket locks or concurrent RCU protected lookups and traversals. */ int rhashtable_expand(struct rhashtable *ht) { struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); struct rhash_head *he; spinlock_t *old_bucket_lock; unsigned int new_hash, old_hash; bool complete = false; ASSERT_RHT_MUTEX(ht); if (ht->p.max_shift && ht->shift >= ht->p.max_shift) return 0; new_tbl = bucket_table_alloc(ht, old_tbl->size * 2); if (new_tbl == NULL) return -ENOMEM; ht->shift++; /* Make insertions go into the new, empty table right away. Deletions * and lookups will be attempted in both tables until we synchronize. * The synchronize_rcu() guarantees for the new table to be picked up * so no new additions go into the old table while we relink. */ rcu_assign_pointer(ht->future_tbl, new_tbl); synchronize_rcu(); /* For each new bucket, search the corresponding old bucket for the * first entry that hashes to the new bucket, and link the end of * newly formed bucket chain (containing entries added to future * table) to that entry. Since all the entries which will end up in * the new bucket appear in the same old bucket, this constructs an * entirely valid new hash table, but with multiple buckets * "zipped" together into a single imprecise chain. */ for (new_hash = 0; new_hash < new_tbl->size; new_hash++) { old_hash = rht_bucket_index(old_tbl, new_hash); old_bucket_lock = bucket_lock(old_tbl, old_hash); spin_lock_bh(old_bucket_lock); rht_for_each(he, old_tbl, old_hash) { if (head_hashfn(ht, new_tbl, he) == new_hash) { link_old_to_new(new_tbl, new_hash, he); break; } } spin_unlock_bh(old_bucket_lock); } /* Publish the new table pointer. Lookups may now traverse * the new table, but they will not benefit from any * additional efficiency until later steps unzip the buckets. */ rcu_assign_pointer(ht->tbl, new_tbl); /* Unzip interleaved hash chains */ while (!complete && !ht->being_destroyed) { /* Wait for readers. All new readers will see the new * table, and thus no references to the old table will * remain. */ synchronize_rcu(); /* For each bucket in the old table (each of which * contains items from multiple buckets of the new * table): ... */ complete = true; for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { struct rhash_head *head; old_bucket_lock = bucket_lock(old_tbl, old_hash); spin_lock_bh(old_bucket_lock); hashtable_chain_unzip(ht, new_tbl, old_tbl, old_hash); head = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl, old_hash); if (!rht_is_a_nulls(head)) complete = false; spin_unlock_bh(old_bucket_lock); } } bucket_table_free(old_tbl); return 0; } EXPORT_SYMBOL_GPL(rhashtable_expand); /** * rhashtable_shrink - Shrink hash table while allowing concurrent lookups * @ht: the hash table to shrink * * This function may only be called in a context where it is safe to call * synchronize_rcu(), e.g. not within a rcu_read_lock() section. * * The caller must ensure that no concurrent resizing occurs by holding * ht->mutex. * * The caller must ensure that no concurrent table mutations take place. * It is however valid to have concurrent lookups if they are RCU protected. * * It is valid to have concurrent insertions and deletions protected by per * bucket locks or concurrent RCU protected lookups and traversals. */ int rhashtable_shrink(struct rhashtable *ht) { struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht); spinlock_t *new_bucket_lock, *old_bucket_lock1, *old_bucket_lock2; unsigned int new_hash; ASSERT_RHT_MUTEX(ht); if (ht->shift <= ht->p.min_shift) return 0; new_tbl = bucket_table_alloc(ht, tbl->size / 2); if (new_tbl == NULL) return -ENOMEM; rcu_assign_pointer(ht->future_tbl, new_tbl); synchronize_rcu(); /* Link the first entry in the old bucket to the end of the * bucket in the new table. As entries are concurrently being * added to the new table, lock down the new bucket. As we * always divide the size in half when shrinking, each bucket * in the new table maps to exactly two buckets in the old * table. * * As removals can occur concurrently on the old table, we need * to lock down both matching buckets in the old table. */ for (new_hash = 0; new_hash < new_tbl->size; new_hash++) { old_bucket_lock1 = bucket_lock(tbl, new_hash); old_bucket_lock2 = bucket_lock(tbl, new_hash + new_tbl->size); new_bucket_lock = bucket_lock(new_tbl, new_hash); spin_lock_bh(old_bucket_lock1); spin_lock_bh_nested(old_bucket_lock2, RHT_LOCK_NESTED); spin_lock_bh_nested(new_bucket_lock, RHT_LOCK_NESTED2); rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), tbl->buckets[new_hash]); rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), tbl->buckets[new_hash + new_tbl->size]); spin_unlock_bh(new_bucket_lock); spin_unlock_bh(old_bucket_lock2); spin_unlock_bh(old_bucket_lock1); } /* Publish the new, valid hash table */ rcu_assign_pointer(ht->tbl, new_tbl); ht->shift--; /* Wait for readers. No new readers will have references to the * old hash table. */ synchronize_rcu(); bucket_table_free(tbl); return 0; } EXPORT_SYMBOL_GPL(rhashtable_shrink); static void rht_deferred_worker(struct work_struct *work) { struct rhashtable *ht; struct bucket_table *tbl; ht = container_of(work, struct rhashtable, run_work.work); mutex_lock(&ht->mutex); tbl = rht_dereference(ht->tbl, ht); if (ht->p.grow_decision && ht->p.grow_decision(ht, tbl->size)) rhashtable_expand(ht); else if (ht->p.shrink_decision && ht->p.shrink_decision(ht, tbl->size)) rhashtable_shrink(ht); mutex_unlock(&ht->mutex); } static void rhashtable_wakeup_worker(struct rhashtable *ht) { struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); struct bucket_table *new_tbl = rht_dereference_rcu(ht->future_tbl, ht); size_t size = tbl->size; /* Only adjust the table if no resizing is currently in progress. */ if (tbl == new_tbl && ((ht->p.grow_decision && ht->p.grow_decision(ht, size)) || (ht->p.shrink_decision && ht->p.shrink_decision(ht, size)))) schedule_delayed_work(&ht->run_work, 0); } /** * rhashtable_insert - insert object into hash hash table * @ht: hash table * @obj: pointer to hash head inside object * * Will take a per bucket spinlock to protect against mutual mutations * on the same bucket. Multiple insertions may occur in parallel unless * they map to the same bucket lock. * * It is safe to call this function from atomic context. * * Will trigger an automatic deferred table resizing if the size grows * beyond the watermark indicated by grow_decision() which can be passed * to rhashtable_init(). */ void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj) { struct bucket_table *tbl; struct rhash_head *head; spinlock_t *lock; unsigned hash; rcu_read_lock(); tbl = rht_dereference_rcu(ht->future_tbl, ht); hash = head_hashfn(ht, tbl, obj); lock = bucket_lock(tbl, hash); spin_lock_bh(lock); head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash); if (rht_is_a_nulls(head)) INIT_RHT_NULLS_HEAD(obj->next, ht, hash); else RCU_INIT_POINTER(obj->next, head); rcu_assign_pointer(tbl->buckets[hash], obj); spin_unlock_bh(lock); atomic_inc(&ht->nelems); rhashtable_wakeup_worker(ht); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rhashtable_insert); /** * rhashtable_remove - remove object from hash table * @ht: hash table * @obj: pointer to hash head inside object * * Since the hash chain is single linked, the removal operation needs to * walk the bucket chain upon removal. The removal operation is thus * considerable slow if the hash table is not correctly sized. * * Will automatically shrink the table via rhashtable_expand() if the the * shrink_decision function specified at rhashtable_init() returns true. * * The caller must ensure that no concurrent table mutations occur. It is * however valid to have concurrent lookups if they are RCU protected. */ bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj) { struct bucket_table *tbl; struct rhash_head __rcu **pprev; struct rhash_head *he; spinlock_t *lock; unsigned int hash; rcu_read_lock(); tbl = rht_dereference_rcu(ht->tbl, ht); hash = head_hashfn(ht, tbl, obj); lock = bucket_lock(tbl, hash); spin_lock_bh(lock); restart: pprev = &tbl->buckets[hash]; rht_for_each(he, tbl, hash) { if (he != obj) { pprev = &he->next; continue; } rcu_assign_pointer(*pprev, obj->next); atomic_dec(&ht->nelems); spin_unlock_bh(lock); rhashtable_wakeup_worker(ht); rcu_read_unlock(); return true; } if (tbl != rht_dereference_rcu(ht->tbl, ht)) { spin_unlock_bh(lock); tbl = rht_dereference_rcu(ht->tbl, ht); hash = head_hashfn(ht, tbl, obj); lock = bucket_lock(tbl, hash); spin_lock_bh(lock); goto restart; } spin_unlock_bh(lock); rcu_read_unlock(); return false; } EXPORT_SYMBOL_GPL(rhashtable_remove); struct rhashtable_compare_arg { struct rhashtable *ht; const void *key; }; static bool rhashtable_compare(void *ptr, void *arg) { struct rhashtable_compare_arg *x = arg; struct rhashtable *ht = x->ht; return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len); } /** * rhashtable_lookup - lookup key in hash table * @ht: hash table * @key: pointer to key * * Computes the hash value for the key and traverses the bucket chain looking * for a entry with an identical key. The first matching entry is returned. * * This lookup function may only be used for fixed key hash table (key_len * paramter set). It will BUG() if used inappropriately. * * Lookups may occur in parallel with hashtable mutations and resizing. */ void *rhashtable_lookup(struct rhashtable *ht, const void *key) { struct rhashtable_compare_arg arg = { .ht = ht, .key = key, }; BUG_ON(!ht->p.key_len); return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg); } EXPORT_SYMBOL_GPL(rhashtable_lookup); /** * rhashtable_lookup_compare - search hash table with compare function * @ht: hash table * @key: the pointer to the key * @compare: compare function, must return true on match * @arg: argument passed on to compare function * * Traverses the bucket chain behind the provided hash value and calls the * specified compare function for each entry. * * Lookups may occur in parallel with hashtable mutations and resizing. * * Returns the first entry on which the compare function returned true. */ void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key, bool (*compare)(void *, void *), void *arg) { const struct bucket_table *tbl, *old_tbl; struct rhash_head *he; u32 hash; rcu_read_lock(); old_tbl = rht_dereference_rcu(ht->tbl, ht); tbl = rht_dereference_rcu(ht->future_tbl, ht); hash = key_hashfn(ht, key, ht->p.key_len); restart: rht_for_each_rcu(he, tbl, rht_bucket_index(tbl, hash)) { if (!compare(rht_obj(ht, he), arg)) continue; rcu_read_unlock(); return rht_obj(ht, he); } if (unlikely(tbl != old_tbl)) { tbl = old_tbl; goto restart; } rcu_read_unlock(); return NULL; } EXPORT_SYMBOL_GPL(rhashtable_lookup_compare); static size_t rounded_hashtable_size(struct rhashtable_params *params) { return max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 1UL << params->min_shift); } /** * rhashtable_init - initialize a new hash table * @ht: hash table to be initialized * @params: configuration parameters * * Initializes a new hash table based on the provided configuration * parameters. A table can be configured either with a variable or * fixed length key: * * Configuration Example 1: Fixed length keys * struct test_obj { * int key; * void * my_member; * struct rhash_head node; * }; * * struct rhashtable_params params = { * .head_offset = offsetof(struct test_obj, node), * .key_offset = offsetof(struct test_obj, key), * .key_len = sizeof(int), * .hashfn = jhash, * .nulls_base = (1U << RHT_BASE_SHIFT), * }; * * Configuration Example 2: Variable length keys * struct test_obj { * [...] * struct rhash_head node; * }; * * u32 my_hash_fn(const void *data, u32 seed) * { * struct test_obj *obj = data; * * return [... hash ...]; * } * * struct rhashtable_params params = { * .head_offset = offsetof(struct test_obj, node), * .hashfn = jhash, * .obj_hashfn = my_hash_fn, * }; */ int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params) { struct bucket_table *tbl; size_t size; size = HASH_DEFAULT_SIZE; if ((params->key_len && !params->hashfn) || (!params->key_len && !params->obj_hashfn)) return -EINVAL; if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT)) return -EINVAL; params->min_shift = max_t(size_t, params->min_shift, ilog2(HASH_MIN_SIZE)); if (params->nelem_hint) size = rounded_hashtable_size(params); memset(ht, 0, sizeof(*ht)); mutex_init(&ht->mutex); memcpy(&ht->p, params, sizeof(*params)); if (params->locks_mul) ht->p.locks_mul = roundup_pow_of_two(params->locks_mul); else ht->p.locks_mul = BUCKET_LOCKS_PER_CPU; tbl = bucket_table_alloc(ht, size); if (tbl == NULL) return -ENOMEM; ht->shift = ilog2(tbl->size); RCU_INIT_POINTER(ht->tbl, tbl); RCU_INIT_POINTER(ht->future_tbl, tbl); if (!ht->p.hash_rnd) get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd)); if (ht->p.grow_decision || ht->p.shrink_decision) INIT_DEFERRABLE_WORK(&ht->run_work, rht_deferred_worker); return 0; } EXPORT_SYMBOL_GPL(rhashtable_init); /** * rhashtable_destroy - destroy hash table * @ht: the hash table to destroy * * Frees the bucket array. This function is not rcu safe, therefore the caller * has to make sure that no resizing may happen by unpublishing the hashtable * and waiting for the quiescent cycle before releasing the bucket array. */ void rhashtable_destroy(struct rhashtable *ht) { ht->being_destroyed = true; mutex_lock(&ht->mutex); cancel_delayed_work(&ht->run_work); bucket_table_free(rht_dereference(ht->tbl, ht)); mutex_unlock(&ht->mutex); } EXPORT_SYMBOL_GPL(rhashtable_destroy); /************************************************************************** * Self Test **************************************************************************/ #ifdef CONFIG_TEST_RHASHTABLE #define TEST_HT_SIZE 8 #define TEST_ENTRIES 2048 #define TEST_PTR ((void *) 0xdeadbeef) #define TEST_NEXPANDS 4 struct test_obj { void *ptr; int value; struct rhash_head node; }; static int __init test_rht_lookup(struct rhashtable *ht) { unsigned int i; for (i = 0; i < TEST_ENTRIES * 2; i++) { struct test_obj *obj; bool expected = !(i % 2); u32 key = i; obj = rhashtable_lookup(ht, &key); if (expected && !obj) { pr_warn("Test failed: Could not find key %u\n", key); return -ENOENT; } else if (!expected && obj) { pr_warn("Test failed: Unexpected entry found for key %u\n", key); return -EEXIST; } else if (expected && obj) { if (obj->ptr != TEST_PTR || obj->value != i) { pr_warn("Test failed: Lookup value mismatch %p!=%p, %u!=%u\n", obj->ptr, TEST_PTR, obj->value, i); return -EINVAL; } } } return 0; } static void test_bucket_stats(struct rhashtable *ht, bool quiet) { unsigned int cnt, rcu_cnt, i, total = 0; struct rhash_head *pos; struct test_obj *obj; struct bucket_table *tbl; tbl = rht_dereference_rcu(ht->tbl, ht); for (i = 0; i < tbl->size; i++) { rcu_cnt = cnt = 0; if (!quiet) pr_info(" [%#4x/%zu]", i, tbl->size); rht_for_each_entry_rcu(obj, pos, tbl, i, node) { cnt++; total++; if (!quiet) pr_cont(" [%p],", obj); } rht_for_each_entry_rcu(obj, pos, tbl, i, node) rcu_cnt++; if (rcu_cnt != cnt) pr_warn("Test failed: Chain count mismach %d != %d", cnt, rcu_cnt); if (!quiet) pr_cont("\n [%#x] first element: %p, chain length: %u\n", i, tbl->buckets[i], cnt); } pr_info(" Traversal complete: counted=%u, nelems=%u, entries=%d\n", total, atomic_read(&ht->nelems), TEST_ENTRIES); if (total != atomic_read(&ht->nelems) || total != TEST_ENTRIES) pr_warn("Test failed: Total count mismatch ^^^"); } static int __init test_rhashtable(struct rhashtable *ht) { struct bucket_table *tbl; struct test_obj *obj; struct rhash_head *pos, *next; int err; unsigned int i; /* * Insertion Test: * Insert TEST_ENTRIES into table with all keys even numbers */ pr_info(" Adding %d keys\n", TEST_ENTRIES); for (i = 0; i < TEST_ENTRIES; i++) { struct test_obj *obj; obj = kzalloc(sizeof(*obj), GFP_KERNEL); if (!obj) { err = -ENOMEM; goto error; } obj->ptr = TEST_PTR; obj->value = i * 2; rhashtable_insert(ht, &obj->node); } rcu_read_lock(); test_bucket_stats(ht, true); test_rht_lookup(ht); rcu_read_unlock(); for (i = 0; i < TEST_NEXPANDS; i++) { pr_info(" Table expansion iteration %u...\n", i); mutex_lock(&ht->mutex); rhashtable_expand(ht); mutex_unlock(&ht->mutex); rcu_read_lock(); pr_info(" Verifying lookups...\n"); test_rht_lookup(ht); rcu_read_unlock(); } for (i = 0; i < TEST_NEXPANDS; i++) { pr_info(" Table shrinkage iteration %u...\n", i); mutex_lock(&ht->mutex); rhashtable_shrink(ht); mutex_unlock(&ht->mutex); rcu_read_lock(); pr_info(" Verifying lookups...\n"); test_rht_lookup(ht); rcu_read_unlock(); } rcu_read_lock(); test_bucket_stats(ht, true); rcu_read_unlock(); pr_info(" Deleting %d keys\n", TEST_ENTRIES); for (i = 0; i < TEST_ENTRIES; i++) { u32 key = i * 2; obj = rhashtable_lookup(ht, &key); BUG_ON(!obj); rhashtable_remove(ht, &obj->node); kfree(obj); } return 0; error: tbl = rht_dereference_rcu(ht->tbl, ht); for (i = 0; i < tbl->size; i++) rht_for_each_entry_safe(obj, pos, next, tbl, i, node) kfree(obj); return err; } static int __init test_rht_init(void) { struct rhashtable ht; struct rhashtable_params params = { .nelem_hint = TEST_HT_SIZE, .head_offset = offsetof(struct test_obj, node), .key_offset = offsetof(struct test_obj, value), .key_len = sizeof(int), .hashfn = jhash, .nulls_base = (3U << RHT_BASE_SHIFT), .grow_decision = rht_grow_above_75, .shrink_decision = rht_shrink_below_30, }; int err; pr_info("Running resizable hashtable tests...\n"); err = rhashtable_init(&ht, ¶ms); if (err < 0) { pr_warn("Test failed: Unable to initialize hashtable: %d\n", err); return err; } err = test_rhashtable(&ht); rhashtable_destroy(&ht); return err; } subsys_initcall(test_rht_init); #endif /* CONFIG_TEST_RHASHTABLE */