/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_da_format.h" #include "xfs_da_btree.h" #include "xfs_inode.h" #include "xfs_dir2.h" #include "xfs_ialloc.h" #include "xfs_alloc.h" #include "xfs_rtalloc.h" #include "xfs_bmap.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_log.h" #include "xfs_error.h" #include "xfs_quota.h" #include "xfs_fsops.h" #include "xfs_trace.h" #include "xfs_icache.h" #include "xfs_sysfs.h" #ifdef HAVE_PERCPU_SB STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, int); STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, int); STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); #else #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) #endif static DEFINE_MUTEX(xfs_uuid_table_mutex); static int xfs_uuid_table_size; static uuid_t *xfs_uuid_table; /* * See if the UUID is unique among mounted XFS filesystems. * Mount fails if UUID is nil or a FS with the same UUID is already mounted. */ STATIC int xfs_uuid_mount( struct xfs_mount *mp) { uuid_t *uuid = &mp->m_sb.sb_uuid; int hole, i; if (mp->m_flags & XFS_MOUNT_NOUUID) return 0; if (uuid_is_nil(uuid)) { xfs_warn(mp, "Filesystem has nil UUID - can't mount"); return -EINVAL; } mutex_lock(&xfs_uuid_table_mutex); for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { if (uuid_is_nil(&xfs_uuid_table[i])) { hole = i; continue; } if (uuid_equal(uuid, &xfs_uuid_table[i])) goto out_duplicate; } if (hole < 0) { xfs_uuid_table = kmem_realloc(xfs_uuid_table, (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), xfs_uuid_table_size * sizeof(*xfs_uuid_table), KM_SLEEP); hole = xfs_uuid_table_size++; } xfs_uuid_table[hole] = *uuid; mutex_unlock(&xfs_uuid_table_mutex); return 0; out_duplicate: mutex_unlock(&xfs_uuid_table_mutex); xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); return -EINVAL; } STATIC void xfs_uuid_unmount( struct xfs_mount *mp) { uuid_t *uuid = &mp->m_sb.sb_uuid; int i; if (mp->m_flags & XFS_MOUNT_NOUUID) return; mutex_lock(&xfs_uuid_table_mutex); for (i = 0; i < xfs_uuid_table_size; i++) { if (uuid_is_nil(&xfs_uuid_table[i])) continue; if (!uuid_equal(uuid, &xfs_uuid_table[i])) continue; memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); break; } ASSERT(i < xfs_uuid_table_size); mutex_unlock(&xfs_uuid_table_mutex); } STATIC void __xfs_free_perag( struct rcu_head *head) { struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); ASSERT(atomic_read(&pag->pag_ref) == 0); kmem_free(pag); } /* * Free up the per-ag resources associated with the mount structure. */ STATIC void xfs_free_perag( xfs_mount_t *mp) { xfs_agnumber_t agno; struct xfs_perag *pag; for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { spin_lock(&mp->m_perag_lock); pag = radix_tree_delete(&mp->m_perag_tree, agno); spin_unlock(&mp->m_perag_lock); ASSERT(pag); ASSERT(atomic_read(&pag->pag_ref) == 0); call_rcu(&pag->rcu_head, __xfs_free_perag); } } /* * Check size of device based on the (data/realtime) block count. * Note: this check is used by the growfs code as well as mount. */ int xfs_sb_validate_fsb_count( xfs_sb_t *sbp, __uint64_t nblocks) { ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); ASSERT(sbp->sb_blocklog >= BBSHIFT); /* Limited by ULONG_MAX of page cache index */ if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) return -EFBIG; return 0; } int xfs_initialize_perag( xfs_mount_t *mp, xfs_agnumber_t agcount, xfs_agnumber_t *maxagi) { xfs_agnumber_t index; xfs_agnumber_t first_initialised = 0; xfs_perag_t *pag; xfs_agino_t agino; xfs_ino_t ino; xfs_sb_t *sbp = &mp->m_sb; int error = -ENOMEM; /* * Walk the current per-ag tree so we don't try to initialise AGs * that already exist (growfs case). Allocate and insert all the * AGs we don't find ready for initialisation. */ for (index = 0; index < agcount; index++) { pag = xfs_perag_get(mp, index); if (pag) { xfs_perag_put(pag); continue; } if (!first_initialised) first_initialised = index; pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); if (!pag) goto out_unwind; pag->pag_agno = index; pag->pag_mount = mp; spin_lock_init(&pag->pag_ici_lock); mutex_init(&pag->pag_ici_reclaim_lock); INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); spin_lock_init(&pag->pag_buf_lock); pag->pag_buf_tree = RB_ROOT; if (radix_tree_preload(GFP_NOFS)) goto out_unwind; spin_lock(&mp->m_perag_lock); if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { BUG(); spin_unlock(&mp->m_perag_lock); radix_tree_preload_end(); error = -EEXIST; goto out_unwind; } spin_unlock(&mp->m_perag_lock); radix_tree_preload_end(); } /* * If we mount with the inode64 option, or no inode overflows * the legacy 32-bit address space clear the inode32 option. */ agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) mp->m_flags |= XFS_MOUNT_32BITINODES; else mp->m_flags &= ~XFS_MOUNT_32BITINODES; if (mp->m_flags & XFS_MOUNT_32BITINODES) index = xfs_set_inode32(mp, agcount); else index = xfs_set_inode64(mp, agcount); if (maxagi) *maxagi = index; return 0; out_unwind: kmem_free(pag); for (; index > first_initialised; index--) { pag = radix_tree_delete(&mp->m_perag_tree, index); kmem_free(pag); } return error; } /* * xfs_readsb * * Does the initial read of the superblock. */ int xfs_readsb( struct xfs_mount *mp, int flags) { unsigned int sector_size; struct xfs_buf *bp; struct xfs_sb *sbp = &mp->m_sb; int error; int loud = !(flags & XFS_MFSI_QUIET); const struct xfs_buf_ops *buf_ops; ASSERT(mp->m_sb_bp == NULL); ASSERT(mp->m_ddev_targp != NULL); /* * For the initial read, we must guess at the sector * size based on the block device. It's enough to * get the sb_sectsize out of the superblock and * then reread with the proper length. * We don't verify it yet, because it may not be complete. */ sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); buf_ops = NULL; /* * Allocate a (locked) buffer to hold the superblock. * This will be kept around at all times to optimize * access to the superblock. */ reread: error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size), 0, &bp, buf_ops); if (error) { if (loud) xfs_warn(mp, "SB validate failed with error %d.", error); /* bad CRC means corrupted metadata */ if (error == -EFSBADCRC) error = -EFSCORRUPTED; return error; } /* * Initialize the mount structure from the superblock. */ xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); /* * If we haven't validated the superblock, do so now before we try * to check the sector size and reread the superblock appropriately. */ if (sbp->sb_magicnum != XFS_SB_MAGIC) { if (loud) xfs_warn(mp, "Invalid superblock magic number"); error = -EINVAL; goto release_buf; } /* * We must be able to do sector-sized and sector-aligned IO. */ if (sector_size > sbp->sb_sectsize) { if (loud) xfs_warn(mp, "device supports %u byte sectors (not %u)", sector_size, sbp->sb_sectsize); error = -ENOSYS; goto release_buf; } if (buf_ops == NULL) { /* * Re-read the superblock so the buffer is correctly sized, * and properly verified. */ xfs_buf_relse(bp); sector_size = sbp->sb_sectsize; buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; goto reread; } /* Initialize per-cpu counters */ xfs_icsb_reinit_counters(mp); /* no need to be quiet anymore, so reset the buf ops */ bp->b_ops = &xfs_sb_buf_ops; mp->m_sb_bp = bp; xfs_buf_unlock(bp); return 0; release_buf: xfs_buf_relse(bp); return error; } /* * Update alignment values based on mount options and sb values */ STATIC int xfs_update_alignment(xfs_mount_t *mp) { xfs_sb_t *sbp = &(mp->m_sb); if (mp->m_dalign) { /* * If stripe unit and stripe width are not multiples * of the fs blocksize turn off alignment. */ if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || (BBTOB(mp->m_swidth) & mp->m_blockmask)) { xfs_warn(mp, "alignment check failed: sunit/swidth vs. blocksize(%d)", sbp->sb_blocksize); return -EINVAL; } else { /* * Convert the stripe unit and width to FSBs. */ mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { xfs_warn(mp, "alignment check failed: sunit/swidth vs. agsize(%d)", sbp->sb_agblocks); return -EINVAL; } else if (mp->m_dalign) { mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); } else { xfs_warn(mp, "alignment check failed: sunit(%d) less than bsize(%d)", mp->m_dalign, sbp->sb_blocksize); return -EINVAL; } } /* * Update superblock with new values * and log changes */ if (xfs_sb_version_hasdalign(sbp)) { if (sbp->sb_unit != mp->m_dalign) { sbp->sb_unit = mp->m_dalign; mp->m_update_sb = true; } if (sbp->sb_width != mp->m_swidth) { sbp->sb_width = mp->m_swidth; mp->m_update_sb = true; } } else { xfs_warn(mp, "cannot change alignment: superblock does not support data alignment"); return -EINVAL; } } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && xfs_sb_version_hasdalign(&mp->m_sb)) { mp->m_dalign = sbp->sb_unit; mp->m_swidth = sbp->sb_width; } return 0; } /* * Set the maximum inode count for this filesystem */ STATIC void xfs_set_maxicount(xfs_mount_t *mp) { xfs_sb_t *sbp = &(mp->m_sb); __uint64_t icount; if (sbp->sb_imax_pct) { /* * Make sure the maximum inode count is a multiple * of the units we allocate inodes in. */ icount = sbp->sb_dblocks * sbp->sb_imax_pct; do_div(icount, 100); do_div(icount, mp->m_ialloc_blks); mp->m_maxicount = (icount * mp->m_ialloc_blks) << sbp->sb_inopblog; } else { mp->m_maxicount = 0; } } /* * Set the default minimum read and write sizes unless * already specified in a mount option. * We use smaller I/O sizes when the file system * is being used for NFS service (wsync mount option). */ STATIC void xfs_set_rw_sizes(xfs_mount_t *mp) { xfs_sb_t *sbp = &(mp->m_sb); int readio_log, writeio_log; if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { if (mp->m_flags & XFS_MOUNT_WSYNC) { readio_log = XFS_WSYNC_READIO_LOG; writeio_log = XFS_WSYNC_WRITEIO_LOG; } else { readio_log = XFS_READIO_LOG_LARGE; writeio_log = XFS_WRITEIO_LOG_LARGE; } } else { readio_log = mp->m_readio_log; writeio_log = mp->m_writeio_log; } if (sbp->sb_blocklog > readio_log) { mp->m_readio_log = sbp->sb_blocklog; } else { mp->m_readio_log = readio_log; } mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); if (sbp->sb_blocklog > writeio_log) { mp->m_writeio_log = sbp->sb_blocklog; } else { mp->m_writeio_log = writeio_log; } mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); } /* * precalculate the low space thresholds for dynamic speculative preallocation. */ void xfs_set_low_space_thresholds( struct xfs_mount *mp) { int i; for (i = 0; i < XFS_LOWSP_MAX; i++) { __uint64_t space = mp->m_sb.sb_dblocks; do_div(space, 100); mp->m_low_space[i] = space * (i + 1); } } /* * Set whether we're using inode alignment. */ STATIC void xfs_set_inoalignment(xfs_mount_t *mp) { if (xfs_sb_version_hasalign(&mp->m_sb) && mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; else mp->m_inoalign_mask = 0; /* * If we are using stripe alignment, check whether * the stripe unit is a multiple of the inode alignment */ if (mp->m_dalign && mp->m_inoalign_mask && !(mp->m_dalign & mp->m_inoalign_mask)) mp->m_sinoalign = mp->m_dalign; else mp->m_sinoalign = 0; } /* * Check that the data (and log if separate) is an ok size. */ STATIC int xfs_check_sizes( struct xfs_mount *mp) { struct xfs_buf *bp; xfs_daddr_t d; int error; d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { xfs_warn(mp, "filesystem size mismatch detected"); return -EFBIG; } error = xfs_buf_read_uncached(mp->m_ddev_targp, d - XFS_FSS_TO_BB(mp, 1), XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); if (error) { xfs_warn(mp, "last sector read failed"); return error; } xfs_buf_relse(bp); if (mp->m_logdev_targp == mp->m_ddev_targp) return 0; d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { xfs_warn(mp, "log size mismatch detected"); return -EFBIG; } error = xfs_buf_read_uncached(mp->m_logdev_targp, d - XFS_FSB_TO_BB(mp, 1), XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); if (error) { xfs_warn(mp, "log device read failed"); return error; } xfs_buf_relse(bp); return 0; } /* * Clear the quotaflags in memory and in the superblock. */ int xfs_mount_reset_sbqflags( struct xfs_mount *mp) { mp->m_qflags = 0; /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ if (mp->m_sb.sb_qflags == 0) return 0; spin_lock(&mp->m_sb_lock); mp->m_sb.sb_qflags = 0; spin_unlock(&mp->m_sb_lock); if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) return 0; return xfs_sync_sb(mp, false); } __uint64_t xfs_default_resblks(xfs_mount_t *mp) { __uint64_t resblks; /* * We default to 5% or 8192 fsbs of space reserved, whichever is * smaller. This is intended to cover concurrent allocation * transactions when we initially hit enospc. These each require a 4 * block reservation. Hence by default we cover roughly 2000 concurrent * allocation reservations. */ resblks = mp->m_sb.sb_dblocks; do_div(resblks, 20); resblks = min_t(__uint64_t, resblks, 8192); return resblks; } /* * This function does the following on an initial mount of a file system: * - reads the superblock from disk and init the mount struct * - if we're a 32-bit kernel, do a size check on the superblock * so we don't mount terabyte filesystems * - init mount struct realtime fields * - allocate inode hash table for fs * - init directory manager * - perform recovery and init the log manager */ int xfs_mountfs( xfs_mount_t *mp) { xfs_sb_t *sbp = &(mp->m_sb); xfs_inode_t *rip; __uint64_t resblks; uint quotamount = 0; uint quotaflags = 0; int error = 0; xfs_sb_mount_common(mp, sbp); /* * Check for a mismatched features2 values. Older kernels read & wrote * into the wrong sb offset for sb_features2 on some platforms due to * xfs_sb_t not being 64bit size aligned when sb_features2 was added, * which made older superblock reading/writing routines swap it as a * 64-bit value. * * For backwards compatibility, we make both slots equal. * * If we detect a mismatched field, we OR the set bits into the existing * features2 field in case it has already been modified; we don't want * to lose any features. We then update the bad location with the ORed * value so that older kernels will see any features2 flags. The * superblock writeback code ensures the new sb_features2 is copied to * sb_bad_features2 before it is logged or written to disk. */ if (xfs_sb_has_mismatched_features2(sbp)) { xfs_warn(mp, "correcting sb_features alignment problem"); sbp->sb_features2 |= sbp->sb_bad_features2; mp->m_update_sb = true; /* * Re-check for ATTR2 in case it was found in bad_features2 * slot. */ if (xfs_sb_version_hasattr2(&mp->m_sb) && !(mp->m_flags & XFS_MOUNT_NOATTR2)) mp->m_flags |= XFS_MOUNT_ATTR2; } if (xfs_sb_version_hasattr2(&mp->m_sb) && (mp->m_flags & XFS_MOUNT_NOATTR2)) { xfs_sb_version_removeattr2(&mp->m_sb); mp->m_update_sb = true; /* update sb_versionnum for the clearing of the morebits */ if (!sbp->sb_features2) mp->m_update_sb = true; } /* always use v2 inodes by default now */ if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; mp->m_update_sb = true; } /* * Check if sb_agblocks is aligned at stripe boundary * If sb_agblocks is NOT aligned turn off m_dalign since * allocator alignment is within an ag, therefore ag has * to be aligned at stripe boundary. */ error = xfs_update_alignment(mp); if (error) goto out; xfs_alloc_compute_maxlevels(mp); xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); xfs_ialloc_compute_maxlevels(mp); xfs_set_maxicount(mp); error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); if (error) goto out; error = xfs_uuid_mount(mp); if (error) goto out_remove_sysfs; /* * Set the minimum read and write sizes */ xfs_set_rw_sizes(mp); /* set the low space thresholds for dynamic preallocation */ xfs_set_low_space_thresholds(mp); /* * Set the inode cluster size. * This may still be overridden by the file system * block size if it is larger than the chosen cluster size. * * For v5 filesystems, scale the cluster size with the inode size to * keep a constant ratio of inode per cluster buffer, but only if mkfs * has set the inode alignment value appropriately for larger cluster * sizes. */ mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; if (xfs_sb_version_hascrc(&mp->m_sb)) { int new_size = mp->m_inode_cluster_size; new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) mp->m_inode_cluster_size = new_size; } /* * Set inode alignment fields */ xfs_set_inoalignment(mp); /* * Check that the data (and log if separate) is an ok size. */ error = xfs_check_sizes(mp); if (error) goto out_remove_uuid; /* * Initialize realtime fields in the mount structure */ error = xfs_rtmount_init(mp); if (error) { xfs_warn(mp, "RT mount failed"); goto out_remove_uuid; } /* * Copies the low order bits of the timestamp and the randomly * set "sequence" number out of a UUID. */ uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); mp->m_dmevmask = 0; /* not persistent; set after each mount */ error = xfs_da_mount(mp); if (error) { xfs_warn(mp, "Failed dir/attr init: %d", error); goto out_remove_uuid; } /* * Initialize the precomputed transaction reservations values. */ xfs_trans_init(mp); /* * Allocate and initialize the per-ag data. */ spin_lock_init(&mp->m_perag_lock); INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); if (error) { xfs_warn(mp, "Failed per-ag init: %d", error); goto out_free_dir; } if (!sbp->sb_logblocks) { xfs_warn(mp, "no log defined"); XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); error = -EFSCORRUPTED; goto out_free_perag; } /* * log's mount-time initialization. Perform 1st part recovery if needed */ error = xfs_log_mount(mp, mp->m_logdev_targp, XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); if (error) { xfs_warn(mp, "log mount failed"); goto out_fail_wait; } /* * Now the log is mounted, we know if it was an unclean shutdown or * not. If it was, with the first phase of recovery has completed, we * have consistent AG blocks on disk. We have not recovered EFIs yet, * but they are recovered transactionally in the second recovery phase * later. * * Hence we can safely re-initialise incore superblock counters from * the per-ag data. These may not be correct if the filesystem was not * cleanly unmounted, so we need to wait for recovery to finish before * doing this. * * If the filesystem was cleanly unmounted, then we can trust the * values in the superblock to be correct and we don't need to do * anything here. * * If we are currently making the filesystem, the initialisation will * fail as the perag data is in an undefined state. */ if (xfs_sb_version_haslazysbcount(&mp->m_sb) && !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && !mp->m_sb.sb_inprogress) { error = xfs_initialize_perag_data(mp, sbp->sb_agcount); if (error) goto out_log_dealloc; } /* * Get and sanity-check the root inode. * Save the pointer to it in the mount structure. */ error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); if (error) { xfs_warn(mp, "failed to read root inode"); goto out_log_dealloc; } ASSERT(rip != NULL); if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { xfs_warn(mp, "corrupted root inode %llu: not a directory", (unsigned long long)rip->i_ino); xfs_iunlock(rip, XFS_ILOCK_EXCL); XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, mp); error = -EFSCORRUPTED; goto out_rele_rip; } mp->m_rootip = rip; /* save it */ xfs_iunlock(rip, XFS_ILOCK_EXCL); /* * Initialize realtime inode pointers in the mount structure */ error = xfs_rtmount_inodes(mp); if (error) { /* * Free up the root inode. */ xfs_warn(mp, "failed to read RT inodes"); goto out_rele_rip; } /* * If this is a read-only mount defer the superblock updates until * the next remount into writeable mode. Otherwise we would never * perform the update e.g. for the root filesystem. */ if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { error = xfs_sync_sb(mp, false); if (error) { xfs_warn(mp, "failed to write sb changes"); goto out_rtunmount; } } /* * Initialise the XFS quota management subsystem for this mount */ if (XFS_IS_QUOTA_RUNNING(mp)) { error = xfs_qm_newmount(mp, "amount, "aflags); if (error) goto out_rtunmount; } else { ASSERT(!XFS_IS_QUOTA_ON(mp)); /* * If a file system had quotas running earlier, but decided to * mount without -o uquota/pquota/gquota options, revoke the * quotachecked license. */ if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { xfs_notice(mp, "resetting quota flags"); error = xfs_mount_reset_sbqflags(mp); if (error) goto out_rtunmount; } } /* * Finish recovering the file system. This part needed to be * delayed until after the root and real-time bitmap inodes * were consistently read in. */ error = xfs_log_mount_finish(mp); if (error) { xfs_warn(mp, "log mount finish failed"); goto out_rtunmount; } /* * Complete the quota initialisation, post-log-replay component. */ if (quotamount) { ASSERT(mp->m_qflags == 0); mp->m_qflags = quotaflags; xfs_qm_mount_quotas(mp); } /* * Now we are mounted, reserve a small amount of unused space for * privileged transactions. This is needed so that transaction * space required for critical operations can dip into this pool * when at ENOSPC. This is needed for operations like create with * attr, unwritten extent conversion at ENOSPC, etc. Data allocations * are not allowed to use this reserved space. * * This may drive us straight to ENOSPC on mount, but that implies * we were already there on the last unmount. Warn if this occurs. */ if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { resblks = xfs_default_resblks(mp); error = xfs_reserve_blocks(mp, &resblks, NULL); if (error) xfs_warn(mp, "Unable to allocate reserve blocks. Continuing without reserve pool."); } return 0; out_rtunmount: xfs_rtunmount_inodes(mp); out_rele_rip: IRELE(rip); out_log_dealloc: xfs_log_unmount(mp); out_fail_wait: if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) xfs_wait_buftarg(mp->m_logdev_targp); xfs_wait_buftarg(mp->m_ddev_targp); out_free_perag: xfs_free_perag(mp); out_free_dir: xfs_da_unmount(mp); out_remove_uuid: xfs_uuid_unmount(mp); out_remove_sysfs: xfs_sysfs_del(&mp->m_kobj); out: return error; } /* * This flushes out the inodes,dquots and the superblock, unmounts the * log and makes sure that incore structures are freed. */ void xfs_unmountfs( struct xfs_mount *mp) { __uint64_t resblks; int error; cancel_delayed_work_sync(&mp->m_eofblocks_work); xfs_qm_unmount_quotas(mp); xfs_rtunmount_inodes(mp); IRELE(mp->m_rootip); /* * We can potentially deadlock here if we have an inode cluster * that has been freed has its buffer still pinned in memory because * the transaction is still sitting in a iclog. The stale inodes * on that buffer will have their flush locks held until the * transaction hits the disk and the callbacks run. the inode * flush takes the flush lock unconditionally and with nothing to * push out the iclog we will never get that unlocked. hence we * need to force the log first. */ xfs_log_force(mp, XFS_LOG_SYNC); /* * Flush all pending changes from the AIL. */ xfs_ail_push_all_sync(mp->m_ail); /* * And reclaim all inodes. At this point there should be no dirty * inodes and none should be pinned or locked, but use synchronous * reclaim just to be sure. We can stop background inode reclaim * here as well if it is still running. */ cancel_delayed_work_sync(&mp->m_reclaim_work); xfs_reclaim_inodes(mp, SYNC_WAIT); xfs_qm_unmount(mp); /* * Unreserve any blocks we have so that when we unmount we don't account * the reserved free space as used. This is really only necessary for * lazy superblock counting because it trusts the incore superblock * counters to be absolutely correct on clean unmount. * * We don't bother correcting this elsewhere for lazy superblock * counting because on mount of an unclean filesystem we reconstruct the * correct counter value and this is irrelevant. * * For non-lazy counter filesystems, this doesn't matter at all because * we only every apply deltas to the superblock and hence the incore * value does not matter.... */ resblks = 0; error = xfs_reserve_blocks(mp, &resblks, NULL); if (error) xfs_warn(mp, "Unable to free reserved block pool. " "Freespace may not be correct on next mount."); error = xfs_log_sbcount(mp); if (error) xfs_warn(mp, "Unable to update superblock counters. " "Freespace may not be correct on next mount."); xfs_log_unmount(mp); xfs_da_unmount(mp); xfs_uuid_unmount(mp); #if defined(DEBUG) xfs_errortag_clearall(mp, 0); #endif xfs_free_perag(mp); xfs_sysfs_del(&mp->m_kobj); } /* * Determine whether modifications can proceed. The caller specifies the minimum * freeze level for which modifications should not be allowed. This allows * certain operations to proceed while the freeze sequence is in progress, if * necessary. */ bool xfs_fs_writable( struct xfs_mount *mp, int level) { ASSERT(level > SB_UNFROZEN); if ((mp->m_super->s_writers.frozen >= level) || XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) return false; return true; } /* * xfs_log_sbcount * * Sync the superblock counters to disk. * * Note this code can be called during the process of freezing, so we use the * transaction allocator that does not block when the transaction subsystem is * in its frozen state. */ int xfs_log_sbcount(xfs_mount_t *mp) { /* allow this to proceed during the freeze sequence... */ if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) return 0; xfs_icsb_sync_counters(mp, 0); /* * we don't need to do this if we are updating the superblock * counters on every modification. */ if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) return 0; return xfs_sync_sb(mp, true); } int xfs_mod_icount( struct xfs_mount *mp, int64_t delta) { /* deltas are +/-64, hence the large batch size of 128. */ __percpu_counter_add(&mp->m_icount, delta, 128); if (percpu_counter_compare(&mp->m_icount, 0) < 0) { ASSERT(0); percpu_counter_add(&mp->m_icount, -delta); return -EINVAL; } return 0; } /* * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply * a delta to a specified field in the in-core superblock. Simply * switch on the field indicated and apply the delta to that field. * Fields are not allowed to dip below zero, so if the delta would * do this do not apply it and return EINVAL. * * The m_sb_lock must be held when this routine is called. */ STATIC int xfs_mod_incore_sb_unlocked( xfs_mount_t *mp, xfs_sb_field_t field, int64_t delta, int rsvd) { int scounter; /* short counter for 32 bit fields */ long long lcounter; /* long counter for 64 bit fields */ long long res_used, rem; /* * With the in-core superblock spin lock held, switch * on the indicated field. Apply the delta to the * proper field. If the fields value would dip below * 0, then do not apply the delta and return EINVAL. */ switch (field) { case XFS_SBS_ICOUNT: ASSERT(0); return -ENOSPC; case XFS_SBS_IFREE: lcounter = (long long)mp->m_sb.sb_ifree; lcounter += delta; if (lcounter < 0) { ASSERT(0); return -EINVAL; } mp->m_sb.sb_ifree = lcounter; return 0; case XFS_SBS_FDBLOCKS: lcounter = (long long) mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); if (delta > 0) { /* Putting blocks back */ if (res_used > delta) { mp->m_resblks_avail += delta; } else { rem = delta - res_used; mp->m_resblks_avail = mp->m_resblks; lcounter += rem; } } else { /* Taking blocks away */ lcounter += delta; if (lcounter >= 0) { mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); return 0; } /* * We are out of blocks, use any available reserved * blocks if were allowed to. */ if (!rsvd) return -ENOSPC; lcounter = (long long)mp->m_resblks_avail + delta; if (lcounter >= 0) { mp->m_resblks_avail = lcounter; return 0; } printk_once(KERN_WARNING "Filesystem \"%s\": reserve blocks depleted! " "Consider increasing reserve pool size.", mp->m_fsname); return -ENOSPC; } mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); return 0; case XFS_SBS_FREXTENTS: lcounter = (long long)mp->m_sb.sb_frextents; lcounter += delta; if (lcounter < 0) { return -ENOSPC; } mp->m_sb.sb_frextents = lcounter; return 0; case XFS_SBS_DBLOCKS: lcounter = (long long)mp->m_sb.sb_dblocks; lcounter += delta; if (lcounter < 0) { ASSERT(0); return -EINVAL; } mp->m_sb.sb_dblocks = lcounter; return 0; case XFS_SBS_AGCOUNT: scounter = mp->m_sb.sb_agcount; scounter += delta; if (scounter < 0) { ASSERT(0); return -EINVAL; } mp->m_sb.sb_agcount = scounter; return 0; case XFS_SBS_IMAX_PCT: scounter = mp->m_sb.sb_imax_pct; scounter += delta; if (scounter < 0) { ASSERT(0); return -EINVAL; } mp->m_sb.sb_imax_pct = scounter; return 0; case XFS_SBS_REXTSIZE: scounter = mp->m_sb.sb_rextsize; scounter += delta; if (scounter < 0) { ASSERT(0); return -EINVAL; } mp->m_sb.sb_rextsize = scounter; return 0; case XFS_SBS_RBMBLOCKS: scounter = mp->m_sb.sb_rbmblocks; scounter += delta; if (scounter < 0) { ASSERT(0); return -EINVAL; } mp->m_sb.sb_rbmblocks = scounter; return 0; case XFS_SBS_RBLOCKS: lcounter = (long long)mp->m_sb.sb_rblocks; lcounter += delta; if (lcounter < 0) { ASSERT(0); return -EINVAL; } mp->m_sb.sb_rblocks = lcounter; return 0; case XFS_SBS_REXTENTS: lcounter = (long long)mp->m_sb.sb_rextents; lcounter += delta; if (lcounter < 0) { ASSERT(0); return -EINVAL; } mp->m_sb.sb_rextents = lcounter; return 0; case XFS_SBS_REXTSLOG: scounter = mp->m_sb.sb_rextslog; scounter += delta; if (scounter < 0) { ASSERT(0); return -EINVAL; } mp->m_sb.sb_rextslog = scounter; return 0; default: ASSERT(0); return -EINVAL; } } /* * xfs_mod_incore_sb() is used to change a field in the in-core * superblock structure by the specified delta. This modification * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() * routine to do the work. */ int xfs_mod_incore_sb( struct xfs_mount *mp, xfs_sb_field_t field, int64_t delta, int rsvd) { int status; #ifdef HAVE_PERCPU_SB ASSERT(field < XFS_SBS_IFREE || field > XFS_SBS_FDBLOCKS); #endif spin_lock(&mp->m_sb_lock); status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); spin_unlock(&mp->m_sb_lock); return status; } /* * Change more than one field in the in-core superblock structure at a time. * * The fields and changes to those fields are specified in the array of * xfs_mod_sb structures passed in. Either all of the specified deltas * will be applied or none of them will. If any modified field dips below 0, * then all modifications will be backed out and EINVAL will be returned. * * Note that this function may not be used for the superblock values that * are tracked with the in-memory per-cpu counters - a direct call to * xfs_icsb_modify_counters is required for these. */ int xfs_mod_incore_sb_batch( struct xfs_mount *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) { xfs_mod_sb_t *msbp; int error = 0; /* * Loop through the array of mod structures and apply each individually. * If any fail, then back out all those which have already been applied. * Do all of this within the scope of the m_sb_lock so that all of the * changes will be atomic. */ spin_lock(&mp->m_sb_lock); for (msbp = msb; msbp < (msb + nmsb); msbp++) { ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || msbp->msb_field > XFS_SBS_FDBLOCKS); error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, msbp->msb_delta, rsvd); if (error) goto unwind; } spin_unlock(&mp->m_sb_lock); return 0; unwind: while (--msbp >= msb) { error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, -msbp->msb_delta, rsvd); ASSERT(error == 0); } spin_unlock(&mp->m_sb_lock); return error; } /* * xfs_getsb() is called to obtain the buffer for the superblock. * The buffer is returned locked and read in from disk. * The buffer should be released with a call to xfs_brelse(). * * If the flags parameter is BUF_TRYLOCK, then we'll only return * the superblock buffer if it can be locked without sleeping. * If it can't then we'll return NULL. */ struct xfs_buf * xfs_getsb( struct xfs_mount *mp, int flags) { struct xfs_buf *bp = mp->m_sb_bp; if (!xfs_buf_trylock(bp)) { if (flags & XBF_TRYLOCK) return NULL; xfs_buf_lock(bp); } xfs_buf_hold(bp); ASSERT(XFS_BUF_ISDONE(bp)); return bp; } /* * Used to free the superblock along various error paths. */ void xfs_freesb( struct xfs_mount *mp) { struct xfs_buf *bp = mp->m_sb_bp; xfs_buf_lock(bp); mp->m_sb_bp = NULL; xfs_buf_relse(bp); } /* * If the underlying (data/log/rt) device is readonly, there are some * operations that cannot proceed. */ int xfs_dev_is_read_only( struct xfs_mount *mp, char *message) { if (xfs_readonly_buftarg(mp->m_ddev_targp) || xfs_readonly_buftarg(mp->m_logdev_targp) || (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { xfs_notice(mp, "%s required on read-only device.", message); xfs_notice(mp, "write access unavailable, cannot proceed."); return -EROFS; } return 0; } #ifdef HAVE_PERCPU_SB /* * Per-cpu incore superblock counters * * Simple concept, difficult implementation * * Basically, replace the incore superblock counters with a distributed per cpu * counter for contended fields (e.g. free block count). * * Difficulties arise in that the incore sb is used for ENOSPC checking, and * hence needs to be accurately read when we are running low on space. Hence * there is a method to enable and disable the per-cpu counters based on how * much "stuff" is available in them. * * Basically, a counter is enabled if there is enough free resource to justify * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local * ENOSPC), then we disable the counters to synchronise all callers and * re-distribute the available resources. * * If, once we redistributed the available resources, we still get a failure, * we disable the per-cpu counter and go through the slow path. * * The slow path is the current xfs_mod_incore_sb() function. This means that * when we disable a per-cpu counter, we need to drain its resources back to * the global superblock. We do this after disabling the counter to prevent * more threads from queueing up on the counter. * * Essentially, this means that we still need a lock in the fast path to enable * synchronisation between the global counters and the per-cpu counters. This * is not a problem because the lock will be local to a CPU almost all the time * and have little contention except when we get to ENOSPC conditions. * * Basically, this lock becomes a barrier that enables us to lock out the fast * path while we do things like enabling and disabling counters and * synchronising the counters. * * Locking rules: * * 1. m_sb_lock before picking up per-cpu locks * 2. per-cpu locks always picked up via for_each_online_cpu() order * 3. accurate counter sync requires m_sb_lock + per cpu locks * 4. modifying per-cpu counters requires holding per-cpu lock * 5. modifying global counters requires holding m_sb_lock * 6. enabling or disabling a counter requires holding the m_sb_lock * and _none_ of the per-cpu locks. * * Disabled counters are only ever re-enabled by a balance operation * that results in more free resources per CPU than a given threshold. * To ensure counters don't remain disabled, they are rebalanced when * the global resource goes above a higher threshold (i.e. some hysteresis * is present to prevent thrashing). */ #ifdef CONFIG_HOTPLUG_CPU /* * hot-plug CPU notifier support. * * We need a notifier per filesystem as we need to be able to identify * the filesystem to balance the counters out. This is achieved by * having a notifier block embedded in the xfs_mount_t and doing pointer * magic to get the mount pointer from the notifier block address. */ STATIC int xfs_icsb_cpu_notify( struct notifier_block *nfb, unsigned long action, void *hcpu) { xfs_icsb_cnts_t *cntp; xfs_mount_t *mp; mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); cntp = (xfs_icsb_cnts_t *) per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: /* Easy Case - initialize the area and locks, and * then rebalance when online does everything else for us. */ memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); break; case CPU_ONLINE: case CPU_ONLINE_FROZEN: xfs_icsb_lock(mp); xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); xfs_icsb_unlock(mp); break; case CPU_DEAD: case CPU_DEAD_FROZEN: /* Disable all the counters, then fold the dead cpu's * count into the total on the global superblock and * re-enable the counters. */ xfs_icsb_lock(mp); spin_lock(&mp->m_sb_lock); xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); mp->m_sb.sb_ifree += cntp->icsb_ifree; mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); spin_unlock(&mp->m_sb_lock); xfs_icsb_unlock(mp); break; } return NOTIFY_OK; } #endif /* CONFIG_HOTPLUG_CPU */ int xfs_icsb_init_counters( xfs_mount_t *mp) { xfs_icsb_cnts_t *cntp; int error; int i; error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); if (error) return error; mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); if (!mp->m_sb_cnts) { percpu_counter_destroy(&mp->m_icount); return -ENOMEM; } for_each_online_cpu(i) { cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); } mutex_init(&mp->m_icsb_mutex); /* * start with all counters disabled so that the * initial balance kicks us off correctly */ mp->m_icsb_counters = -1; #ifdef CONFIG_HOTPLUG_CPU mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; mp->m_icsb_notifier.priority = 0; register_hotcpu_notifier(&mp->m_icsb_notifier); #endif /* CONFIG_HOTPLUG_CPU */ return 0; } void xfs_icsb_reinit_counters( xfs_mount_t *mp) { percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); xfs_icsb_lock(mp); /* * start with all counters disabled so that the * initial balance kicks us off correctly */ mp->m_icsb_counters = -1; xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); xfs_icsb_unlock(mp); } void xfs_icsb_destroy_counters( xfs_mount_t *mp) { if (mp->m_sb_cnts) { unregister_hotcpu_notifier(&mp->m_icsb_notifier); free_percpu(mp->m_sb_cnts); } percpu_counter_destroy(&mp->m_icount); mutex_destroy(&mp->m_icsb_mutex); } STATIC void xfs_icsb_lock_cntr( xfs_icsb_cnts_t *icsbp) { while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { ndelay(1000); } } STATIC void xfs_icsb_unlock_cntr( xfs_icsb_cnts_t *icsbp) { clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); } STATIC void xfs_icsb_lock_all_counters( xfs_mount_t *mp) { xfs_icsb_cnts_t *cntp; int i; for_each_online_cpu(i) { cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); xfs_icsb_lock_cntr(cntp); } } STATIC void xfs_icsb_unlock_all_counters( xfs_mount_t *mp) { xfs_icsb_cnts_t *cntp; int i; for_each_online_cpu(i) { cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); xfs_icsb_unlock_cntr(cntp); } } STATIC void xfs_icsb_count( xfs_mount_t *mp, xfs_icsb_cnts_t *cnt, int flags) { xfs_icsb_cnts_t *cntp; int i; memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); if (!(flags & XFS_ICSB_LAZY_COUNT)) xfs_icsb_lock_all_counters(mp); for_each_online_cpu(i) { cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); cnt->icsb_ifree += cntp->icsb_ifree; cnt->icsb_fdblocks += cntp->icsb_fdblocks; } if (!(flags & XFS_ICSB_LAZY_COUNT)) xfs_icsb_unlock_all_counters(mp); } STATIC int xfs_icsb_counter_disabled( xfs_mount_t *mp, xfs_sb_field_t field) { ASSERT((field >= XFS_SBS_IFREE) && (field <= XFS_SBS_FDBLOCKS)); return test_bit(field, &mp->m_icsb_counters); } STATIC void xfs_icsb_disable_counter( xfs_mount_t *mp, xfs_sb_field_t field) { xfs_icsb_cnts_t cnt; ASSERT((field >= XFS_SBS_IFREE) && (field <= XFS_SBS_FDBLOCKS)); /* * If we are already disabled, then there is nothing to do * here. We check before locking all the counters to avoid * the expensive lock operation when being called in the * slow path and the counter is already disabled. This is * safe because the only time we set or clear this state is under * the m_icsb_mutex. */ if (xfs_icsb_counter_disabled(mp, field)) return; xfs_icsb_lock_all_counters(mp); if (!test_and_set_bit(field, &mp->m_icsb_counters)) { /* drain back to superblock */ xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); switch(field) { case XFS_SBS_IFREE: mp->m_sb.sb_ifree = cnt.icsb_ifree; break; case XFS_SBS_FDBLOCKS: mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; break; default: BUG(); } } xfs_icsb_unlock_all_counters(mp); } STATIC void xfs_icsb_enable_counter( xfs_mount_t *mp, xfs_sb_field_t field, uint64_t count, uint64_t resid) { xfs_icsb_cnts_t *cntp; int i; ASSERT((field >= XFS_SBS_IFREE) && (field <= XFS_SBS_FDBLOCKS)); xfs_icsb_lock_all_counters(mp); for_each_online_cpu(i) { cntp = per_cpu_ptr(mp->m_sb_cnts, i); switch (field) { case XFS_SBS_IFREE: cntp->icsb_ifree = count + resid; break; case XFS_SBS_FDBLOCKS: cntp->icsb_fdblocks = count + resid; break; default: BUG(); break; } resid = 0; } clear_bit(field, &mp->m_icsb_counters); xfs_icsb_unlock_all_counters(mp); } void xfs_icsb_sync_counters_locked( xfs_mount_t *mp, int flags) { xfs_icsb_cnts_t cnt; xfs_icsb_count(mp, &cnt, flags); if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) mp->m_sb.sb_ifree = cnt.icsb_ifree; if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; } /* * Accurate update of per-cpu counters to incore superblock */ void xfs_icsb_sync_counters( xfs_mount_t *mp, int flags) { spin_lock(&mp->m_sb_lock); xfs_icsb_sync_counters_locked(mp, flags); spin_unlock(&mp->m_sb_lock); } /* * Balance and enable/disable counters as necessary. * * Thresholds for re-enabling counters are somewhat magic. inode counts are * chosen to be the same number as single on disk allocation chunk per CPU, and * free blocks is something far enough zero that we aren't going thrash when we * get near ENOSPC. We also need to supply a minimum we require per cpu to * prevent looping endlessly when xfs_alloc_space asks for more than will * be distributed to a single CPU but each CPU has enough blocks to be * reenabled. * * Note that we can be called when counters are already disabled. * xfs_icsb_disable_counter() optimises the counter locking in this case to * prevent locking every per-cpu counter needlessly. */ #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) STATIC void xfs_icsb_balance_counter_locked( xfs_mount_t *mp, xfs_sb_field_t field, int min_per_cpu) { uint64_t count, resid; int weight = num_online_cpus(); uint64_t min = (uint64_t)min_per_cpu; /* disable counter and sync counter */ xfs_icsb_disable_counter(mp, field); /* update counters - first CPU gets residual*/ switch (field) { case XFS_SBS_IFREE: count = mp->m_sb.sb_ifree; resid = do_div(count, weight); if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) return; break; case XFS_SBS_FDBLOCKS: count = mp->m_sb.sb_fdblocks; resid = do_div(count, weight); if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) return; break; default: BUG(); count = resid = 0; /* quiet, gcc */ break; } xfs_icsb_enable_counter(mp, field, count, resid); } STATIC void xfs_icsb_balance_counter( xfs_mount_t *mp, xfs_sb_field_t fields, int min_per_cpu) { spin_lock(&mp->m_sb_lock); xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); spin_unlock(&mp->m_sb_lock); } int xfs_icsb_modify_counters( xfs_mount_t *mp, xfs_sb_field_t field, int64_t delta, int rsvd) { xfs_icsb_cnts_t *icsbp; long long lcounter; /* long counter for 64 bit fields */ int ret = 0; might_sleep(); again: preempt_disable(); icsbp = this_cpu_ptr(mp->m_sb_cnts); /* * if the counter is disabled, go to slow path */ if (unlikely(xfs_icsb_counter_disabled(mp, field))) goto slow_path; xfs_icsb_lock_cntr(icsbp); if (unlikely(xfs_icsb_counter_disabled(mp, field))) { xfs_icsb_unlock_cntr(icsbp); goto slow_path; } switch (field) { case XFS_SBS_IFREE: lcounter = icsbp->icsb_ifree; lcounter += delta; if (unlikely(lcounter < 0)) goto balance_counter; icsbp->icsb_ifree = lcounter; break; case XFS_SBS_FDBLOCKS: BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); lcounter += delta; if (unlikely(lcounter < 0)) goto balance_counter; icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); break; default: BUG(); break; } xfs_icsb_unlock_cntr(icsbp); preempt_enable(); return 0; slow_path: preempt_enable(); /* * serialise with a mutex so we don't burn lots of cpu on * the superblock lock. We still need to hold the superblock * lock, however, when we modify the global structures. */ xfs_icsb_lock(mp); /* * Now running atomically. * * If the counter is enabled, someone has beaten us to rebalancing. * Drop the lock and try again in the fast path.... */ if (!(xfs_icsb_counter_disabled(mp, field))) { xfs_icsb_unlock(mp); goto again; } /* * The counter is currently disabled. Because we are * running atomically here, we know a rebalance cannot * be in progress. Hence we can go straight to operating * on the global superblock. We do not call xfs_mod_incore_sb() * here even though we need to get the m_sb_lock. Doing so * will cause us to re-enter this function and deadlock. * Hence we get the m_sb_lock ourselves and then call * xfs_mod_incore_sb_unlocked() as the unlocked path operates * directly on the global counters. */ spin_lock(&mp->m_sb_lock); ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); spin_unlock(&mp->m_sb_lock); /* * Now that we've modified the global superblock, we * may be able to re-enable the distributed counters * (e.g. lots of space just got freed). After that * we are done. */ if (ret != -ENOSPC) xfs_icsb_balance_counter(mp, field, 0); xfs_icsb_unlock(mp); return ret; balance_counter: xfs_icsb_unlock_cntr(icsbp); preempt_enable(); /* * We may have multiple threads here if multiple per-cpu * counters run dry at the same time. This will mean we can * do more balances than strictly necessary but it is not * the common slowpath case. */ xfs_icsb_lock(mp); /* * running atomically. * * This will leave the counter in the correct state for future * accesses. After the rebalance, we simply try again and our retry * will either succeed through the fast path or slow path without * another balance operation being required. */ xfs_icsb_balance_counter(mp, field, delta); xfs_icsb_unlock(mp); goto again; } #endif