// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ #include #include #include #include #include static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) { if (msg->sg.end > msg->sg.start && elem_first_coalesce < msg->sg.end) return true; if (msg->sg.end < msg->sg.start && (elem_first_coalesce > msg->sg.start || elem_first_coalesce < msg->sg.end)) return true; return false; } int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, int elem_first_coalesce) { struct page_frag *pfrag = sk_page_frag(sk); int ret = 0; len -= msg->sg.size; while (len > 0) { struct scatterlist *sge; u32 orig_offset; int use, i; if (!sk_page_frag_refill(sk, pfrag)) return -ENOMEM; orig_offset = pfrag->offset; use = min_t(int, len, pfrag->size - orig_offset); if (!sk_wmem_schedule(sk, use)) return -ENOMEM; i = msg->sg.end; sk_msg_iter_var_prev(i); sge = &msg->sg.data[i]; if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && sg_page(sge) == pfrag->page && sge->offset + sge->length == orig_offset) { sge->length += use; } else { if (sk_msg_full(msg)) { ret = -ENOSPC; break; } sge = &msg->sg.data[msg->sg.end]; sg_unmark_end(sge); sg_set_page(sge, pfrag->page, use, orig_offset); get_page(pfrag->page); sk_msg_iter_next(msg, end); } sk_mem_charge(sk, use); msg->sg.size += use; pfrag->offset += use; len -= use; } return ret; } EXPORT_SYMBOL_GPL(sk_msg_alloc); int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, u32 off, u32 len) { int i = src->sg.start; struct scatterlist *sge = sk_msg_elem(src, i); u32 sge_len, sge_off; if (sk_msg_full(dst)) return -ENOSPC; while (off) { if (sge->length > off) break; off -= sge->length; sk_msg_iter_var_next(i); if (i == src->sg.end && off) return -ENOSPC; sge = sk_msg_elem(src, i); } while (len) { sge_len = sge->length - off; sge_off = sge->offset + off; if (sge_len > len) sge_len = len; off = 0; len -= sge_len; sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); sk_mem_charge(sk, sge_len); sk_msg_iter_var_next(i); if (i == src->sg.end && len) return -ENOSPC; sge = sk_msg_elem(src, i); } return 0; } EXPORT_SYMBOL_GPL(sk_msg_clone); void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) { int i = msg->sg.start; do { struct scatterlist *sge = sk_msg_elem(msg, i); if (bytes < sge->length) { sge->length -= bytes; sge->offset += bytes; sk_mem_uncharge(sk, bytes); break; } sk_mem_uncharge(sk, sge->length); bytes -= sge->length; sge->length = 0; sge->offset = 0; sk_msg_iter_var_next(i); } while (bytes && i != msg->sg.end); msg->sg.start = i; } EXPORT_SYMBOL_GPL(sk_msg_return_zero); void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) { int i = msg->sg.start; do { struct scatterlist *sge = &msg->sg.data[i]; int uncharge = (bytes < sge->length) ? bytes : sge->length; sk_mem_uncharge(sk, uncharge); bytes -= uncharge; sk_msg_iter_var_next(i); } while (i != msg->sg.end); } EXPORT_SYMBOL_GPL(sk_msg_return); static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, bool charge) { struct scatterlist *sge = sk_msg_elem(msg, i); u32 len = sge->length; if (charge) sk_mem_uncharge(sk, len); if (!msg->skb) put_page(sg_page(sge)); memset(sge, 0, sizeof(*sge)); return len; } static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, bool charge) { struct scatterlist *sge = sk_msg_elem(msg, i); int freed = 0; while (msg->sg.size) { msg->sg.size -= sge->length; freed += sk_msg_free_elem(sk, msg, i, charge); sk_msg_iter_var_next(i); sk_msg_check_to_free(msg, i, msg->sg.size); sge = sk_msg_elem(msg, i); } if (msg->skb) consume_skb(msg->skb); sk_msg_init(msg); return freed; } int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) { return __sk_msg_free(sk, msg, msg->sg.start, false); } EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); int sk_msg_free(struct sock *sk, struct sk_msg *msg) { return __sk_msg_free(sk, msg, msg->sg.start, true); } EXPORT_SYMBOL_GPL(sk_msg_free); static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes, bool charge) { struct scatterlist *sge; u32 i = msg->sg.start; while (bytes) { sge = sk_msg_elem(msg, i); if (!sge->length) break; if (bytes < sge->length) { if (charge) sk_mem_uncharge(sk, bytes); sge->length -= bytes; sge->offset += bytes; msg->sg.size -= bytes; break; } msg->sg.size -= sge->length; bytes -= sge->length; sk_msg_free_elem(sk, msg, i, charge); sk_msg_iter_var_next(i); sk_msg_check_to_free(msg, i, bytes); } msg->sg.start = i; } void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) { __sk_msg_free_partial(sk, msg, bytes, true); } EXPORT_SYMBOL_GPL(sk_msg_free_partial); void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, u32 bytes) { __sk_msg_free_partial(sk, msg, bytes, false); } void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) { int trim = msg->sg.size - len; u32 i = msg->sg.end; if (trim <= 0) { WARN_ON(trim < 0); return; } sk_msg_iter_var_prev(i); msg->sg.size = len; while (msg->sg.data[i].length && trim >= msg->sg.data[i].length) { trim -= msg->sg.data[i].length; sk_msg_free_elem(sk, msg, i, true); sk_msg_iter_var_prev(i); if (!trim) goto out; } msg->sg.data[i].length -= trim; sk_mem_uncharge(sk, trim); out: /* If we trim data before curr pointer update copybreak and current * so that any future copy operations start at new copy location. * However trimed data that has not yet been used in a copy op * does not require an update. */ if (msg->sg.curr >= i) { msg->sg.curr = i; msg->sg.copybreak = msg->sg.data[i].length; } sk_msg_iter_var_next(i); msg->sg.end = i; } EXPORT_SYMBOL_GPL(sk_msg_trim); int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, struct sk_msg *msg, u32 bytes) { int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); const int to_max_pages = MAX_MSG_FRAGS; struct page *pages[MAX_MSG_FRAGS]; ssize_t orig, copied, use, offset; orig = msg->sg.size; while (bytes > 0) { i = 0; maxpages = to_max_pages - num_elems; if (maxpages == 0) { ret = -EFAULT; goto out; } copied = iov_iter_get_pages(from, pages, bytes, maxpages, &offset); if (copied <= 0) { ret = -EFAULT; goto out; } iov_iter_advance(from, copied); bytes -= copied; msg->sg.size += copied; while (copied) { use = min_t(int, copied, PAGE_SIZE - offset); sg_set_page(&msg->sg.data[msg->sg.end], pages[i], use, offset); sg_unmark_end(&msg->sg.data[msg->sg.end]); sk_mem_charge(sk, use); offset = 0; copied -= use; sk_msg_iter_next(msg, end); num_elems++; i++; } /* When zerocopy is mixed with sk_msg_*copy* operations we * may have a copybreak set in this case clear and prefer * zerocopy remainder when possible. */ msg->sg.copybreak = 0; msg->sg.curr = msg->sg.end; } out: /* Revert iov_iter updates, msg will need to use 'trim' later if it * also needs to be cleared. */ if (ret) iov_iter_revert(from, msg->sg.size - orig); return ret; } EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, struct sk_msg *msg, u32 bytes) { int ret = -ENOSPC, i = msg->sg.curr; struct scatterlist *sge; u32 copy, buf_size; void *to; do { sge = sk_msg_elem(msg, i); /* This is possible if a trim operation shrunk the buffer */ if (msg->sg.copybreak >= sge->length) { msg->sg.copybreak = 0; sk_msg_iter_var_next(i); if (i == msg->sg.end) break; sge = sk_msg_elem(msg, i); } buf_size = sge->length - msg->sg.copybreak; copy = (buf_size > bytes) ? bytes : buf_size; to = sg_virt(sge) + msg->sg.copybreak; msg->sg.copybreak += copy; if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) ret = copy_from_iter_nocache(to, copy, from); else ret = copy_from_iter(to, copy, from); if (ret != copy) { ret = -EFAULT; goto out; } bytes -= copy; if (!bytes) break; msg->sg.copybreak = 0; sk_msg_iter_var_next(i); } while (i != msg->sg.end); out: msg->sg.curr = i; return ret; } EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb) { struct sock *sk = psock->sk; int copied = 0, num_sge; struct sk_msg *msg; msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC); if (unlikely(!msg)) return -EAGAIN; if (!sk_rmem_schedule(sk, skb, skb->len)) { kfree(msg); return -EAGAIN; } sk_msg_init(msg); num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len); if (unlikely(num_sge < 0)) { kfree(msg); return num_sge; } sk_mem_charge(sk, skb->len); copied = skb->len; msg->sg.start = 0; msg->sg.end = num_sge == MAX_MSG_FRAGS ? 0 : num_sge; msg->skb = skb; sk_psock_queue_msg(psock, msg); sk->sk_data_ready(sk); return copied; } static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, u32 off, u32 len, bool ingress) { if (ingress) return sk_psock_skb_ingress(psock, skb); else return skb_send_sock_locked(psock->sk, skb, off, len); } static void sk_psock_backlog(struct work_struct *work) { struct sk_psock *psock = container_of(work, struct sk_psock, work); struct sk_psock_work_state *state = &psock->work_state; struct sk_buff *skb; bool ingress; u32 len, off; int ret; /* Lock sock to avoid losing sk_socket during loop. */ lock_sock(psock->sk); if (state->skb) { skb = state->skb; len = state->len; off = state->off; state->skb = NULL; goto start; } while ((skb = skb_dequeue(&psock->ingress_skb))) { len = skb->len; off = 0; start: ingress = tcp_skb_bpf_ingress(skb); do { ret = -EIO; if (likely(psock->sk->sk_socket)) ret = sk_psock_handle_skb(psock, skb, off, len, ingress); if (ret <= 0) { if (ret == -EAGAIN) { state->skb = skb; state->len = len; state->off = off; goto end; } /* Hard errors break pipe and stop xmit. */ sk_psock_report_error(psock, ret ? -ret : EPIPE); sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); kfree_skb(skb); goto end; } off += ret; len -= ret; } while (len); if (!ingress) kfree_skb(skb); } end: release_sock(psock->sk); } struct sk_psock *sk_psock_init(struct sock *sk, int node) { struct sk_psock *psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); if (!psock) return NULL; psock->sk = sk; psock->eval = __SK_NONE; INIT_LIST_HEAD(&psock->link); spin_lock_init(&psock->link_lock); INIT_WORK(&psock->work, sk_psock_backlog); INIT_LIST_HEAD(&psock->ingress_msg); skb_queue_head_init(&psock->ingress_skb); sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); refcount_set(&psock->refcnt, 1); rcu_assign_sk_user_data(sk, psock); sock_hold(sk); return psock; } EXPORT_SYMBOL_GPL(sk_psock_init); struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) { struct sk_psock_link *link; spin_lock_bh(&psock->link_lock); link = list_first_entry_or_null(&psock->link, struct sk_psock_link, list); if (link) list_del(&link->list); spin_unlock_bh(&psock->link_lock); return link; } void __sk_psock_purge_ingress_msg(struct sk_psock *psock) { struct sk_msg *msg, *tmp; list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { list_del(&msg->list); sk_msg_free(psock->sk, msg); kfree(msg); } } static void sk_psock_zap_ingress(struct sk_psock *psock) { __skb_queue_purge(&psock->ingress_skb); __sk_psock_purge_ingress_msg(psock); } static void sk_psock_link_destroy(struct sk_psock *psock) { struct sk_psock_link *link, *tmp; list_for_each_entry_safe(link, tmp, &psock->link, list) { list_del(&link->list); sk_psock_free_link(link); } } static void sk_psock_destroy_deferred(struct work_struct *gc) { struct sk_psock *psock = container_of(gc, struct sk_psock, gc); /* No sk_callback_lock since already detached. */ if (psock->parser.enabled) strp_done(&psock->parser.strp); cancel_work_sync(&psock->work); psock_progs_drop(&psock->progs); sk_psock_link_destroy(psock); sk_psock_cork_free(psock); sk_psock_zap_ingress(psock); if (psock->sk_redir) sock_put(psock->sk_redir); sock_put(psock->sk); kfree(psock); } void sk_psock_destroy(struct rcu_head *rcu) { struct sk_psock *psock = container_of(rcu, struct sk_psock, rcu); INIT_WORK(&psock->gc, sk_psock_destroy_deferred); schedule_work(&psock->gc); } EXPORT_SYMBOL_GPL(sk_psock_destroy); void sk_psock_drop(struct sock *sk, struct sk_psock *psock) { rcu_assign_sk_user_data(sk, NULL); sk_psock_cork_free(psock); sk_psock_restore_proto(sk, psock); write_lock_bh(&sk->sk_callback_lock); if (psock->progs.skb_parser) sk_psock_stop_strp(sk, psock); write_unlock_bh(&sk->sk_callback_lock); sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); call_rcu_sched(&psock->rcu, sk_psock_destroy); } EXPORT_SYMBOL_GPL(sk_psock_drop); static int sk_psock_map_verd(int verdict, bool redir) { switch (verdict) { case SK_PASS: return redir ? __SK_REDIRECT : __SK_PASS; case SK_DROP: default: break; } return __SK_DROP; } int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, struct sk_msg *msg) { struct bpf_prog *prog; int ret; preempt_disable(); rcu_read_lock(); prog = READ_ONCE(psock->progs.msg_parser); if (unlikely(!prog)) { ret = __SK_PASS; goto out; } sk_msg_compute_data_pointers(msg); msg->sk = sk; ret = BPF_PROG_RUN(prog, msg); ret = sk_psock_map_verd(ret, msg->sk_redir); psock->apply_bytes = msg->apply_bytes; if (ret == __SK_REDIRECT) { if (psock->sk_redir) sock_put(psock->sk_redir); psock->sk_redir = msg->sk_redir; if (!psock->sk_redir) { ret = __SK_DROP; goto out; } sock_hold(psock->sk_redir); } out: rcu_read_unlock(); preempt_enable(); return ret; } EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); static int sk_psock_bpf_run(struct sk_psock *psock, struct bpf_prog *prog, struct sk_buff *skb) { int ret; skb->sk = psock->sk; bpf_compute_data_end_sk_skb(skb); preempt_disable(); ret = BPF_PROG_RUN(prog, skb); preempt_enable(); /* strparser clones the skb before handing it to a upper layer, * meaning skb_orphan has been called. We NULL sk on the way out * to ensure we don't trigger a BUG_ON() in skb/sk operations * later and because we are not charging the memory of this skb * to any socket yet. */ skb->sk = NULL; return ret; } static struct sk_psock *sk_psock_from_strp(struct strparser *strp) { struct sk_psock_parser *parser; parser = container_of(strp, struct sk_psock_parser, strp); return container_of(parser, struct sk_psock, parser); } static void sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb, int verdict) { struct sk_psock *psock_other; struct sock *sk_other; bool ingress; switch (verdict) { case __SK_PASS: sk_other = psock->sk; if (sock_flag(sk_other, SOCK_DEAD) || !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { goto out_free; } if (atomic_read(&sk_other->sk_rmem_alloc) <= sk_other->sk_rcvbuf) { struct tcp_skb_cb *tcp = TCP_SKB_CB(skb); tcp->bpf.flags |= BPF_F_INGRESS; skb_queue_tail(&psock->ingress_skb, skb); schedule_work(&psock->work); break; } goto out_free; case __SK_REDIRECT: sk_other = tcp_skb_bpf_redirect_fetch(skb); if (unlikely(!sk_other)) goto out_free; psock_other = sk_psock(sk_other); if (!psock_other || sock_flag(sk_other, SOCK_DEAD) || !sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) goto out_free; ingress = tcp_skb_bpf_ingress(skb); if ((!ingress && sock_writeable(sk_other)) || (ingress && atomic_read(&sk_other->sk_rmem_alloc) <= sk_other->sk_rcvbuf)) { if (!ingress) skb_set_owner_w(skb, sk_other); skb_queue_tail(&psock_other->ingress_skb, skb); schedule_work(&psock_other->work); break; } /* fall-through */ case __SK_DROP: /* fall-through */ default: out_free: kfree_skb(skb); } } static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) { struct sk_psock *psock = sk_psock_from_strp(strp); struct bpf_prog *prog; int ret = __SK_DROP; rcu_read_lock(); prog = READ_ONCE(psock->progs.skb_verdict); if (likely(prog)) { skb_orphan(skb); tcp_skb_bpf_redirect_clear(skb); ret = sk_psock_bpf_run(psock, prog, skb); ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb)); } rcu_read_unlock(); sk_psock_verdict_apply(psock, skb, ret); } static int sk_psock_strp_read_done(struct strparser *strp, int err) { return err; } static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) { struct sk_psock *psock = sk_psock_from_strp(strp); struct bpf_prog *prog; int ret = skb->len; rcu_read_lock(); prog = READ_ONCE(psock->progs.skb_parser); if (likely(prog)) ret = sk_psock_bpf_run(psock, prog, skb); rcu_read_unlock(); return ret; } /* Called with socket lock held. */ static void sk_psock_data_ready(struct sock *sk) { struct sk_psock *psock; rcu_read_lock(); psock = sk_psock(sk); if (likely(psock)) { write_lock_bh(&sk->sk_callback_lock); strp_data_ready(&psock->parser.strp); write_unlock_bh(&sk->sk_callback_lock); } rcu_read_unlock(); } static void sk_psock_write_space(struct sock *sk) { struct sk_psock *psock; void (*write_space)(struct sock *sk); rcu_read_lock(); psock = sk_psock(sk); if (likely(psock && sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))) schedule_work(&psock->work); write_space = psock->saved_write_space; rcu_read_unlock(); write_space(sk); } int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) { static const struct strp_callbacks cb = { .rcv_msg = sk_psock_strp_read, .read_sock_done = sk_psock_strp_read_done, .parse_msg = sk_psock_strp_parse, }; psock->parser.enabled = false; return strp_init(&psock->parser.strp, sk, &cb); } void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) { struct sk_psock_parser *parser = &psock->parser; if (parser->enabled) return; parser->saved_data_ready = sk->sk_data_ready; sk->sk_data_ready = sk_psock_data_ready; sk->sk_write_space = sk_psock_write_space; parser->enabled = true; } void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) { struct sk_psock_parser *parser = &psock->parser; if (!parser->enabled) return; sk->sk_data_ready = parser->saved_data_ready; parser->saved_data_ready = NULL; strp_stop(&parser->strp); parser->enabled = false; }