/* * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c * */ #include #include #ifdef __KERNEL__ #include #endif #define MHZ (1000 * 1000) #define MASK(w) ((1 << w) - 1) #define SYS_GPCPLL_CFG_BASE 0x00137000 #define GPC_BCASE_GPCPLL_CFG_BASE 0x00132800 #define GPCPLL_CFG (SYS_GPCPLL_CFG_BASE + 0) #define GPCPLL_CFG_ENABLE BIT(0) #define GPCPLL_CFG_IDDQ BIT(1) #define GPCPLL_CFG_LOCK_DET_OFF BIT(4) #define GPCPLL_CFG_LOCK BIT(17) #define GPCPLL_COEFF (SYS_GPCPLL_CFG_BASE + 4) #define GPCPLL_COEFF_M_SHIFT 0 #define GPCPLL_COEFF_M_WIDTH 8 #define GPCPLL_COEFF_N_SHIFT 8 #define GPCPLL_COEFF_N_WIDTH 8 #define GPCPLL_COEFF_P_SHIFT 16 #define GPCPLL_COEFF_P_WIDTH 6 #define GPCPLL_CFG2 (SYS_GPCPLL_CFG_BASE + 0xc) #define GPCPLL_CFG2_SETUP2_SHIFT 16 #define GPCPLL_CFG2_PLL_STEPA_SHIFT 24 #define GPCPLL_CFG3 (SYS_GPCPLL_CFG_BASE + 0x18) #define GPCPLL_CFG3_PLL_STEPB_SHIFT 16 #define GPCPLL_NDIV_SLOWDOWN (SYS_GPCPLL_CFG_BASE + 0x1c) #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT 0 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT 8 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT 16 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT 22 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT 31 #define SEL_VCO (SYS_GPCPLL_CFG_BASE + 0x100) #define SEL_VCO_GPC2CLK_OUT_SHIFT 0 #define GPC2CLK_OUT (SYS_GPCPLL_CFG_BASE + 0x250) #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE 1 #define GPC2CLK_OUT_VCODIV_WIDTH 6 #define GPC2CLK_OUT_VCODIV_SHIFT 8 #define GPC2CLK_OUT_VCODIV1 0 #define GPC2CLK_OUT_VCODIV_MASK (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \ GPC2CLK_OUT_VCODIV_SHIFT) #define GPC2CLK_OUT_BYPDIV_WIDTH 6 #define GPC2CLK_OUT_BYPDIV_SHIFT 0 #define GPC2CLK_OUT_BYPDIV31 0x3c #define GPC2CLK_OUT_INIT_MASK ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \ GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\ | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\ | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT)) #define GPC2CLK_OUT_INIT_VAL ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \ GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \ | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \ | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT)) #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0) #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT 24 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \ (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT) static const u8 pl_to_div[] = { /* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */ /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32, }; /* All frequencies in Mhz */ struct gk20a_clk_pllg_params { u32 min_vco, max_vco; u32 min_u, max_u; u32 min_m, max_m; u32 min_n, max_n; u32 min_pl, max_pl; }; static const struct gk20a_clk_pllg_params gk20a_pllg_params = { .min_vco = 1000, .max_vco = 2064, .min_u = 12, .max_u = 38, .min_m = 1, .max_m = 255, .min_n = 8, .max_n = 255, .min_pl = 1, .max_pl = 32, }; struct gk20a_clk { struct nvkm_clk base; const struct gk20a_clk_pllg_params *params; u32 m, n, pl; u32 parent_rate; }; #define to_gk20a_clk(base) container_of(base, struct gk20a_clk, base) static void gk20a_pllg_read_mnp(struct gk20a_clk *clk) { struct nvkm_device *device = clk->base.subdev.device; u32 val; val = nvkm_rd32(device, GPCPLL_COEFF); clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH); clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); } static u32 gk20a_pllg_calc_rate(struct gk20a_clk *clk) { u32 rate; u32 divider; rate = clk->parent_rate * clk->n; divider = clk->m * pl_to_div[clk->pl]; do_div(rate, divider); return rate / 2; } static int gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate) { u32 target_clk_f, ref_clk_f, target_freq; u32 min_vco_f, max_vco_f; u32 low_pl, high_pl, best_pl; u32 target_vco_f, vco_f; u32 best_m, best_n; u32 u_f; u32 m, n, n2; u32 delta, lwv, best_delta = ~0; u32 pl; target_clk_f = rate * 2 / MHZ; ref_clk_f = clk->parent_rate / MHZ; max_vco_f = clk->params->max_vco; min_vco_f = clk->params->min_vco; best_m = clk->params->max_m; best_n = clk->params->min_n; best_pl = clk->params->min_pl; target_vco_f = target_clk_f + target_clk_f / 50; if (max_vco_f < target_vco_f) max_vco_f = target_vco_f; /* min_pl <= high_pl <= max_pl */ high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f; high_pl = min(high_pl, clk->params->max_pl); high_pl = max(high_pl, clk->params->min_pl); /* min_pl <= low_pl <= max_pl */ low_pl = min_vco_f / target_vco_f; low_pl = min(low_pl, clk->params->max_pl); low_pl = max(low_pl, clk->params->min_pl); /* Find Indices of high_pl and low_pl */ for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) { if (pl_to_div[pl] >= low_pl) { low_pl = pl; break; } } for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) { if (pl_to_div[pl] >= high_pl) { high_pl = pl; break; } } nv_debug(clk, "low_PL %d(div%d), high_PL %d(div%d)", low_pl, pl_to_div[low_pl], high_pl, pl_to_div[high_pl]); /* Select lowest possible VCO */ for (pl = low_pl; pl <= high_pl; pl++) { target_vco_f = target_clk_f * pl_to_div[pl]; for (m = clk->params->min_m; m <= clk->params->max_m; m++) { u_f = ref_clk_f / m; if (u_f < clk->params->min_u) break; if (u_f > clk->params->max_u) continue; n = (target_vco_f * m) / ref_clk_f; n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f; if (n > clk->params->max_n) break; for (; n <= n2; n++) { if (n < clk->params->min_n) continue; if (n > clk->params->max_n) break; vco_f = ref_clk_f * n / m; if (vco_f >= min_vco_f && vco_f <= max_vco_f) { lwv = (vco_f + (pl_to_div[pl] / 2)) / pl_to_div[pl]; delta = abs(lwv - target_clk_f); if (delta < best_delta) { best_delta = delta; best_m = m; best_n = n; best_pl = pl; if (best_delta == 0) goto found_match; } } } } } found_match: WARN_ON(best_delta == ~0); if (best_delta != 0) nv_debug(clk, "no best match for target @ %dMHz on gpc_pll", target_clk_f); clk->m = best_m; clk->n = best_n; clk->pl = best_pl; target_freq = gk20a_pllg_calc_rate(clk) / MHZ; nv_debug(clk, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n", target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]); return 0; } static int gk20a_pllg_slide(struct gk20a_clk *clk, u32 n) { struct nvkm_device *device = clk->base.subdev.device; u32 val; int ramp_timeout; /* get old coefficients */ val = nvkm_rd32(device, GPCPLL_COEFF); /* do nothing if NDIV is the same */ if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH))) return 0; /* setup */ nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT, 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT); nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT, 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT); /* pll slowdown mode */ nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT), BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT)); /* new ndiv ready for ramp */ val = nvkm_rd32(device, GPCPLL_COEFF); val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT); val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT; udelay(1); nvkm_wr32(device, GPCPLL_COEFF, val); /* dynamic ramp to new ndiv */ val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN); val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT; udelay(1); nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val); for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) { udelay(1); val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG); if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) break; } /* exit slowdown mode */ nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) | BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0); nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN); if (ramp_timeout <= 0) { nv_error(clk, "gpcpll dynamic ramp timeout\n"); return -ETIMEDOUT; } return 0; } static void _gk20a_pllg_enable(struct gk20a_clk *clk) { struct nvkm_device *device = clk->base.subdev.device; nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE); nvkm_rd32(device, GPCPLL_CFG); } static void _gk20a_pllg_disable(struct gk20a_clk *clk) { struct nvkm_device *device = clk->base.subdev.device; nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0); nvkm_rd32(device, GPCPLL_CFG); } static int _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide) { struct nvkm_device *device = clk->base.subdev.device; u32 val, cfg; u32 m_old, pl_old, n_lo; /* get old coefficients */ val = nvkm_rd32(device, GPCPLL_COEFF); m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); /* do NDIV slide if there is no change in M and PL */ cfg = nvkm_rd32(device, GPCPLL_CFG); if (allow_slide && clk->m == m_old && clk->pl == pl_old && (cfg & GPCPLL_CFG_ENABLE)) { return gk20a_pllg_slide(clk, clk->n); } /* slide down to NDIV_LO */ n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco, clk->parent_rate / MHZ); if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) { int ret = gk20a_pllg_slide(clk, n_lo); if (ret) return ret; } /* split FO-to-bypass jump in halfs by setting out divider 1:2 */ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, 0x2 << GPC2CLK_OUT_VCODIV_SHIFT); /* put PLL in bypass before programming it */ val = nvkm_rd32(device, SEL_VCO); val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); udelay(2); nvkm_wr32(device, SEL_VCO, val); /* get out from IDDQ */ val = nvkm_rd32(device, GPCPLL_CFG); if (val & GPCPLL_CFG_IDDQ) { val &= ~GPCPLL_CFG_IDDQ; nvkm_wr32(device, GPCPLL_CFG, val); nvkm_rd32(device, GPCPLL_CFG); udelay(2); } _gk20a_pllg_disable(clk); nv_debug(clk, "%s: m=%d n=%d pl=%d\n", __func__, clk->m, clk->n, clk->pl); n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco, clk->parent_rate / MHZ); val = clk->m << GPCPLL_COEFF_M_SHIFT; val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT; val |= clk->pl << GPCPLL_COEFF_P_SHIFT; nvkm_wr32(device, GPCPLL_COEFF, val); _gk20a_pllg_enable(clk); val = nvkm_rd32(device, GPCPLL_CFG); if (val & GPCPLL_CFG_LOCK_DET_OFF) { val &= ~GPCPLL_CFG_LOCK_DET_OFF; nvkm_wr32(device, GPCPLL_CFG, val); } if (!nvkm_timer_wait_eq(clk, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK, GPCPLL_CFG_LOCK)) { nv_error(clk, "%s: timeout waiting for pllg lock\n", __func__); return -ETIMEDOUT; } /* switch to VCO mode */ nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); /* restore out divider 1:1 */ val = nvkm_rd32(device, GPC2CLK_OUT); val &= ~GPC2CLK_OUT_VCODIV_MASK; udelay(2); nvkm_wr32(device, GPC2CLK_OUT, val); /* slide up to new NDIV */ return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0; } static int gk20a_pllg_program_mnp(struct gk20a_clk *clk) { int err; err = _gk20a_pllg_program_mnp(clk, true); if (err) err = _gk20a_pllg_program_mnp(clk, false); return err; } static void gk20a_pllg_disable(struct gk20a_clk *clk) { struct nvkm_device *device = clk->base.subdev.device; u32 val; /* slide to VCO min */ val = nvkm_rd32(device, GPCPLL_CFG); if (val & GPCPLL_CFG_ENABLE) { u32 coeff, m, n_lo; coeff = nvkm_rd32(device, GPCPLL_COEFF); m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); n_lo = DIV_ROUND_UP(m * clk->params->min_vco, clk->parent_rate / MHZ); gk20a_pllg_slide(clk, n_lo); } /* put PLL in bypass before disabling it */ nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0); _gk20a_pllg_disable(clk); } #define GK20A_CLK_GPC_MDIV 1000 static struct nvkm_domain gk20a_domains[] = { { nv_clk_src_crystal, 0xff }, { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, { nv_clk_src_max } }; static struct nvkm_pstate gk20a_pstates[] = { { .base = { .domain[nv_clk_src_gpc] = 72000, .voltage = 0, }, }, { .base = { .domain[nv_clk_src_gpc] = 108000, .voltage = 1, }, }, { .base = { .domain[nv_clk_src_gpc] = 180000, .voltage = 2, }, }, { .base = { .domain[nv_clk_src_gpc] = 252000, .voltage = 3, }, }, { .base = { .domain[nv_clk_src_gpc] = 324000, .voltage = 4, }, }, { .base = { .domain[nv_clk_src_gpc] = 396000, .voltage = 5, }, }, { .base = { .domain[nv_clk_src_gpc] = 468000, .voltage = 6, }, }, { .base = { .domain[nv_clk_src_gpc] = 540000, .voltage = 7, }, }, { .base = { .domain[nv_clk_src_gpc] = 612000, .voltage = 8, }, }, { .base = { .domain[nv_clk_src_gpc] = 648000, .voltage = 9, }, }, { .base = { .domain[nv_clk_src_gpc] = 684000, .voltage = 10, }, }, { .base = { .domain[nv_clk_src_gpc] = 708000, .voltage = 11, }, }, { .base = { .domain[nv_clk_src_gpc] = 756000, .voltage = 12, }, }, { .base = { .domain[nv_clk_src_gpc] = 804000, .voltage = 13, }, }, { .base = { .domain[nv_clk_src_gpc] = 852000, .voltage = 14, }, }, }; static int gk20a_clk_read(struct nvkm_clk *obj, enum nv_clk_src src) { struct gk20a_clk *clk = container_of(obj, typeof(*clk), base); struct nvkm_device *device = clk->base.subdev.device; switch (src) { case nv_clk_src_crystal: return device->crystal; case nv_clk_src_gpc: gk20a_pllg_read_mnp(clk); return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV; default: nv_error(clk, "invalid clock source %d\n", src); return -EINVAL; } } static int gk20a_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate) { struct gk20a_clk *clk = container_of(obj, typeof(*clk), base); return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] * GK20A_CLK_GPC_MDIV); } static int gk20a_clk_prog(struct nvkm_clk *obj) { struct gk20a_clk *clk = container_of(obj, typeof(*clk), base); return gk20a_pllg_program_mnp(clk); } static void gk20a_clk_tidy(struct nvkm_clk *obj) { } static int gk20a_clk_fini(struct nvkm_object *object, bool suspend) { struct gk20a_clk *clk = (void *)object; int ret; ret = nvkm_clk_fini(&clk->base, false); gk20a_pllg_disable(clk); return ret; } static int gk20a_clk_init(struct nvkm_object *object) { struct gk20a_clk *clk = (void *)object; struct nvkm_device *device = clk->base.subdev.device; int ret; nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL); ret = nvkm_clk_init(&clk->base); if (ret) return ret; ret = gk20a_clk_prog(&clk->base); if (ret) { nv_error(clk, "cannot initialize clock\n"); return ret; } return 0; } static int gk20a_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { struct gk20a_clk *clk; struct nouveau_platform_device *plat; int ret; int i; /* Finish initializing the pstates */ for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) { INIT_LIST_HEAD(&gk20a_pstates[i].list); gk20a_pstates[i].pstate = i + 1; } ret = nvkm_clk_create(parent, engine, oclass, gk20a_domains, gk20a_pstates, ARRAY_SIZE(gk20a_pstates), true, &clk); *pobject = nv_object(clk); if (ret) return ret; clk->params = &gk20a_pllg_params; plat = nv_device_to_platform(nv_device(parent)); clk->parent_rate = clk_get_rate(plat->gpu->clk); nv_info(clk, "parent clock rate: %d Mhz\n", clk->parent_rate / MHZ); clk->base.read = gk20a_clk_read; clk->base.calc = gk20a_clk_calc; clk->base.prog = gk20a_clk_prog; clk->base.tidy = gk20a_clk_tidy; return 0; } struct nvkm_oclass gk20a_clk_oclass = { .handle = NV_SUBDEV(CLK, 0xea), .ofuncs = &(struct nvkm_ofuncs) { .ctor = gk20a_clk_ctor, .dtor = _nvkm_subdev_dtor, .init = gk20a_clk_init, .fini = gk20a_clk_fini, }, };