/* * Copyright (C) 2015 Red Hat, Inc. * All Rights Reserved. * * Authors: * Dave Airlie * Gerd Hoffmann * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include "virtgpu_drv.h" #include #include #include #define MAX_INLINE_CMD_SIZE 96 #define MAX_INLINE_RESP_SIZE 24 #define VBUFFER_SIZE (sizeof(struct virtio_gpu_vbuffer) \ + MAX_INLINE_CMD_SIZE \ + MAX_INLINE_RESP_SIZE) void virtio_gpu_resource_id_get(struct virtio_gpu_device *vgdev, uint32_t *resid) { int handle; idr_preload(GFP_KERNEL); spin_lock(&vgdev->resource_idr_lock); handle = idr_alloc(&vgdev->resource_idr, NULL, 1, 0, GFP_NOWAIT); spin_unlock(&vgdev->resource_idr_lock); idr_preload_end(); *resid = handle; } void virtio_gpu_resource_id_put(struct virtio_gpu_device *vgdev, uint32_t id) { spin_lock(&vgdev->resource_idr_lock); idr_remove(&vgdev->resource_idr, id); spin_unlock(&vgdev->resource_idr_lock); } void virtio_gpu_ctrl_ack(struct virtqueue *vq) { struct drm_device *dev = vq->vdev->priv; struct virtio_gpu_device *vgdev = dev->dev_private; schedule_work(&vgdev->ctrlq.dequeue_work); } void virtio_gpu_cursor_ack(struct virtqueue *vq) { struct drm_device *dev = vq->vdev->priv; struct virtio_gpu_device *vgdev = dev->dev_private; schedule_work(&vgdev->cursorq.dequeue_work); } int virtio_gpu_alloc_vbufs(struct virtio_gpu_device *vgdev) { struct virtio_gpu_vbuffer *vbuf; int i, size, count = 0; void *ptr; INIT_LIST_HEAD(&vgdev->free_vbufs); count += virtqueue_get_vring_size(vgdev->ctrlq.vq); count += virtqueue_get_vring_size(vgdev->cursorq.vq); size = count * VBUFFER_SIZE; DRM_INFO("virtio vbuffers: %d bufs, %zdB each, %dkB total.\n", count, VBUFFER_SIZE, size / 1024); vgdev->vbufs = kzalloc(size, GFP_KERNEL); if (!vgdev->vbufs) return -ENOMEM; for (i = 0, ptr = vgdev->vbufs; i < count; i++, ptr += VBUFFER_SIZE) { vbuf = ptr; list_add(&vbuf->list, &vgdev->free_vbufs); } return 0; } void virtio_gpu_free_vbufs(struct virtio_gpu_device *vgdev) { struct virtio_gpu_vbuffer *vbuf; int i, count = 0; count += virtqueue_get_vring_size(vgdev->ctrlq.vq); count += virtqueue_get_vring_size(vgdev->cursorq.vq); for (i = 0; i < count; i++) { if (WARN_ON(list_empty(&vgdev->free_vbufs))) return; vbuf = list_first_entry(&vgdev->free_vbufs, struct virtio_gpu_vbuffer, list); list_del(&vbuf->list); } kfree(vgdev->vbufs); } static struct virtio_gpu_vbuffer* virtio_gpu_get_vbuf(struct virtio_gpu_device *vgdev, int size, int resp_size, void *resp_buf, virtio_gpu_resp_cb resp_cb) { struct virtio_gpu_vbuffer *vbuf; BUG_ON(list_empty(&vgdev->free_vbufs)); vbuf = list_first_entry(&vgdev->free_vbufs, struct virtio_gpu_vbuffer, list); list_del(&vbuf->list); memset(vbuf, 0, VBUFFER_SIZE); BUG_ON(size > MAX_INLINE_CMD_SIZE); vbuf->buf = (void *)vbuf + sizeof(*vbuf); vbuf->size = size; vbuf->resp_cb = resp_cb; vbuf->resp_size = resp_size; if (resp_size <= MAX_INLINE_RESP_SIZE) vbuf->resp_buf = (void *)vbuf->buf + size; else vbuf->resp_buf = resp_buf; BUG_ON(!vbuf->resp_buf); return vbuf; } static void *virtio_gpu_alloc_cmd(struct virtio_gpu_device *vgdev, struct virtio_gpu_vbuffer **vbuffer_p, int size) { struct virtio_gpu_vbuffer *vbuf; vbuf = virtio_gpu_get_vbuf(vgdev, size, sizeof(struct virtio_gpu_ctrl_hdr), NULL, NULL); if (IS_ERR(vbuf)) { *vbuffer_p = NULL; return ERR_CAST(vbuf); } *vbuffer_p = vbuf; return vbuf->buf; } static struct virtio_gpu_update_cursor* virtio_gpu_alloc_cursor(struct virtio_gpu_device *vgdev, struct virtio_gpu_vbuffer **vbuffer_p) { struct virtio_gpu_vbuffer *vbuf; vbuf = virtio_gpu_get_vbuf (vgdev, sizeof(struct virtio_gpu_update_cursor), 0, NULL, NULL); if (IS_ERR(vbuf)) { *vbuffer_p = NULL; return ERR_CAST(vbuf); } *vbuffer_p = vbuf; return (struct virtio_gpu_update_cursor *)vbuf->buf; } static void *virtio_gpu_alloc_cmd_resp(struct virtio_gpu_device *vgdev, virtio_gpu_resp_cb cb, struct virtio_gpu_vbuffer **vbuffer_p, int cmd_size, int resp_size, void *resp_buf) { struct virtio_gpu_vbuffer *vbuf; vbuf = virtio_gpu_get_vbuf(vgdev, cmd_size, resp_size, resp_buf, cb); if (IS_ERR(vbuf)) { *vbuffer_p = NULL; return ERR_CAST(vbuf); } *vbuffer_p = vbuf; return (struct virtio_gpu_command *)vbuf->buf; } static void free_vbuf(struct virtio_gpu_device *vgdev, struct virtio_gpu_vbuffer *vbuf) { if (vbuf->resp_size > MAX_INLINE_RESP_SIZE) kfree(vbuf->resp_buf); kfree(vbuf->data_buf); list_add(&vbuf->list, &vgdev->free_vbufs); } static void reclaim_vbufs(struct virtqueue *vq, struct list_head *reclaim_list) { struct virtio_gpu_vbuffer *vbuf; unsigned int len; int freed = 0; while ((vbuf = virtqueue_get_buf(vq, &len))) { list_add_tail(&vbuf->list, reclaim_list); freed++; } if (freed == 0) DRM_DEBUG("Huh? zero vbufs reclaimed"); } void virtio_gpu_dequeue_ctrl_func(struct work_struct *work) { struct virtio_gpu_device *vgdev = container_of(work, struct virtio_gpu_device, ctrlq.dequeue_work); struct list_head reclaim_list; struct virtio_gpu_vbuffer *entry, *tmp; struct virtio_gpu_ctrl_hdr *resp; u64 fence_id = 0; INIT_LIST_HEAD(&reclaim_list); spin_lock(&vgdev->ctrlq.qlock); do { virtqueue_disable_cb(vgdev->ctrlq.vq); reclaim_vbufs(vgdev->ctrlq.vq, &reclaim_list); } while (!virtqueue_enable_cb(vgdev->ctrlq.vq)); spin_unlock(&vgdev->ctrlq.qlock); list_for_each_entry_safe(entry, tmp, &reclaim_list, list) { resp = (struct virtio_gpu_ctrl_hdr *)entry->resp_buf; if (resp->type != cpu_to_le32(VIRTIO_GPU_RESP_OK_NODATA)) DRM_DEBUG("response 0x%x\n", le32_to_cpu(resp->type)); if (resp->flags & cpu_to_le32(VIRTIO_GPU_FLAG_FENCE)) { u64 f = le64_to_cpu(resp->fence_id); if (fence_id > f) { DRM_ERROR("%s: Oops: fence %llx -> %llx\n", __func__, fence_id, f); } else { fence_id = f; } } if (entry->resp_cb) entry->resp_cb(vgdev, entry); list_del(&entry->list); free_vbuf(vgdev, entry); } wake_up(&vgdev->ctrlq.ack_queue); if (fence_id) virtio_gpu_fence_event_process(vgdev, fence_id); } void virtio_gpu_dequeue_cursor_func(struct work_struct *work) { struct virtio_gpu_device *vgdev = container_of(work, struct virtio_gpu_device, cursorq.dequeue_work); struct list_head reclaim_list; struct virtio_gpu_vbuffer *entry, *tmp; INIT_LIST_HEAD(&reclaim_list); spin_lock(&vgdev->cursorq.qlock); do { virtqueue_disable_cb(vgdev->cursorq.vq); reclaim_vbufs(vgdev->cursorq.vq, &reclaim_list); } while (!virtqueue_enable_cb(vgdev->cursorq.vq)); spin_unlock(&vgdev->cursorq.qlock); list_for_each_entry_safe(entry, tmp, &reclaim_list, list) { list_del(&entry->list); free_vbuf(vgdev, entry); } wake_up(&vgdev->cursorq.ack_queue); } static int virtio_gpu_queue_ctrl_buffer(struct virtio_gpu_device *vgdev, struct virtio_gpu_vbuffer *vbuf) { struct virtqueue *vq = vgdev->ctrlq.vq; struct scatterlist *sgs[3], vcmd, vout, vresp; int outcnt = 0, incnt = 0; int ret; if (!vgdev->vqs_ready) return -ENODEV; sg_init_one(&vcmd, vbuf->buf, vbuf->size); sgs[outcnt+incnt] = &vcmd; outcnt++; if (vbuf->data_size) { sg_init_one(&vout, vbuf->data_buf, vbuf->data_size); sgs[outcnt + incnt] = &vout; outcnt++; } if (vbuf->resp_size) { sg_init_one(&vresp, vbuf->resp_buf, vbuf->resp_size); sgs[outcnt + incnt] = &vresp; incnt++; } spin_lock(&vgdev->ctrlq.qlock); retry: ret = virtqueue_add_sgs(vq, sgs, outcnt, incnt, vbuf, GFP_ATOMIC); if (ret == -ENOSPC) { spin_unlock(&vgdev->ctrlq.qlock); wait_event(vgdev->ctrlq.ack_queue, vq->num_free); spin_lock(&vgdev->ctrlq.qlock); goto retry; } else { virtqueue_kick(vq); } spin_unlock(&vgdev->ctrlq.qlock); if (!ret) ret = vq->num_free; return ret; } static int virtio_gpu_queue_cursor(struct virtio_gpu_device *vgdev, struct virtio_gpu_vbuffer *vbuf) { struct virtqueue *vq = vgdev->cursorq.vq; struct scatterlist *sgs[1], ccmd; int ret; int outcnt; if (!vgdev->vqs_ready) return -ENODEV; sg_init_one(&ccmd, vbuf->buf, vbuf->size); sgs[0] = &ccmd; outcnt = 1; spin_lock(&vgdev->cursorq.qlock); retry: ret = virtqueue_add_sgs(vq, sgs, outcnt, 0, vbuf, GFP_ATOMIC); if (ret == -ENOSPC) { spin_unlock(&vgdev->cursorq.qlock); wait_event(vgdev->cursorq.ack_queue, vq->num_free); spin_lock(&vgdev->cursorq.qlock); goto retry; } else { virtqueue_kick(vq); } spin_unlock(&vgdev->cursorq.qlock); if (!ret) ret = vq->num_free; return ret; } /* just create gem objects for userspace and long lived objects, just use dma_alloced pages for the queue objects? */ /* create a basic resource */ void virtio_gpu_cmd_create_resource(struct virtio_gpu_device *vgdev, uint32_t resource_id, uint32_t format, uint32_t width, uint32_t height) { struct virtio_gpu_resource_create_2d *cmd_p; struct virtio_gpu_vbuffer *vbuf; cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p)); memset(cmd_p, 0, sizeof(*cmd_p)); cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_RESOURCE_CREATE_2D); cmd_p->resource_id = cpu_to_le32(resource_id); cmd_p->format = cpu_to_le32(format); cmd_p->width = cpu_to_le32(width); cmd_p->height = cpu_to_le32(height); virtio_gpu_queue_ctrl_buffer(vgdev, vbuf); } void virtio_gpu_cmd_unref_resource(struct virtio_gpu_device *vgdev, uint32_t resource_id) { struct virtio_gpu_resource_unref *cmd_p; struct virtio_gpu_vbuffer *vbuf; cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p)); memset(cmd_p, 0, sizeof(*cmd_p)); cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_RESOURCE_UNREF); cmd_p->resource_id = cpu_to_le32(resource_id); virtio_gpu_queue_ctrl_buffer(vgdev, vbuf); } void virtio_gpu_cmd_resource_inval_backing(struct virtio_gpu_device *vgdev, uint32_t resource_id) { struct virtio_gpu_resource_detach_backing *cmd_p; struct virtio_gpu_vbuffer *vbuf; cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p)); memset(cmd_p, 0, sizeof(*cmd_p)); cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_RESOURCE_DETACH_BACKING); cmd_p->resource_id = cpu_to_le32(resource_id); virtio_gpu_queue_ctrl_buffer(vgdev, vbuf); } void virtio_gpu_cmd_set_scanout(struct virtio_gpu_device *vgdev, uint32_t scanout_id, uint32_t resource_id, uint32_t width, uint32_t height, uint32_t x, uint32_t y) { struct virtio_gpu_set_scanout *cmd_p; struct virtio_gpu_vbuffer *vbuf; cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p)); memset(cmd_p, 0, sizeof(*cmd_p)); cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_SET_SCANOUT); cmd_p->resource_id = cpu_to_le32(resource_id); cmd_p->scanout_id = cpu_to_le32(scanout_id); cmd_p->r.width = cpu_to_le32(width); cmd_p->r.height = cpu_to_le32(height); cmd_p->r.x = cpu_to_le32(x); cmd_p->r.y = cpu_to_le32(y); virtio_gpu_queue_ctrl_buffer(vgdev, vbuf); } void virtio_gpu_cmd_resource_flush(struct virtio_gpu_device *vgdev, uint32_t resource_id, uint32_t x, uint32_t y, uint32_t width, uint32_t height) { struct virtio_gpu_resource_flush *cmd_p; struct virtio_gpu_vbuffer *vbuf; cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p)); memset(cmd_p, 0, sizeof(*cmd_p)); cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_RESOURCE_FLUSH); cmd_p->resource_id = cpu_to_le32(resource_id); cmd_p->r.width = cpu_to_le32(width); cmd_p->r.height = cpu_to_le32(height); cmd_p->r.x = cpu_to_le32(x); cmd_p->r.y = cpu_to_le32(y); virtio_gpu_queue_ctrl_buffer(vgdev, vbuf); } void virtio_gpu_cmd_transfer_to_host_2d(struct virtio_gpu_device *vgdev, uint32_t resource_id, uint64_t offset, __le32 width, __le32 height, __le32 x, __le32 y, struct virtio_gpu_fence **fence) { struct virtio_gpu_transfer_to_host_2d *cmd_p; struct virtio_gpu_vbuffer *vbuf; cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p)); memset(cmd_p, 0, sizeof(*cmd_p)); cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_TRANSFER_TO_HOST_2D); cmd_p->resource_id = cpu_to_le32(resource_id); cmd_p->offset = cpu_to_le64(offset); cmd_p->r.width = width; cmd_p->r.height = height; cmd_p->r.x = x; cmd_p->r.y = y; if (fence) virtio_gpu_fence_emit(vgdev, &cmd_p->hdr, fence); virtio_gpu_queue_ctrl_buffer(vgdev, vbuf); } static void virtio_gpu_cmd_resource_attach_backing(struct virtio_gpu_device *vgdev, uint32_t resource_id, struct virtio_gpu_mem_entry *ents, uint32_t nents, struct virtio_gpu_fence **fence) { struct virtio_gpu_resource_attach_backing *cmd_p; struct virtio_gpu_vbuffer *vbuf; cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p)); memset(cmd_p, 0, sizeof(*cmd_p)); cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_RESOURCE_ATTACH_BACKING); cmd_p->resource_id = cpu_to_le32(resource_id); cmd_p->nr_entries = cpu_to_le32(nents); vbuf->data_buf = ents; vbuf->data_size = sizeof(*ents) * nents; if (fence) virtio_gpu_fence_emit(vgdev, &cmd_p->hdr, fence); virtio_gpu_queue_ctrl_buffer(vgdev, vbuf); } static void virtio_gpu_cmd_get_display_info_cb(struct virtio_gpu_device *vgdev, struct virtio_gpu_vbuffer *vbuf) { struct virtio_gpu_resp_display_info *resp = (struct virtio_gpu_resp_display_info *)vbuf->resp_buf; int i; spin_lock(&vgdev->display_info_lock); for (i = 0; i < vgdev->num_scanouts; i++) { vgdev->outputs[i].info = resp->pmodes[i]; if (resp->pmodes[i].enabled) { DRM_DEBUG("output %d: %dx%d+%d+%d", i, le32_to_cpu(resp->pmodes[i].r.width), le32_to_cpu(resp->pmodes[i].r.height), le32_to_cpu(resp->pmodes[i].r.x), le32_to_cpu(resp->pmodes[i].r.y)); } else { DRM_DEBUG("output %d: disabled", i); } } spin_unlock(&vgdev->display_info_lock); wake_up(&vgdev->resp_wq); if (!drm_helper_hpd_irq_event(vgdev->ddev)) drm_kms_helper_hotplug_event(vgdev->ddev); } int virtio_gpu_cmd_get_display_info(struct virtio_gpu_device *vgdev) { struct virtio_gpu_ctrl_hdr *cmd_p; struct virtio_gpu_vbuffer *vbuf; void *resp_buf; resp_buf = kzalloc(sizeof(struct virtio_gpu_resp_display_info), GFP_KERNEL); if (!resp_buf) return -ENOMEM; cmd_p = virtio_gpu_alloc_cmd_resp (vgdev, &virtio_gpu_cmd_get_display_info_cb, &vbuf, sizeof(*cmd_p), sizeof(struct virtio_gpu_resp_display_info), resp_buf); memset(cmd_p, 0, sizeof(*cmd_p)); cmd_p->type = cpu_to_le32(VIRTIO_GPU_CMD_GET_DISPLAY_INFO); virtio_gpu_queue_ctrl_buffer(vgdev, vbuf); return 0; } int virtio_gpu_object_attach(struct virtio_gpu_device *vgdev, struct virtio_gpu_object *obj, uint32_t resource_id, struct virtio_gpu_fence **fence) { struct virtio_gpu_mem_entry *ents; struct scatterlist *sg; int si; if (!obj->pages) { int ret; ret = virtio_gpu_object_get_sg_table(vgdev, obj); if (ret) return ret; } /* gets freed when the ring has consumed it */ ents = kmalloc_array(obj->pages->nents, sizeof(struct virtio_gpu_mem_entry), GFP_KERNEL); if (!ents) { DRM_ERROR("failed to allocate ent list\n"); return -ENOMEM; } for_each_sg(obj->pages->sgl, sg, obj->pages->nents, si) { ents[si].addr = cpu_to_le64(sg_phys(sg)); ents[si].length = cpu_to_le32(sg->length); ents[si].padding = 0; } virtio_gpu_cmd_resource_attach_backing(vgdev, resource_id, ents, obj->pages->nents, fence); obj->hw_res_handle = resource_id; return 0; } void virtio_gpu_cursor_ping(struct virtio_gpu_device *vgdev, struct virtio_gpu_output *output) { struct virtio_gpu_vbuffer *vbuf; struct virtio_gpu_update_cursor *cur_p; output->cursor.pos.scanout_id = cpu_to_le32(output->index); cur_p = virtio_gpu_alloc_cursor(vgdev, &vbuf); memcpy(cur_p, &output->cursor, sizeof(output->cursor)); virtio_gpu_queue_cursor(vgdev, vbuf); }