/* * Copyright © 2008,2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Chris Wilson * */ #include #include #include #include #include #include #include "i915_drv.h" #include "i915_gem_clflush.h" #include "i915_trace.h" #include "intel_drv.h" #include "intel_frontbuffer.h" #define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */ #define __EXEC_OBJECT_HAS_PIN (1<<31) #define __EXEC_OBJECT_HAS_FENCE (1<<30) #define __EXEC_OBJECT_NEEDS_MAP (1<<29) #define __EXEC_OBJECT_NEEDS_BIAS (1<<28) #define __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */ #define BATCH_OFFSET_BIAS (256*1024) #define __I915_EXEC_ILLEGAL_FLAGS \ (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK) struct i915_execbuffer { struct drm_i915_private *i915; struct drm_file *file; struct drm_i915_gem_execbuffer2 *args; struct drm_i915_gem_exec_object2 *exec; struct intel_engine_cs *engine; struct i915_gem_context *ctx; struct i915_address_space *vm; struct i915_vma *batch; struct drm_i915_gem_request *request; u32 batch_start_offset; u32 batch_len; unsigned int dispatch_flags; struct drm_i915_gem_exec_object2 shadow_exec_entry; bool need_relocs; struct list_head vmas; struct reloc_cache { struct drm_mm_node node; unsigned long vaddr; unsigned int page; bool use_64bit_reloc : 1; } reloc_cache; int lut_mask; struct hlist_head *buckets; }; /* * As an alternative to creating a hashtable of handle-to-vma for a batch, * we used the last available reserved field in the execobject[] and stash * a link from the execobj to its vma. */ #define __exec_to_vma(ee) (ee)->rsvd2 #define exec_to_vma(ee) u64_to_ptr(struct i915_vma, __exec_to_vma(ee)) static int eb_create(struct i915_execbuffer *eb) { if ((eb->args->flags & I915_EXEC_HANDLE_LUT) == 0) { unsigned int size = 1 + ilog2(eb->args->buffer_count); do { eb->buckets = kzalloc(sizeof(struct hlist_head) << size, GFP_TEMPORARY | __GFP_NORETRY | __GFP_NOWARN); if (eb->buckets) break; } while (--size); if (unlikely(!eb->buckets)) { eb->buckets = kzalloc(sizeof(struct hlist_head), GFP_TEMPORARY); if (unlikely(!eb->buckets)) return -ENOMEM; } eb->lut_mask = size; } else { eb->lut_mask = -eb->args->buffer_count; } return 0; } static inline void __eb_unreserve_vma(struct i915_vma *vma, const struct drm_i915_gem_exec_object2 *entry) { if (unlikely(entry->flags & __EXEC_OBJECT_HAS_FENCE)) i915_vma_unpin_fence(vma); if (entry->flags & __EXEC_OBJECT_HAS_PIN) __i915_vma_unpin(vma); } static void eb_unreserve_vma(struct i915_vma *vma) { struct drm_i915_gem_exec_object2 *entry = vma->exec_entry; __eb_unreserve_vma(vma, entry); entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN); } static void eb_reset(struct i915_execbuffer *eb) { struct i915_vma *vma; list_for_each_entry(vma, &eb->vmas, exec_link) { eb_unreserve_vma(vma); i915_vma_put(vma); vma->exec_entry = NULL; } if (eb->lut_mask >= 0) memset(eb->buckets, 0, sizeof(struct hlist_head) << eb->lut_mask); } static bool eb_add_vma(struct i915_execbuffer *eb, struct i915_vma *vma, int i) { if (unlikely(vma->exec_entry)) { DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n", eb->exec[i].handle, i); return false; } list_add_tail(&vma->exec_link, &eb->vmas); vma->exec_entry = &eb->exec[i]; if (eb->lut_mask >= 0) { vma->exec_handle = eb->exec[i].handle; hlist_add_head(&vma->exec_node, &eb->buckets[hash_32(vma->exec_handle, eb->lut_mask)]); } i915_vma_get(vma); __exec_to_vma(&eb->exec[i]) = (uintptr_t)vma; return true; } static inline struct hlist_head * ht_head(const struct i915_gem_context *ctx, u32 handle) { return &ctx->vma_lut.ht[hash_32(handle, ctx->vma_lut.ht_bits)]; } static inline bool ht_needs_resize(const struct i915_gem_context *ctx) { return (4*ctx->vma_lut.ht_count > 3*ctx->vma_lut.ht_size || 4*ctx->vma_lut.ht_count + 1 < ctx->vma_lut.ht_size); } static int eb_lookup_vmas(struct i915_execbuffer *eb) { #define INTERMEDIATE BIT(0) const int count = eb->args->buffer_count; struct i915_vma *vma; int slow_pass = -1; int i; INIT_LIST_HEAD(&eb->vmas); if (unlikely(eb->ctx->vma_lut.ht_size & I915_CTX_RESIZE_IN_PROGRESS)) flush_work(&eb->ctx->vma_lut.resize); GEM_BUG_ON(eb->ctx->vma_lut.ht_size & I915_CTX_RESIZE_IN_PROGRESS); for (i = 0; i < count; i++) { __exec_to_vma(&eb->exec[i]) = 0; hlist_for_each_entry(vma, ht_head(eb->ctx, eb->exec[i].handle), ctx_node) { if (vma->ctx_handle != eb->exec[i].handle) continue; if (!eb_add_vma(eb, vma, i)) return -EINVAL; goto next_vma; } if (slow_pass < 0) slow_pass = i; next_vma: ; } if (slow_pass < 0) return 0; spin_lock(&eb->file->table_lock); /* Grab a reference to the object and release the lock so we can lookup * or create the VMA without using GFP_ATOMIC */ for (i = slow_pass; i < count; i++) { struct drm_i915_gem_object *obj; if (__exec_to_vma(&eb->exec[i])) continue; obj = to_intel_bo(idr_find(&eb->file->object_idr, eb->exec[i].handle)); if (unlikely(!obj)) { spin_unlock(&eb->file->table_lock); DRM_DEBUG("Invalid object handle %d at index %d\n", eb->exec[i].handle, i); return -ENOENT; } __exec_to_vma(&eb->exec[i]) = INTERMEDIATE | (uintptr_t)obj; } spin_unlock(&eb->file->table_lock); for (i = slow_pass; i < count; i++) { struct drm_i915_gem_object *obj; if ((__exec_to_vma(&eb->exec[i]) & INTERMEDIATE) == 0) continue; /* * NOTE: We can leak any vmas created here when something fails * later on. But that's no issue since vma_unbind can deal with * vmas which are not actually bound. And since only * lookup_or_create exists as an interface to get at the vma * from the (obj, vm) we don't run the risk of creating * duplicated vmas for the same vm. */ obj = u64_to_ptr(struct drm_i915_gem_object, __exec_to_vma(&eb->exec[i]) & ~INTERMEDIATE); vma = i915_vma_instance(obj, eb->vm, NULL); if (unlikely(IS_ERR(vma))) { DRM_DEBUG("Failed to lookup VMA\n"); return PTR_ERR(vma); } /* First come, first served */ if (!vma->ctx) { vma->ctx = eb->ctx; vma->ctx_handle = eb->exec[i].handle; hlist_add_head(&vma->ctx_node, ht_head(eb->ctx, eb->exec[i].handle)); eb->ctx->vma_lut.ht_count++; if (i915_vma_is_ggtt(vma)) { GEM_BUG_ON(obj->vma_hashed); obj->vma_hashed = vma; } } if (!eb_add_vma(eb, vma, i)) return -EINVAL; } if (ht_needs_resize(eb->ctx)) { eb->ctx->vma_lut.ht_size |= I915_CTX_RESIZE_IN_PROGRESS; queue_work(system_highpri_wq, &eb->ctx->vma_lut.resize); } return 0; #undef INTERMEDIATE } static struct i915_vma * eb_get_batch(struct i915_execbuffer *eb) { struct i915_vma *vma = exec_to_vma(&eb->exec[eb->args->buffer_count - 1]); /* * SNA is doing fancy tricks with compressing batch buffers, which leads * to negative relocation deltas. Usually that works out ok since the * relocate address is still positive, except when the batch is placed * very low in the GTT. Ensure this doesn't happen. * * Note that actual hangs have only been observed on gen7, but for * paranoia do it everywhere. */ if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0) vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS; return vma; } static struct i915_vma * eb_get_vma(struct i915_execbuffer *eb, unsigned long handle) { if (eb->lut_mask < 0) { if (handle >= -eb->lut_mask) return NULL; return exec_to_vma(&eb->exec[handle]); } else { struct hlist_head *head; struct i915_vma *vma; head = &eb->buckets[hash_32(handle, eb->lut_mask)]; hlist_for_each_entry(vma, head, exec_node) { if (vma->exec_handle == handle) return vma; } return NULL; } } static void eb_destroy(struct i915_execbuffer *eb) { struct i915_vma *vma; list_for_each_entry(vma, &eb->vmas, exec_link) { if (!vma->exec_entry) continue; __eb_unreserve_vma(vma, vma->exec_entry); vma->exec_entry = NULL; i915_vma_put(vma); } i915_gem_context_put(eb->ctx); if (eb->lut_mask >= 0) kfree(eb->buckets); } static inline int use_cpu_reloc(struct drm_i915_gem_object *obj) { if (!i915_gem_object_has_struct_page(obj)) return false; if (DBG_USE_CPU_RELOC) return DBG_USE_CPU_RELOC > 0; return (HAS_LLC(to_i915(obj->base.dev)) || obj->cache_dirty || obj->cache_level != I915_CACHE_NONE); } /* Used to convert any address to canonical form. * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS, * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the * addresses to be in a canonical form: * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct * canonical form [63:48] == [47]." */ #define GEN8_HIGH_ADDRESS_BIT 47 static inline uint64_t gen8_canonical_addr(uint64_t address) { return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT); } static inline uint64_t gen8_noncanonical_addr(uint64_t address) { return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1); } static inline uint64_t relocation_target(const struct drm_i915_gem_relocation_entry *reloc, uint64_t target_offset) { return gen8_canonical_addr((int)reloc->delta + target_offset); } static void reloc_cache_init(struct reloc_cache *cache, struct drm_i915_private *i915) { cache->page = -1; cache->vaddr = 0; /* Must be a variable in the struct to allow GCC to unroll. */ cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); cache->node.allocated = false; } static inline void *unmask_page(unsigned long p) { return (void *)(uintptr_t)(p & PAGE_MASK); } static inline unsigned int unmask_flags(unsigned long p) { return p & ~PAGE_MASK; } #define KMAP 0x4 /* after CLFLUSH_FLAGS */ static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) { struct drm_i915_private *i915 = container_of(cache, struct i915_execbuffer, reloc_cache)->i915; return &i915->ggtt; } static void reloc_cache_reset(struct reloc_cache *cache) { void *vaddr; if (!cache->vaddr) return; vaddr = unmask_page(cache->vaddr); if (cache->vaddr & KMAP) { if (cache->vaddr & CLFLUSH_AFTER) mb(); kunmap_atomic(vaddr); i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm); } else { wmb(); io_mapping_unmap_atomic((void __iomem *)vaddr); if (cache->node.allocated) { struct i915_ggtt *ggtt = cache_to_ggtt(cache); ggtt->base.clear_range(&ggtt->base, cache->node.start, cache->node.size); drm_mm_remove_node(&cache->node); } else { i915_vma_unpin((struct i915_vma *)cache->node.mm); } } cache->vaddr = 0; cache->page = -1; } static void *reloc_kmap(struct drm_i915_gem_object *obj, struct reloc_cache *cache, int page) { void *vaddr; if (cache->vaddr) { kunmap_atomic(unmask_page(cache->vaddr)); } else { unsigned int flushes; int ret; ret = i915_gem_obj_prepare_shmem_write(obj, &flushes); if (ret) return ERR_PTR(ret); BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); cache->vaddr = flushes | KMAP; cache->node.mm = (void *)obj; if (flushes) mb(); } vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; cache->page = page; return vaddr; } static void *reloc_iomap(struct drm_i915_gem_object *obj, struct reloc_cache *cache, int page) { struct i915_ggtt *ggtt = cache_to_ggtt(cache); unsigned long offset; void *vaddr; if (cache->vaddr) { io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); } else { struct i915_vma *vma; int ret; if (use_cpu_reloc(obj)) return NULL; ret = i915_gem_object_set_to_gtt_domain(obj, true); if (ret) return ERR_PTR(ret); vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE | PIN_NONBLOCK); if (IS_ERR(vma)) { memset(&cache->node, 0, sizeof(cache->node)); ret = drm_mm_insert_node_in_range (&ggtt->base.mm, &cache->node, PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); if (ret) /* no inactive aperture space, use cpu reloc */ return NULL; } else { ret = i915_vma_put_fence(vma); if (ret) { i915_vma_unpin(vma); return ERR_PTR(ret); } cache->node.start = vma->node.start; cache->node.mm = (void *)vma; } } offset = cache->node.start; if (cache->node.allocated) { wmb(); ggtt->base.insert_page(&ggtt->base, i915_gem_object_get_dma_address(obj, page), offset, I915_CACHE_NONE, 0); } else { offset += page << PAGE_SHIFT; } vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable, offset); cache->page = page; cache->vaddr = (unsigned long)vaddr; return vaddr; } static void *reloc_vaddr(struct drm_i915_gem_object *obj, struct reloc_cache *cache, int page) { void *vaddr; if (cache->page == page) { vaddr = unmask_page(cache->vaddr); } else { vaddr = NULL; if ((cache->vaddr & KMAP) == 0) vaddr = reloc_iomap(obj, cache, page); if (!vaddr) vaddr = reloc_kmap(obj, cache, page); } return vaddr; } static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) { if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { if (flushes & CLFLUSH_BEFORE) { clflushopt(addr); mb(); } *addr = value; /* Writes to the same cacheline are serialised by the CPU * (including clflush). On the write path, we only require * that it hits memory in an orderly fashion and place * mb barriers at the start and end of the relocation phase * to ensure ordering of clflush wrt to the system. */ if (flushes & CLFLUSH_AFTER) clflushopt(addr); } else *addr = value; } static int relocate_entry(struct drm_i915_gem_object *obj, const struct drm_i915_gem_relocation_entry *reloc, struct reloc_cache *cache, u64 target_offset) { u64 offset = reloc->offset; bool wide = cache->use_64bit_reloc; void *vaddr; target_offset = relocation_target(reloc, target_offset); repeat: vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); clflush_write32(vaddr + offset_in_page(offset), lower_32_bits(target_offset), cache->vaddr); if (wide) { offset += sizeof(u32); target_offset >>= 32; wide = false; goto repeat; } return 0; } static int eb_relocate_entry(struct i915_vma *vma, struct i915_execbuffer *eb, struct drm_i915_gem_relocation_entry *reloc) { struct i915_vma *target; u64 target_offset; int ret; /* we've already hold a reference to all valid objects */ target = eb_get_vma(eb, reloc->target_handle); if (unlikely(!target)) return -ENOENT; /* Validate that the target is in a valid r/w GPU domain */ if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { DRM_DEBUG("reloc with multiple write domains: " "target %d offset %d " "read %08x write %08x", reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return -EINVAL; } if (unlikely((reloc->write_domain | reloc->read_domains) & ~I915_GEM_GPU_DOMAINS)) { DRM_DEBUG("reloc with read/write non-GPU domains: " "target %d offset %d " "read %08x write %08x", reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return -EINVAL; } if (reloc->write_domain) target->exec_entry->flags |= EXEC_OBJECT_WRITE; /* * Sandybridge PPGTT errata: We need a global gtt mapping for MI and * pipe_control writes because the gpu doesn't properly redirect them * through the ppgtt for non_secure batchbuffers. */ if (unlikely(IS_GEN6(eb->i915) && reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) { ret = i915_vma_bind(target, target->obj->cache_level, PIN_GLOBAL); if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!")) return ret; } /* If the relocation already has the right value in it, no * more work needs to be done. */ target_offset = gen8_canonical_addr(target->node.start); if (target_offset == reloc->presumed_offset) return 0; /* Check that the relocation address is valid... */ if (unlikely(reloc->offset > vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { DRM_DEBUG("Relocation beyond object bounds: " "target %d offset %d size %d.\n", reloc->target_handle, (int)reloc->offset, (int)vma->size); return -EINVAL; } if (unlikely(reloc->offset & 3)) { DRM_DEBUG("Relocation not 4-byte aligned: " "target %d offset %d.\n", reloc->target_handle, (int)reloc->offset); return -EINVAL; } ret = relocate_entry(vma->obj, reloc, &eb->reloc_cache, target_offset); if (ret) return ret; /* and update the user's relocation entry */ reloc->presumed_offset = target_offset; return 0; } static int eb_relocate_vma(struct i915_vma *vma, struct i915_execbuffer *eb) { #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)]; struct drm_i915_gem_relocation_entry __user *user_relocs; struct drm_i915_gem_exec_object2 *entry = vma->exec_entry; int remain, ret = 0; user_relocs = u64_to_user_ptr(entry->relocs_ptr); remain = entry->relocation_count; while (remain) { struct drm_i915_gem_relocation_entry *r = stack_reloc; unsigned long unwritten; unsigned int count; count = min_t(unsigned int, remain, ARRAY_SIZE(stack_reloc)); remain -= count; /* This is the fast path and we cannot handle a pagefault * whilst holding the struct mutex lest the user pass in the * relocations contained within a mmaped bo. For in such a case * we, the page fault handler would call i915_gem_fault() and * we would try to acquire the struct mutex again. Obviously * this is bad and so lockdep complains vehemently. */ pagefault_disable(); unwritten = __copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])); pagefault_enable(); if (unlikely(unwritten)) { ret = -EFAULT; goto out; } do { u64 offset = r->presumed_offset; ret = eb_relocate_entry(vma, eb, r); if (ret) goto out; if (r->presumed_offset != offset) { pagefault_disable(); unwritten = __put_user(r->presumed_offset, &user_relocs->presumed_offset); pagefault_enable(); if (unlikely(unwritten)) { /* Note that reporting an error now * leaves everything in an inconsistent * state as we have *already* changed * the relocation value inside the * object. As we have not changed the * reloc.presumed_offset or will not * change the execobject.offset, on the * call we may not rewrite the value * inside the object, leaving it * dangling and causing a GPU hang. */ ret = -EFAULT; goto out; } } user_relocs++; r++; } while (--count); } out: reloc_cache_reset(&eb->reloc_cache); return ret; #undef N_RELOC } static int eb_relocate_vma_slow(struct i915_vma *vma, struct i915_execbuffer *eb, struct drm_i915_gem_relocation_entry *relocs) { const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry; int i, ret = 0; for (i = 0; i < entry->relocation_count; i++) { ret = eb_relocate_entry(vma, eb, &relocs[i]); if (ret) break; } reloc_cache_reset(&eb->reloc_cache); return ret; } static int eb_relocate(struct i915_execbuffer *eb) { struct i915_vma *vma; int ret = 0; list_for_each_entry(vma, &eb->vmas, exec_link) { ret = eb_relocate_vma(vma, eb); if (ret) break; } return ret; } static bool only_mappable_for_reloc(unsigned int flags) { return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) == __EXEC_OBJECT_NEEDS_MAP; } static int eb_reserve_vma(struct i915_vma *vma, struct intel_engine_cs *engine, bool *need_reloc) { struct drm_i915_gem_exec_object2 *entry = vma->exec_entry; uint64_t flags; int ret; flags = PIN_USER; if (entry->flags & EXEC_OBJECT_NEEDS_GTT) flags |= PIN_GLOBAL; if (!drm_mm_node_allocated(&vma->node)) { /* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, * limit address to the first 4GBs for unflagged objects. */ if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0) flags |= PIN_ZONE_4G; if (entry->flags & __EXEC_OBJECT_NEEDS_MAP) flags |= PIN_GLOBAL | PIN_MAPPABLE; if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS) flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; if (entry->flags & EXEC_OBJECT_PINNED) flags |= entry->offset | PIN_OFFSET_FIXED; if ((flags & PIN_MAPPABLE) == 0) flags |= PIN_HIGH; } ret = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags); if ((ret == -ENOSPC || ret == -E2BIG) && only_mappable_for_reloc(entry->flags)) ret = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags & ~PIN_MAPPABLE); if (ret) return ret; entry->flags |= __EXEC_OBJECT_HAS_PIN; if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) { ret = i915_vma_get_fence(vma); if (ret) return ret; if (i915_vma_pin_fence(vma)) entry->flags |= __EXEC_OBJECT_HAS_FENCE; } if (entry->offset != vma->node.start) { entry->offset = vma->node.start; *need_reloc = true; } return 0; } static bool need_reloc_mappable(struct i915_vma *vma) { struct drm_i915_gem_exec_object2 *entry = vma->exec_entry; if (entry->relocation_count == 0) return false; if (!i915_vma_is_ggtt(vma)) return false; /* See also use_cpu_reloc() */ if (HAS_LLC(to_i915(vma->obj->base.dev))) return false; if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU) return false; return true; } static bool eb_vma_misplaced(struct i915_vma *vma) { struct drm_i915_gem_exec_object2 *entry = vma->exec_entry; WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP && !i915_vma_is_ggtt(vma)); if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) return true; if (vma->node.size < entry->pad_to_size) return true; if (entry->flags & EXEC_OBJECT_PINNED && vma->node.start != entry->offset) return true; if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS && vma->node.start < BATCH_OFFSET_BIAS) return true; /* avoid costly ping-pong once a batch bo ended up non-mappable */ if (entry->flags & __EXEC_OBJECT_NEEDS_MAP && !i915_vma_is_map_and_fenceable(vma)) return !only_mappable_for_reloc(entry->flags); if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 && (vma->node.start + vma->node.size - 1) >> 32) return true; return false; } static int eb_reserve(struct i915_execbuffer *eb) { const bool has_fenced_gpu_access = INTEL_GEN(eb->i915) < 4; const bool needs_unfenced_map = INTEL_INFO(eb->i915)->unfenced_needs_alignment; struct i915_vma *vma; struct list_head ordered_vmas; struct list_head pinned_vmas; int retry; INIT_LIST_HEAD(&ordered_vmas); INIT_LIST_HEAD(&pinned_vmas); while (!list_empty(&eb->vmas)) { struct drm_i915_gem_exec_object2 *entry; bool need_fence, need_mappable; vma = list_first_entry(&eb->vmas, struct i915_vma, exec_link); entry = vma->exec_entry; if (eb->ctx->flags & CONTEXT_NO_ZEROMAP) entry->flags |= __EXEC_OBJECT_NEEDS_BIAS; if (!has_fenced_gpu_access) entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; need_fence = (entry->flags & EXEC_OBJECT_NEEDS_FENCE || needs_unfenced_map) && i915_gem_object_is_tiled(vma->obj); need_mappable = need_fence || need_reloc_mappable(vma); if (entry->flags & EXEC_OBJECT_PINNED) list_move_tail(&vma->exec_link, &pinned_vmas); else if (need_mappable) { entry->flags |= __EXEC_OBJECT_NEEDS_MAP; list_move(&vma->exec_link, &ordered_vmas); } else list_move_tail(&vma->exec_link, &ordered_vmas); } list_splice(&ordered_vmas, &eb->vmas); list_splice(&pinned_vmas, &eb->vmas); /* Attempt to pin all of the buffers into the GTT. * This is done in 3 phases: * * 1a. Unbind all objects that do not match the GTT constraints for * the execbuffer (fenceable, mappable, alignment etc). * 1b. Increment pin count for already bound objects. * 2. Bind new objects. * 3. Decrement pin count. * * This avoid unnecessary unbinding of later objects in order to make * room for the earlier objects *unless* we need to defragment. */ retry = 0; do { int ret = 0; /* Unbind any ill-fitting objects or pin. */ list_for_each_entry(vma, &eb->vmas, exec_link) { if (!drm_mm_node_allocated(&vma->node)) continue; if (eb_vma_misplaced(vma)) ret = i915_vma_unbind(vma); else ret = eb_reserve_vma(vma, eb->engine, &eb->need_relocs); if (ret) goto err; } /* Bind fresh objects */ list_for_each_entry(vma, &eb->vmas, exec_link) { if (drm_mm_node_allocated(&vma->node)) continue; ret = eb_reserve_vma(vma, eb->engine, &eb->need_relocs); if (ret) goto err; } err: if (ret != -ENOSPC || retry++) return ret; /* Decrement pin count for bound objects */ list_for_each_entry(vma, &eb->vmas, exec_link) eb_unreserve_vma(vma); ret = i915_gem_evict_vm(eb->vm, true); if (ret) return ret; } while (1); } static int eb_relocate_slow(struct i915_execbuffer *eb) { const unsigned int count = eb->args->buffer_count; struct drm_device *dev = &eb->i915->drm; struct drm_i915_gem_relocation_entry *reloc; struct i915_vma *vma; int *reloc_offset; int i, total, ret; /* We may process another execbuffer during the unlock... */ eb_reset(eb); mutex_unlock(&dev->struct_mutex); total = 0; for (i = 0; i < count; i++) total += eb->exec[i].relocation_count; reloc_offset = kvmalloc_array(count, sizeof(*reloc_offset), GFP_KERNEL); reloc = kvmalloc_array(total, sizeof(*reloc), GFP_KERNEL); if (reloc == NULL || reloc_offset == NULL) { kvfree(reloc); kvfree(reloc_offset); mutex_lock(&dev->struct_mutex); return -ENOMEM; } total = 0; for (i = 0; i < count; i++) { struct drm_i915_gem_relocation_entry __user *user_relocs; u64 invalid_offset = (u64)-1; int j; user_relocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); if (copy_from_user(reloc+total, user_relocs, eb->exec[i].relocation_count * sizeof(*reloc))) { ret = -EFAULT; mutex_lock(&dev->struct_mutex); goto err; } /* As we do not update the known relocation offsets after * relocating (due to the complexities in lock handling), * we need to mark them as invalid now so that we force the * relocation processing next time. Just in case the target * object is evicted and then rebound into its old * presumed_offset before the next execbuffer - if that * happened we would make the mistake of assuming that the * relocations were valid. */ for (j = 0; j < eb->exec[i].relocation_count; j++) { if (__copy_to_user(&user_relocs[j].presumed_offset, &invalid_offset, sizeof(invalid_offset))) { ret = -EFAULT; mutex_lock(&dev->struct_mutex); goto err; } } reloc_offset[i] = total; total += eb->exec[i].relocation_count; } ret = i915_mutex_lock_interruptible(dev); if (ret) { mutex_lock(&dev->struct_mutex); goto err; } /* reacquire the objects */ ret = eb_lookup_vmas(eb); if (ret) goto err; ret = eb_reserve(eb); if (ret) goto err; list_for_each_entry(vma, &eb->vmas, exec_link) { int idx = vma->exec_entry - eb->exec; ret = eb_relocate_vma_slow(vma, eb, reloc + reloc_offset[idx]); if (ret) goto err; } /* Leave the user relocations as are, this is the painfully slow path, * and we want to avoid the complication of dropping the lock whilst * having buffers reserved in the aperture and so causing spurious * ENOSPC for random operations. */ err: kvfree(reloc); kvfree(reloc_offset); return ret; } static int eb_move_to_gpu(struct i915_execbuffer *eb) { struct i915_vma *vma; int ret; list_for_each_entry(vma, &eb->vmas, exec_link) { struct drm_i915_gem_object *obj = vma->obj; if (vma->exec_entry->flags & EXEC_OBJECT_CAPTURE) { struct i915_gem_capture_list *capture; capture = kmalloc(sizeof(*capture), GFP_KERNEL); if (unlikely(!capture)) return -ENOMEM; capture->next = eb->request->capture_list; capture->vma = vma; eb->request->capture_list = capture; } if (vma->exec_entry->flags & EXEC_OBJECT_ASYNC) continue; if (unlikely(obj->cache_dirty && !obj->cache_coherent)) i915_gem_clflush_object(obj, 0); ret = i915_gem_request_await_object (eb->request, obj, vma->exec_entry->flags & EXEC_OBJECT_WRITE); if (ret) return ret; } /* Unconditionally flush any chipset caches (for streaming writes). */ i915_gem_chipset_flush(eb->i915); /* Unconditionally invalidate GPU caches and TLBs. */ return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE); } static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) { if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) return false; /* Kernel clipping was a DRI1 misfeature */ if (exec->num_cliprects || exec->cliprects_ptr) return false; if (exec->DR4 == 0xffffffff) { DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); exec->DR4 = 0; } if (exec->DR1 || exec->DR4) return false; if ((exec->batch_start_offset | exec->batch_len) & 0x7) return false; return true; } static int validate_exec_list(struct drm_device *dev, struct drm_i915_gem_exec_object2 *exec, int count) { unsigned relocs_total = 0; unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry); unsigned invalid_flags; int i; /* INTERNAL flags must not overlap with external ones */ BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS); invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; if (USES_FULL_PPGTT(dev)) invalid_flags |= EXEC_OBJECT_NEEDS_GTT; for (i = 0; i < count; i++) { char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr); int length; /* limited by fault_in_pages_readable() */ if (exec[i].flags & invalid_flags) return -EINVAL; /* Offset can be used as input (EXEC_OBJECT_PINNED), reject * any non-page-aligned or non-canonical addresses. */ if (exec[i].flags & EXEC_OBJECT_PINNED) { if (exec[i].offset != gen8_canonical_addr(exec[i].offset & PAGE_MASK)) return -EINVAL; } /* From drm_mm perspective address space is continuous, * so from this point we're always using non-canonical * form internally. */ exec[i].offset = gen8_noncanonical_addr(exec[i].offset); if (exec[i].alignment && !is_power_of_2(exec[i].alignment)) return -EINVAL; /* pad_to_size was once a reserved field, so sanitize it */ if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) { if (offset_in_page(exec[i].pad_to_size)) return -EINVAL; } else { exec[i].pad_to_size = 0; } /* First check for malicious input causing overflow in * the worst case where we need to allocate the entire * relocation tree as a single array. */ if (exec[i].relocation_count > relocs_max - relocs_total) return -EINVAL; relocs_total += exec[i].relocation_count; length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry); /* * We must check that the entire relocation array is safe * to read, but since we may need to update the presumed * offsets during execution, check for full write access. */ if (!access_ok(VERIFY_WRITE, ptr, length)) return -EFAULT; if (likely(!i915.prefault_disable)) { if (fault_in_pages_readable(ptr, length)) return -EFAULT; } } return 0; } static int eb_select_context(struct i915_execbuffer *eb) { unsigned int ctx_id = i915_execbuffer2_get_context_id(*eb->args); struct i915_gem_context *ctx; ctx = i915_gem_context_lookup(eb->file->driver_priv, ctx_id); if (unlikely(IS_ERR(ctx))) return PTR_ERR(ctx); if (unlikely(i915_gem_context_is_banned(ctx))) { DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id); return -EIO; } eb->ctx = i915_gem_context_get(ctx); eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base; return 0; } void i915_vma_move_to_active(struct i915_vma *vma, struct drm_i915_gem_request *req, unsigned int flags) { struct drm_i915_gem_object *obj = vma->obj; const unsigned int idx = req->engine->id; lockdep_assert_held(&req->i915->drm.struct_mutex); GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); /* Add a reference if we're newly entering the active list. * The order in which we add operations to the retirement queue is * vital here: mark_active adds to the start of the callback list, * such that subsequent callbacks are called first. Therefore we * add the active reference first and queue for it to be dropped * *last*. */ if (!i915_vma_is_active(vma)) obj->active_count++; i915_vma_set_active(vma, idx); i915_gem_active_set(&vma->last_read[idx], req); list_move_tail(&vma->vm_link, &vma->vm->active_list); obj->base.write_domain = 0; if (flags & EXEC_OBJECT_WRITE) { obj->base.write_domain = I915_GEM_DOMAIN_RENDER; if (intel_fb_obj_invalidate(obj, ORIGIN_CS)) i915_gem_active_set(&obj->frontbuffer_write, req); obj->base.read_domains = 0; } obj->base.read_domains |= I915_GEM_GPU_DOMAINS; if (flags & EXEC_OBJECT_NEEDS_FENCE) i915_gem_active_set(&vma->last_fence, req); } static void eb_export_fence(struct drm_i915_gem_object *obj, struct drm_i915_gem_request *req, unsigned int flags) { struct reservation_object *resv = obj->resv; /* Ignore errors from failing to allocate the new fence, we can't * handle an error right now. Worst case should be missed * synchronisation leading to rendering corruption. */ reservation_object_lock(resv, NULL); if (flags & EXEC_OBJECT_WRITE) reservation_object_add_excl_fence(resv, &req->fence); else if (reservation_object_reserve_shared(resv) == 0) reservation_object_add_shared_fence(resv, &req->fence); reservation_object_unlock(resv); } static void eb_move_to_active(struct i915_execbuffer *eb) { struct i915_vma *vma; list_for_each_entry(vma, &eb->vmas, exec_link) { struct drm_i915_gem_object *obj = vma->obj; obj->base.write_domain = 0; if (vma->exec_entry->flags & EXEC_OBJECT_WRITE) obj->base.read_domains = 0; obj->base.read_domains |= I915_GEM_GPU_DOMAINS; i915_vma_move_to_active(vma, eb->request, vma->exec_entry->flags); eb_export_fence(obj, eb->request, vma->exec_entry->flags); } } static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req) { u32 *cs; int i; if (!IS_GEN7(req->i915) || req->engine->id != RCS) { DRM_DEBUG("sol reset is gen7/rcs only\n"); return -EINVAL; } cs = intel_ring_begin(req, 4 * 3); if (IS_ERR(cs)) return PTR_ERR(cs); for (i = 0; i < 4; i++) { *cs++ = MI_LOAD_REGISTER_IMM(1); *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); *cs++ = 0; } intel_ring_advance(req, cs); return 0; } static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master) { struct drm_i915_gem_object *shadow_batch_obj; struct i915_vma *vma; int ret; shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_ALIGN(eb->batch_len)); if (IS_ERR(shadow_batch_obj)) return ERR_CAST(shadow_batch_obj); ret = intel_engine_cmd_parser(eb->engine, eb->batch->obj, shadow_batch_obj, eb->batch_start_offset, eb->batch_len, is_master); if (ret) { if (ret == -EACCES) /* unhandled chained batch */ vma = NULL; else vma = ERR_PTR(ret); goto out; } vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0); if (IS_ERR(vma)) goto out; vma->exec_entry = memset(&eb->shadow_exec_entry, 0, sizeof(*vma->exec_entry)); vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN; i915_gem_object_get(shadow_batch_obj); list_add_tail(&vma->exec_link, &eb->vmas); out: i915_gem_object_unpin_pages(shadow_batch_obj); return vma; } static void add_to_client(struct drm_i915_gem_request *req, struct drm_file *file) { req->file_priv = file->driver_priv; list_add_tail(&req->client_link, &req->file_priv->mm.request_list); } static int execbuf_submit(struct i915_execbuffer *eb) { int ret; ret = eb_move_to_gpu(eb); if (ret) return ret; ret = i915_switch_context(eb->request); if (ret) return ret; if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { ret = i915_reset_gen7_sol_offsets(eb->request); if (ret) return ret; } ret = eb->engine->emit_bb_start(eb->request, eb->batch->node.start + eb->batch_start_offset, eb->batch_len, eb->dispatch_flags); if (ret) return ret; eb_move_to_active(eb); return 0; } /** * Find one BSD ring to dispatch the corresponding BSD command. * The engine index is returned. */ static unsigned int gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; /* Check whether the file_priv has already selected one ring. */ if ((int)file_priv->bsd_engine < 0) file_priv->bsd_engine = atomic_fetch_xor(1, &dev_priv->mm.bsd_engine_dispatch_index); return file_priv->bsd_engine; } #define I915_USER_RINGS (4) static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = { [I915_EXEC_DEFAULT] = RCS, [I915_EXEC_RENDER] = RCS, [I915_EXEC_BLT] = BCS, [I915_EXEC_BSD] = VCS, [I915_EXEC_VEBOX] = VECS }; static struct intel_engine_cs * eb_select_engine(struct drm_i915_private *dev_priv, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args) { unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; struct intel_engine_cs *engine; if (user_ring_id > I915_USER_RINGS) { DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id); return NULL; } if ((user_ring_id != I915_EXEC_BSD) && ((args->flags & I915_EXEC_BSD_MASK) != 0)) { DRM_DEBUG("execbuf with non bsd ring but with invalid " "bsd dispatch flags: %d\n", (int)(args->flags)); return NULL; } if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) { unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; if (bsd_idx == I915_EXEC_BSD_DEFAULT) { bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file); } else if (bsd_idx >= I915_EXEC_BSD_RING1 && bsd_idx <= I915_EXEC_BSD_RING2) { bsd_idx >>= I915_EXEC_BSD_SHIFT; bsd_idx--; } else { DRM_DEBUG("execbuf with unknown bsd ring: %u\n", bsd_idx); return NULL; } engine = dev_priv->engine[_VCS(bsd_idx)]; } else { engine = dev_priv->engine[user_ring_map[user_ring_id]]; } if (!engine) { DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id); return NULL; } return engine; } static int i915_gem_do_execbuffer(struct drm_device *dev, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args, struct drm_i915_gem_exec_object2 *exec) { struct i915_execbuffer eb; struct dma_fence *in_fence = NULL; struct sync_file *out_fence = NULL; int out_fence_fd = -1; int ret; if (!i915_gem_check_execbuffer(args)) return -EINVAL; ret = validate_exec_list(dev, exec, args->buffer_count); if (ret) return ret; eb.i915 = to_i915(dev); eb.file = file; eb.args = args; eb.exec = exec; eb.need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0; reloc_cache_init(&eb.reloc_cache, eb.i915); eb.batch_start_offset = args->batch_start_offset; eb.batch_len = args->batch_len; eb.dispatch_flags = 0; if (args->flags & I915_EXEC_SECURE) { if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) return -EPERM; eb.dispatch_flags |= I915_DISPATCH_SECURE; } if (args->flags & I915_EXEC_IS_PINNED) eb.dispatch_flags |= I915_DISPATCH_PINNED; eb.engine = eb_select_engine(eb.i915, file, args); if (!eb.engine) return -EINVAL; if (args->flags & I915_EXEC_RESOURCE_STREAMER) { if (!HAS_RESOURCE_STREAMER(eb.i915)) { DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n"); return -EINVAL; } if (eb.engine->id != RCS) { DRM_DEBUG("RS is not available on %s\n", eb.engine->name); return -EINVAL; } eb.dispatch_flags |= I915_DISPATCH_RS; } if (args->flags & I915_EXEC_FENCE_IN) { in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); if (!in_fence) return -EINVAL; } if (args->flags & I915_EXEC_FENCE_OUT) { out_fence_fd = get_unused_fd_flags(O_CLOEXEC); if (out_fence_fd < 0) { ret = out_fence_fd; goto err_in_fence; } } /* Take a local wakeref for preparing to dispatch the execbuf as * we expect to access the hardware fairly frequently in the * process. Upon first dispatch, we acquire another prolonged * wakeref that we hold until the GPU has been idle for at least * 100ms. */ intel_runtime_pm_get(eb.i915); ret = i915_mutex_lock_interruptible(dev); if (ret) goto pre_mutex_err; ret = eb_select_context(&eb); if (ret) { mutex_unlock(&dev->struct_mutex); goto pre_mutex_err; } if (eb_create(&eb)) { i915_gem_context_put(eb.ctx); mutex_unlock(&dev->struct_mutex); ret = -ENOMEM; goto pre_mutex_err; } /* Look up object handles */ ret = eb_lookup_vmas(&eb); if (ret) goto err; /* take note of the batch buffer before we might reorder the lists */ eb.batch = eb_get_batch(&eb); /* Move the objects en-masse into the GTT, evicting if necessary. */ ret = eb_reserve(&eb); if (ret) goto err; /* The objects are in their final locations, apply the relocations. */ if (eb.need_relocs) ret = eb_relocate(&eb); if (ret) { if (ret == -EFAULT) { ret = eb_relocate_slow(&eb); BUG_ON(!mutex_is_locked(&dev->struct_mutex)); } if (ret) goto err; } if (eb.batch->exec_entry->flags & EXEC_OBJECT_WRITE) { DRM_DEBUG("Attempting to use self-modifying batch buffer\n"); ret = -EINVAL; goto err; } if (eb.batch_start_offset > eb.batch->size || eb.batch_len > eb.batch->size - eb.batch_start_offset) { DRM_DEBUG("Attempting to use out-of-bounds batch\n"); ret = -EINVAL; goto err; } if (eb.engine->needs_cmd_parser && eb.batch_len) { struct i915_vma *vma; vma = eb_parse(&eb, drm_is_current_master(file)); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err; } if (vma) { /* * Batch parsed and accepted: * * Set the DISPATCH_SECURE bit to remove the NON_SECURE * bit from MI_BATCH_BUFFER_START commands issued in * the dispatch_execbuffer implementations. We * specifically don't want that set on batches the * command parser has accepted. */ eb.dispatch_flags |= I915_DISPATCH_SECURE; eb.batch_start_offset = 0; eb.batch = vma; } } if (eb.batch_len == 0) eb.batch_len = eb.batch->size - eb.batch_start_offset; /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure * batch" bit. Hence we need to pin secure batches into the global gtt. * hsw should have this fixed, but bdw mucks it up again. */ if (eb.dispatch_flags & I915_DISPATCH_SECURE) { struct drm_i915_gem_object *obj = eb.batch->obj; struct i915_vma *vma; /* * So on first glance it looks freaky that we pin the batch here * outside of the reservation loop. But: * - The batch is already pinned into the relevant ppgtt, so we * already have the backing storage fully allocated. * - No other BO uses the global gtt (well contexts, but meh), * so we don't really have issues with multiple objects not * fitting due to fragmentation. * So this is actually safe. */ vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err; } eb.batch = vma; } /* Allocate a request for this batch buffer nice and early. */ eb.request = i915_gem_request_alloc(eb.engine, eb.ctx); if (IS_ERR(eb.request)) { ret = PTR_ERR(eb.request); goto err_batch_unpin; } if (in_fence) { ret = i915_gem_request_await_dma_fence(eb.request, in_fence); if (ret < 0) goto err_request; } if (out_fence_fd != -1) { out_fence = sync_file_create(&eb.request->fence); if (!out_fence) { ret = -ENOMEM; goto err_request; } } /* Whilst this request exists, batch_obj will be on the * active_list, and so will hold the active reference. Only when this * request is retired will the the batch_obj be moved onto the * inactive_list and lose its active reference. Hence we do not need * to explicitly hold another reference here. */ eb.request->batch = eb.batch; trace_i915_gem_request_queue(eb.request, eb.dispatch_flags); ret = execbuf_submit(&eb); err_request: __i915_add_request(eb.request, ret == 0); add_to_client(eb.request, file); if (out_fence) { if (ret == 0) { fd_install(out_fence_fd, out_fence->file); args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */ args->rsvd2 |= (u64)out_fence_fd << 32; out_fence_fd = -1; } else { fput(out_fence->file); } } err_batch_unpin: /* * FIXME: We crucially rely upon the active tracking for the (ppgtt) * batch vma for correctness. For less ugly and less fragility this * needs to be adjusted to also track the ggtt batch vma properly as * active. */ if (eb.dispatch_flags & I915_DISPATCH_SECURE) i915_vma_unpin(eb.batch); err: /* the request owns the ref now */ eb_destroy(&eb); mutex_unlock(&dev->struct_mutex); pre_mutex_err: /* intel_gpu_busy should also get a ref, so it will free when the device * is really idle. */ intel_runtime_pm_put(eb.i915); if (out_fence_fd != -1) put_unused_fd(out_fence_fd); err_in_fence: dma_fence_put(in_fence); return ret; } /* * Legacy execbuffer just creates an exec2 list from the original exec object * list array and passes it to the real function. */ int i915_gem_execbuffer(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_execbuffer *args = data; struct drm_i915_gem_execbuffer2 exec2; struct drm_i915_gem_exec_object *exec_list = NULL; struct drm_i915_gem_exec_object2 *exec2_list = NULL; int ret, i; if (args->buffer_count < 1) { DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count); return -EINVAL; } /* Copy in the exec list from userland */ exec_list = kvmalloc_array(sizeof(*exec_list), args->buffer_count, GFP_KERNEL); exec2_list = kvmalloc_array(sizeof(*exec2_list), args->buffer_count, GFP_KERNEL); if (exec_list == NULL || exec2_list == NULL) { DRM_DEBUG("Failed to allocate exec list for %d buffers\n", args->buffer_count); kvfree(exec_list); kvfree(exec2_list); return -ENOMEM; } ret = copy_from_user(exec_list, u64_to_user_ptr(args->buffers_ptr), sizeof(*exec_list) * args->buffer_count); if (ret != 0) { DRM_DEBUG("copy %d exec entries failed %d\n", args->buffer_count, ret); kvfree(exec_list); kvfree(exec2_list); return -EFAULT; } for (i = 0; i < args->buffer_count; i++) { exec2_list[i].handle = exec_list[i].handle; exec2_list[i].relocation_count = exec_list[i].relocation_count; exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; exec2_list[i].alignment = exec_list[i].alignment; exec2_list[i].offset = exec_list[i].offset; if (INTEL_GEN(to_i915(dev)) < 4) exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; else exec2_list[i].flags = 0; } exec2.buffers_ptr = args->buffers_ptr; exec2.buffer_count = args->buffer_count; exec2.batch_start_offset = args->batch_start_offset; exec2.batch_len = args->batch_len; exec2.DR1 = args->DR1; exec2.DR4 = args->DR4; exec2.num_cliprects = args->num_cliprects; exec2.cliprects_ptr = args->cliprects_ptr; exec2.flags = I915_EXEC_RENDER; i915_execbuffer2_set_context_id(exec2, 0); ret = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list); if (!ret) { struct drm_i915_gem_exec_object __user *user_exec_list = u64_to_user_ptr(args->buffers_ptr); /* Copy the new buffer offsets back to the user's exec list. */ for (i = 0; i < args->buffer_count; i++) { exec2_list[i].offset = gen8_canonical_addr(exec2_list[i].offset); ret = __copy_to_user(&user_exec_list[i].offset, &exec2_list[i].offset, sizeof(user_exec_list[i].offset)); if (ret) { ret = -EFAULT; DRM_DEBUG("failed to copy %d exec entries " "back to user (%d)\n", args->buffer_count, ret); break; } } } kvfree(exec_list); kvfree(exec2_list); return ret; } int i915_gem_execbuffer2(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_execbuffer2 *args = data; struct drm_i915_gem_exec_object2 *exec2_list = NULL; int ret; if (args->buffer_count < 1 || args->buffer_count > UINT_MAX / sizeof(*exec2_list)) { DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count); return -EINVAL; } exec2_list = kvmalloc_array(args->buffer_count, sizeof(*exec2_list), GFP_TEMPORARY); if (exec2_list == NULL) { DRM_DEBUG("Failed to allocate exec list for %d buffers\n", args->buffer_count); return -ENOMEM; } ret = copy_from_user(exec2_list, u64_to_user_ptr(args->buffers_ptr), sizeof(*exec2_list) * args->buffer_count); if (ret != 0) { DRM_DEBUG("copy %d exec entries failed %d\n", args->buffer_count, ret); kvfree(exec2_list); return -EFAULT; } ret = i915_gem_do_execbuffer(dev, file, args, exec2_list); if (!ret) { /* Copy the new buffer offsets back to the user's exec list. */ struct drm_i915_gem_exec_object2 __user *user_exec_list = u64_to_user_ptr(args->buffers_ptr); int i; for (i = 0; i < args->buffer_count; i++) { exec2_list[i].offset = gen8_canonical_addr(exec2_list[i].offset); ret = __copy_to_user(&user_exec_list[i].offset, &exec2_list[i].offset, sizeof(user_exec_list[i].offset)); if (ret) { ret = -EFAULT; DRM_DEBUG("failed to copy %d exec entries " "back to user\n", args->buffer_count); break; } } } kvfree(exec2_list); return ret; }