/* * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include "ath9k.h" #include "initvals.h" static int btcoex_enable; module_param(btcoex_enable, bool, 0); MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support"); #define ATH9K_CLOCK_RATE_CCK 22 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode); static u32 ath9k_hw_ini_fixup(struct ath_hw *ah, struct ar5416_eeprom_def *pEepData, u32 reg, u32 value); static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan); static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan); /********************/ /* Helper Functions */ /********************/ static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks) { struct ieee80211_conf *conf = &ah->ah_sc->hw->conf; if (!ah->curchan) /* should really check for CCK instead */ return clks / ATH9K_CLOCK_RATE_CCK; if (conf->channel->band == IEEE80211_BAND_2GHZ) return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM; return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM; } static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks) { struct ieee80211_conf *conf = &ah->ah_sc->hw->conf; if (conf_is_ht40(conf)) return ath9k_hw_mac_usec(ah, clks) / 2; else return ath9k_hw_mac_usec(ah, clks); } static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs) { struct ieee80211_conf *conf = &ah->ah_sc->hw->conf; if (!ah->curchan) /* should really check for CCK instead */ return usecs *ATH9K_CLOCK_RATE_CCK; if (conf->channel->band == IEEE80211_BAND_2GHZ) return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM; return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM; } static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) { struct ieee80211_conf *conf = &ah->ah_sc->hw->conf; if (conf_is_ht40(conf)) return ath9k_hw_mac_clks(ah, usecs) * 2; else return ath9k_hw_mac_clks(ah, usecs); } /* * Read and write, they both share the same lock. We do this to serialize * reads and writes on Atheros 802.11n PCI devices only. This is required * as the FIFO on these devices can only accept sanely 2 requests. After * that the device goes bananas. Serializing the reads/writes prevents this * from happening. */ void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val) { if (ah->config.serialize_regmode == SER_REG_MODE_ON) { unsigned long flags; spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags); iowrite32(val, ah->ah_sc->mem + reg_offset); spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags); } else iowrite32(val, ah->ah_sc->mem + reg_offset); } unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset) { u32 val; if (ah->config.serialize_regmode == SER_REG_MODE_ON) { unsigned long flags; spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags); val = ioread32(ah->ah_sc->mem + reg_offset); spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags); } else val = ioread32(ah->ah_sc->mem + reg_offset); return val; } bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) { int i; BUG_ON(timeout < AH_TIME_QUANTUM); for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { if ((REG_READ(ah, reg) & mask) == val) return true; udelay(AH_TIME_QUANTUM); } DPRINTF(ah->ah_sc, ATH_DBG_ANY, "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", timeout, reg, REG_READ(ah, reg), mask, val); return false; } u32 ath9k_hw_reverse_bits(u32 val, u32 n) { u32 retval; int i; for (i = 0, retval = 0; i < n; i++) { retval = (retval << 1) | (val & 1); val >>= 1; } return retval; } bool ath9k_get_channel_edges(struct ath_hw *ah, u16 flags, u16 *low, u16 *high) { struct ath9k_hw_capabilities *pCap = &ah->caps; if (flags & CHANNEL_5GHZ) { *low = pCap->low_5ghz_chan; *high = pCap->high_5ghz_chan; return true; } if ((flags & CHANNEL_2GHZ)) { *low = pCap->low_2ghz_chan; *high = pCap->high_2ghz_chan; return true; } return false; } u16 ath9k_hw_computetxtime(struct ath_hw *ah, const struct ath_rate_table *rates, u32 frameLen, u16 rateix, bool shortPreamble) { u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; u32 kbps; kbps = rates->info[rateix].ratekbps; if (kbps == 0) return 0; switch (rates->info[rateix].phy) { case WLAN_RC_PHY_CCK: phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; if (shortPreamble && rates->info[rateix].short_preamble) phyTime >>= 1; numBits = frameLen << 3; txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); break; case WLAN_RC_PHY_OFDM: if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME_QUARTER + OFDM_PREAMBLE_TIME_QUARTER + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); } else if (ah->curchan && IS_CHAN_HALF_RATE(ah->curchan)) { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME_HALF + OFDM_PREAMBLE_TIME_HALF + (numSymbols * OFDM_SYMBOL_TIME_HALF); } else { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME + (numSymbols * OFDM_SYMBOL_TIME); } break; default: DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Unknown phy %u (rate ix %u)\n", rates->info[rateix].phy, rateix); txTime = 0; break; } return txTime; } void ath9k_hw_get_channel_centers(struct ath_hw *ah, struct ath9k_channel *chan, struct chan_centers *centers) { int8_t extoff; if (!IS_CHAN_HT40(chan)) { centers->ctl_center = centers->ext_center = centers->synth_center = chan->channel; return; } if ((chan->chanmode == CHANNEL_A_HT40PLUS) || (chan->chanmode == CHANNEL_G_HT40PLUS)) { centers->synth_center = chan->channel + HT40_CHANNEL_CENTER_SHIFT; extoff = 1; } else { centers->synth_center = chan->channel - HT40_CHANNEL_CENTER_SHIFT; extoff = -1; } centers->ctl_center = centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); centers->ext_center = centers->synth_center + (extoff * ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ? HT40_CHANNEL_CENTER_SHIFT : 15)); } /******************/ /* Chip Revisions */ /******************/ static void ath9k_hw_read_revisions(struct ath_hw *ah) { u32 val; val = REG_READ(ah, AR_SREV) & AR_SREV_ID; if (val == 0xFF) { val = REG_READ(ah, AR_SREV); ah->hw_version.macVersion = (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; } else { if (!AR_SREV_9100(ah)) ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); ah->hw_version.macRev = val & AR_SREV_REVISION; if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ah->is_pciexpress = true; } } static int ath9k_hw_get_radiorev(struct ath_hw *ah) { u32 val; int i; REG_WRITE(ah, AR_PHY(0x36), 0x00007058); for (i = 0; i < 8; i++) REG_WRITE(ah, AR_PHY(0x20), 0x00010000); val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff; val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4); return ath9k_hw_reverse_bits(val, 8); } /************************************/ /* HW Attach, Detach, Init Routines */ /************************************/ static void ath9k_hw_disablepcie(struct ath_hw *ah) { if (AR_SREV_9100(ah)) return; REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); } static bool ath9k_hw_chip_test(struct ath_hw *ah) { u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) }; u32 regHold[2]; u32 patternData[4] = { 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 }; int i, j; for (i = 0; i < 2; i++) { u32 addr = regAddr[i]; u32 wrData, rdData; regHold[i] = REG_READ(ah, addr); for (j = 0; j < 0x100; j++) { wrData = (j << 16) | j; REG_WRITE(ah, addr, wrData); rdData = REG_READ(ah, addr); if (rdData != wrData) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "address test failed " "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", addr, wrData, rdData); return false; } } for (j = 0; j < 4; j++) { wrData = patternData[j]; REG_WRITE(ah, addr, wrData); rdData = REG_READ(ah, addr); if (wrData != rdData) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "address test failed " "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", addr, wrData, rdData); return false; } } REG_WRITE(ah, regAddr[i], regHold[i]); } udelay(100); return true; } static const char *ath9k_hw_devname(u16 devid) { switch (devid) { case AR5416_DEVID_PCI: return "Atheros 5416"; case AR5416_DEVID_PCIE: return "Atheros 5418"; case AR9160_DEVID_PCI: return "Atheros 9160"; case AR5416_AR9100_DEVID: return "Atheros 9100"; case AR9280_DEVID_PCI: case AR9280_DEVID_PCIE: return "Atheros 9280"; case AR9285_DEVID_PCIE: return "Atheros 9285"; } return NULL; } static void ath9k_hw_set_defaults(struct ath_hw *ah) { int i; ah->config.dma_beacon_response_time = 2; ah->config.sw_beacon_response_time = 10; ah->config.additional_swba_backoff = 0; ah->config.ack_6mb = 0x0; ah->config.cwm_ignore_extcca = 0; ah->config.pcie_powersave_enable = 0; ah->config.pcie_clock_req = 0; ah->config.pcie_waen = 0; ah->config.analog_shiftreg = 1; ah->config.ht_enable = 1; ah->config.ofdm_trig_low = 200; ah->config.ofdm_trig_high = 500; ah->config.cck_trig_high = 200; ah->config.cck_trig_low = 100; ah->config.enable_ani = 1; ah->config.diversity_control = 0; ah->config.antenna_switch_swap = 0; for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { ah->config.spurchans[i][0] = AR_NO_SPUR; ah->config.spurchans[i][1] = AR_NO_SPUR; } ah->config.intr_mitigation = true; /* * We need this for PCI devices only (Cardbus, PCI, miniPCI) * _and_ if on non-uniprocessor systems (Multiprocessor/HT). * This means we use it for all AR5416 devices, and the few * minor PCI AR9280 devices out there. * * Serialization is required because these devices do not handle * well the case of two concurrent reads/writes due to the latency * involved. During one read/write another read/write can be issued * on another CPU while the previous read/write may still be working * on our hardware, if we hit this case the hardware poops in a loop. * We prevent this by serializing reads and writes. * * This issue is not present on PCI-Express devices or pre-AR5416 * devices (legacy, 802.11abg). */ if (num_possible_cpus() > 1) ah->config.serialize_regmode = SER_REG_MODE_AUTO; } static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc, int *status) { struct ath_hw *ah; ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL); if (ah == NULL) { DPRINTF(sc, ATH_DBG_FATAL, "Cannot allocate memory for state block\n"); *status = -ENOMEM; return NULL; } ah->ah_sc = sc; ah->hw_version.magic = AR5416_MAGIC; ah->regulatory.country_code = CTRY_DEFAULT; ah->hw_version.devid = devid; ah->hw_version.subvendorid = 0; ah->ah_flags = 0; if ((devid == AR5416_AR9100_DEVID)) ah->hw_version.macVersion = AR_SREV_VERSION_9100; if (!AR_SREV_9100(ah)) ah->ah_flags = AH_USE_EEPROM; ah->regulatory.power_limit = MAX_RATE_POWER; ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX; ah->atim_window = 0; ah->diversity_control = ah->config.diversity_control; ah->antenna_switch_swap = ah->config.antenna_switch_swap; ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE; ah->beacon_interval = 100; ah->enable_32kHz_clock = DONT_USE_32KHZ; ah->slottime = (u32) -1; ah->acktimeout = (u32) -1; ah->ctstimeout = (u32) -1; ah->globaltxtimeout = (u32) -1; ah->gbeacon_rate = 0; return ah; } static int ath9k_hw_rfattach(struct ath_hw *ah) { bool rfStatus = false; int ecode = 0; rfStatus = ath9k_hw_init_rf(ah, &ecode); if (!rfStatus) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "RF setup failed, status: %u\n", ecode); return ecode; } return 0; } static int ath9k_hw_rf_claim(struct ath_hw *ah) { u32 val; REG_WRITE(ah, AR_PHY(0), 0x00000007); val = ath9k_hw_get_radiorev(ah); switch (val & AR_RADIO_SREV_MAJOR) { case 0: val = AR_RAD5133_SREV_MAJOR; break; case AR_RAD5133_SREV_MAJOR: case AR_RAD5122_SREV_MAJOR: case AR_RAD2133_SREV_MAJOR: case AR_RAD2122_SREV_MAJOR: break; default: DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Radio Chip Rev 0x%02X not supported\n", val & AR_RADIO_SREV_MAJOR); return -EOPNOTSUPP; } ah->hw_version.analog5GhzRev = val; return 0; } static int ath9k_hw_init_macaddr(struct ath_hw *ah) { u32 sum; int i; u16 eeval; sum = 0; for (i = 0; i < 3; i++) { eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i)); sum += eeval; ah->macaddr[2 * i] = eeval >> 8; ah->macaddr[2 * i + 1] = eeval & 0xff; } if (sum == 0 || sum == 0xffff * 3) return -EADDRNOTAVAIL; return 0; } static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah) { u32 rxgain_type; if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) { rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE); if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF) INIT_INI_ARRAY(&ah->iniModesRxGain, ar9280Modes_backoff_13db_rxgain_9280_2, ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6); else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF) INIT_INI_ARRAY(&ah->iniModesRxGain, ar9280Modes_backoff_23db_rxgain_9280_2, ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6); else INIT_INI_ARRAY(&ah->iniModesRxGain, ar9280Modes_original_rxgain_9280_2, ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6); } else { INIT_INI_ARRAY(&ah->iniModesRxGain, ar9280Modes_original_rxgain_9280_2, ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6); } } static void ath9k_hw_init_txgain_ini(struct ath_hw *ah) { u32 txgain_type; if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) { txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE); if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) INIT_INI_ARRAY(&ah->iniModesTxGain, ar9280Modes_high_power_tx_gain_9280_2, ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6); else INIT_INI_ARRAY(&ah->iniModesTxGain, ar9280Modes_original_tx_gain_9280_2, ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6); } else { INIT_INI_ARRAY(&ah->iniModesTxGain, ar9280Modes_original_tx_gain_9280_2, ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6); } } static int ath9k_hw_post_attach(struct ath_hw *ah) { int ecode; if (!ath9k_hw_chip_test(ah)) return -ENODEV; ecode = ath9k_hw_rf_claim(ah); if (ecode != 0) return ecode; ecode = ath9k_hw_eeprom_attach(ah); if (ecode != 0) return ecode; DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n", ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah)); ecode = ath9k_hw_rfattach(ah); if (ecode != 0) return ecode; if (!AR_SREV_9100(ah)) { ath9k_hw_ani_setup(ah); ath9k_hw_ani_attach(ah); } return 0; } static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc, int *status) { struct ath_hw *ah; int ecode; u32 i, j; ah = ath9k_hw_newstate(devid, sc, status); if (ah == NULL) return NULL; ath9k_hw_set_defaults(ah); if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n"); ecode = -EIO; goto bad; } if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n"); ecode = -EIO; goto bad; } if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) { if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || (AR_SREV_9280(ah) && !ah->is_pciexpress)) { ah->config.serialize_regmode = SER_REG_MODE_ON; } else { ah->config.serialize_regmode = SER_REG_MODE_OFF; } } DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n", ah->config.serialize_regmode); if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) && (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) && (ah->hw_version.macVersion != AR_SREV_VERSION_9160) && (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) { DPRINTF(sc, ATH_DBG_FATAL, "Mac Chip Rev 0x%02x.%x is not supported by " "this driver\n", ah->hw_version.macVersion, ah->hw_version.macRev); ecode = -EOPNOTSUPP; goto bad; } if (AR_SREV_9100(ah)) { ah->iq_caldata.calData = &iq_cal_multi_sample; ah->supp_cals = IQ_MISMATCH_CAL; ah->is_pciexpress = false; } ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); if (AR_SREV_9160_10_OR_LATER(ah)) { if (AR_SREV_9280_10_OR_LATER(ah)) { ah->iq_caldata.calData = &iq_cal_single_sample; ah->adcgain_caldata.calData = &adc_gain_cal_single_sample; ah->adcdc_caldata.calData = &adc_dc_cal_single_sample; ah->adcdc_calinitdata.calData = &adc_init_dc_cal; } else { ah->iq_caldata.calData = &iq_cal_multi_sample; ah->adcgain_caldata.calData = &adc_gain_cal_multi_sample; ah->adcdc_caldata.calData = &adc_dc_cal_multi_sample; ah->adcdc_calinitdata.calData = &adc_init_dc_cal; } ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL; } ah->ani_function = ATH9K_ANI_ALL; if (AR_SREV_9280_10_OR_LATER(ah)) ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; if (AR_SREV_9285_12_OR_LATER(ah)) { INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2, ARRAY_SIZE(ar9285Modes_9285_1_2), 6); INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2, ARRAY_SIZE(ar9285Common_9285_1_2), 2); if (ah->config.pcie_clock_req) { INIT_INI_ARRAY(&ah->iniPcieSerdes, ar9285PciePhy_clkreq_off_L1_9285_1_2, ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2); } else { INIT_INI_ARRAY(&ah->iniPcieSerdes, ar9285PciePhy_clkreq_always_on_L1_9285_1_2, ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2), 2); } } else if (AR_SREV_9285_10_OR_LATER(ah)) { INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285, ARRAY_SIZE(ar9285Modes_9285), 6); INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285, ARRAY_SIZE(ar9285Common_9285), 2); if (ah->config.pcie_clock_req) { INIT_INI_ARRAY(&ah->iniPcieSerdes, ar9285PciePhy_clkreq_off_L1_9285, ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2); } else { INIT_INI_ARRAY(&ah->iniPcieSerdes, ar9285PciePhy_clkreq_always_on_L1_9285, ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2); } } else if (AR_SREV_9280_20_OR_LATER(ah)) { INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2, ARRAY_SIZE(ar9280Modes_9280_2), 6); INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2, ARRAY_SIZE(ar9280Common_9280_2), 2); if (ah->config.pcie_clock_req) { INIT_INI_ARRAY(&ah->iniPcieSerdes, ar9280PciePhy_clkreq_off_L1_9280, ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2); } else { INIT_INI_ARRAY(&ah->iniPcieSerdes, ar9280PciePhy_clkreq_always_on_L1_9280, ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2); } INIT_INI_ARRAY(&ah->iniModesAdditional, ar9280Modes_fast_clock_9280_2, ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3); } else if (AR_SREV_9280_10_OR_LATER(ah)) { INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280, ARRAY_SIZE(ar9280Modes_9280), 6); INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280, ARRAY_SIZE(ar9280Common_9280), 2); } else if (AR_SREV_9160_10_OR_LATER(ah)) { INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160, ARRAY_SIZE(ar5416Modes_9160), 6); INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160, ARRAY_SIZE(ar5416Common_9160), 2); INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160, ARRAY_SIZE(ar5416Bank0_9160), 2); INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160, ARRAY_SIZE(ar5416BB_RfGain_9160), 3); INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160, ARRAY_SIZE(ar5416Bank1_9160), 2); INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160, ARRAY_SIZE(ar5416Bank2_9160), 2); INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160, ARRAY_SIZE(ar5416Bank3_9160), 3); INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160, ARRAY_SIZE(ar5416Bank6_9160), 3); INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160, ARRAY_SIZE(ar5416Bank6TPC_9160), 3); INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160, ARRAY_SIZE(ar5416Bank7_9160), 2); if (AR_SREV_9160_11(ah)) { INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_91601_1, ARRAY_SIZE(ar5416Addac_91601_1), 2); } else { INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160, ARRAY_SIZE(ar5416Addac_9160), 2); } } else if (AR_SREV_9100_OR_LATER(ah)) { INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100, ARRAY_SIZE(ar5416Modes_9100), 6); INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100, ARRAY_SIZE(ar5416Common_9100), 2); INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100, ARRAY_SIZE(ar5416Bank0_9100), 2); INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100, ARRAY_SIZE(ar5416BB_RfGain_9100), 3); INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100, ARRAY_SIZE(ar5416Bank1_9100), 2); INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100, ARRAY_SIZE(ar5416Bank2_9100), 2); INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100, ARRAY_SIZE(ar5416Bank3_9100), 3); INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100, ARRAY_SIZE(ar5416Bank6_9100), 3); INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100, ARRAY_SIZE(ar5416Bank6TPC_9100), 3); INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100, ARRAY_SIZE(ar5416Bank7_9100), 2); INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100, ARRAY_SIZE(ar5416Addac_9100), 2); } else { INIT_INI_ARRAY(&ah->iniModes, ar5416Modes, ARRAY_SIZE(ar5416Modes), 6); INIT_INI_ARRAY(&ah->iniCommon, ar5416Common, ARRAY_SIZE(ar5416Common), 2); INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0, ARRAY_SIZE(ar5416Bank0), 2); INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain, ARRAY_SIZE(ar5416BB_RfGain), 3); INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1, ARRAY_SIZE(ar5416Bank1), 2); INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2, ARRAY_SIZE(ar5416Bank2), 2); INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3, ARRAY_SIZE(ar5416Bank3), 3); INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6, ARRAY_SIZE(ar5416Bank6), 3); INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC, ARRAY_SIZE(ar5416Bank6TPC), 3); INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7, ARRAY_SIZE(ar5416Bank7), 2); INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac, ARRAY_SIZE(ar5416Addac), 2); } if (ah->is_pciexpress) ath9k_hw_configpcipowersave(ah, 0); else ath9k_hw_disablepcie(ah); ecode = ath9k_hw_post_attach(ah); if (ecode != 0) goto bad; if (AR_SREV_9285_12_OR_LATER(ah)) { u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE); /* txgain table */ if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) { INIT_INI_ARRAY(&ah->iniModesTxGain, ar9285Modes_high_power_tx_gain_9285_1_2, ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6); } else { INIT_INI_ARRAY(&ah->iniModesTxGain, ar9285Modes_original_tx_gain_9285_1_2, ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6); } } /* rxgain table */ if (AR_SREV_9280_20(ah)) ath9k_hw_init_rxgain_ini(ah); /* txgain table */ if (AR_SREV_9280_20(ah)) ath9k_hw_init_txgain_ini(ah); ath9k_hw_fill_cap_info(ah); if ((ah->hw_version.devid == AR9280_DEVID_PCI) && test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) { /* EEPROM Fixup */ for (i = 0; i < ah->iniModes.ia_rows; i++) { u32 reg = INI_RA(&ah->iniModes, i, 0); for (j = 1; j < ah->iniModes.ia_columns; j++) { u32 val = INI_RA(&ah->iniModes, i, j); INI_RA(&ah->iniModes, i, j) = ath9k_hw_ini_fixup(ah, &ah->eeprom.def, reg, val); } } } ecode = ath9k_hw_init_macaddr(ah); if (ecode != 0) { DPRINTF(sc, ATH_DBG_FATAL, "Failed to initialize MAC address\n"); goto bad; } if (AR_SREV_9285(ah)) ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); else ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); ath9k_init_nfcal_hist_buffer(ah); return ah; bad: if (ah) ath9k_hw_detach(ah); if (status) *status = ecode; return NULL; } static void ath9k_hw_init_bb(struct ath_hw *ah, struct ath9k_channel *chan) { u32 synthDelay; synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; if (IS_CHAN_B(chan)) synthDelay = (4 * synthDelay) / 22; else synthDelay /= 10; REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); udelay(synthDelay + BASE_ACTIVATE_DELAY); } static void ath9k_hw_init_qos(struct ath_hw *ah) { REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); REG_WRITE(ah, AR_QOS_NO_ACK, SM(2, AR_QOS_NO_ACK_TWO_BIT) | SM(5, AR_QOS_NO_ACK_BIT_OFF) | SM(0, AR_QOS_NO_ACK_BYTE_OFF)); REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); } static void ath9k_hw_init_pll(struct ath_hw *ah, struct ath9k_channel *chan) { u32 pll; if (AR_SREV_9100(ah)) { if (chan && IS_CHAN_5GHZ(chan)) pll = 0x1450; else pll = 0x1458; } else { if (AR_SREV_9280_10_OR_LATER(ah)) { pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); if (chan && IS_CHAN_5GHZ(chan)) { pll |= SM(0x28, AR_RTC_9160_PLL_DIV); if (AR_SREV_9280_20(ah)) { if (((chan->channel % 20) == 0) || ((chan->channel % 10) == 0)) pll = 0x2850; else pll = 0x142c; } } else { pll |= SM(0x2c, AR_RTC_9160_PLL_DIV); } } else if (AR_SREV_9160_10_OR_LATER(ah)) { pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); if (chan && IS_CHAN_5GHZ(chan)) pll |= SM(0x50, AR_RTC_9160_PLL_DIV); else pll |= SM(0x58, AR_RTC_9160_PLL_DIV); } else { pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_PLL_CLKSEL); if (chan && IS_CHAN_5GHZ(chan)) pll |= SM(0xa, AR_RTC_PLL_DIV); else pll |= SM(0xb, AR_RTC_PLL_DIV); } } REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); udelay(RTC_PLL_SETTLE_DELAY); REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); } static void ath9k_hw_init_chain_masks(struct ath_hw *ah) { int rx_chainmask, tx_chainmask; rx_chainmask = ah->rxchainmask; tx_chainmask = ah->txchainmask; switch (rx_chainmask) { case 0x5: REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); case 0x3: if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) { REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); break; } case 0x1: case 0x2: case 0x7: REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); break; default: break; } REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask); if (tx_chainmask == 0x5) { REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); } if (AR_SREV_9100(ah)) REG_WRITE(ah, AR_PHY_ANALOG_SWAP, REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); } static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, enum nl80211_iftype opmode) { ah->mask_reg = AR_IMR_TXERR | AR_IMR_TXURN | AR_IMR_RXERR | AR_IMR_RXORN | AR_IMR_BCNMISC; if (ah->config.intr_mitigation) ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; else ah->mask_reg |= AR_IMR_RXOK; ah->mask_reg |= AR_IMR_TXOK; if (opmode == NL80211_IFTYPE_AP) ah->mask_reg |= AR_IMR_MIB; REG_WRITE(ah, AR_IMR, ah->mask_reg); REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); } } static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) { if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us); ah->acktimeout = (u32) -1; return false; } else { REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us)); ah->acktimeout = us; return true; } } static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) { if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us); ah->ctstimeout = (u32) -1; return false; } else { REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us)); ah->ctstimeout = us; return true; } } static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) { if (tu > 0xFFFF) { DPRINTF(ah->ah_sc, ATH_DBG_XMIT, "bad global tx timeout %u\n", tu); ah->globaltxtimeout = (u32) -1; return false; } else { REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); ah->globaltxtimeout = tu; return true; } } static void ath9k_hw_init_user_settings(struct ath_hw *ah) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n", ah->misc_mode); if (ah->misc_mode != 0) REG_WRITE(ah, AR_PCU_MISC, REG_READ(ah, AR_PCU_MISC) | ah->misc_mode); if (ah->slottime != (u32) -1) ath9k_hw_setslottime(ah, ah->slottime); if (ah->acktimeout != (u32) -1) ath9k_hw_set_ack_timeout(ah, ah->acktimeout); if (ah->ctstimeout != (u32) -1) ath9k_hw_set_cts_timeout(ah, ah->ctstimeout); if (ah->globaltxtimeout != (u32) -1) ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); } const char *ath9k_hw_probe(u16 vendorid, u16 devid) { return vendorid == ATHEROS_VENDOR_ID ? ath9k_hw_devname(devid) : NULL; } void ath9k_hw_detach(struct ath_hw *ah) { if (!AR_SREV_9100(ah)) ath9k_hw_ani_detach(ah); ath9k_hw_rfdetach(ah); ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); kfree(ah); } struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error) { struct ath_hw *ah = NULL; switch (devid) { case AR5416_DEVID_PCI: case AR5416_DEVID_PCIE: case AR5416_AR9100_DEVID: case AR9160_DEVID_PCI: case AR9280_DEVID_PCI: case AR9280_DEVID_PCIE: case AR9285_DEVID_PCIE: ah = ath9k_hw_do_attach(devid, sc, error); break; default: *error = -ENXIO; break; } return ah; } /*******/ /* INI */ /*******/ static void ath9k_hw_override_ini(struct ath_hw *ah, struct ath9k_channel *chan) { /* * Set the RX_ABORT and RX_DIS and clear if off only after * RXE is set for MAC. This prevents frames with corrupted * descriptor status. */ REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); if (!AR_SREV_5416_20_OR_LATER(ah) || AR_SREV_9280_10_OR_LATER(ah)) return; REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); } static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah, struct ar5416_eeprom_def *pEepData, u32 reg, u32 value) { struct base_eep_header *pBase = &(pEepData->baseEepHeader); switch (ah->hw_version.devid) { case AR9280_DEVID_PCI: if (reg == 0x7894) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ini VAL: %x EEPROM: %x\n", value, (pBase->version & 0xff)); if ((pBase->version & 0xff) > 0x0a) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "PWDCLKIND: %d\n", pBase->pwdclkind); value &= ~AR_AN_TOP2_PWDCLKIND; value |= AR_AN_TOP2_PWDCLKIND & (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S); } else { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "PWDCLKIND Earlier Rev\n"); } DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "final ini VAL: %x\n", value); } break; } return value; } static u32 ath9k_hw_ini_fixup(struct ath_hw *ah, struct ar5416_eeprom_def *pEepData, u32 reg, u32 value) { if (ah->eep_map == EEP_MAP_4KBITS) return value; else return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value); } static void ath9k_olc_init(struct ath_hw *ah) { u32 i; for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) ah->originalGain[i] = MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4), AR_PHY_TX_GAIN); ah->PDADCdelta = 0; } static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) { u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); if (IS_CHAN_B(chan)) ctl |= CTL_11B; else if (IS_CHAN_G(chan)) ctl |= CTL_11G; else ctl |= CTL_11A; return ctl; } static int ath9k_hw_process_ini(struct ath_hw *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode) { int i, regWrites = 0; struct ieee80211_channel *channel = chan->chan; u32 modesIndex, freqIndex; int status; switch (chan->chanmode) { case CHANNEL_A: case CHANNEL_A_HT20: modesIndex = 1; freqIndex = 1; break; case CHANNEL_A_HT40PLUS: case CHANNEL_A_HT40MINUS: modesIndex = 2; freqIndex = 1; break; case CHANNEL_G: case CHANNEL_G_HT20: case CHANNEL_B: modesIndex = 4; freqIndex = 2; break; case CHANNEL_G_HT40PLUS: case CHANNEL_G_HT40MINUS: modesIndex = 3; freqIndex = 2; break; default: return -EINVAL; } REG_WRITE(ah, AR_PHY(0), 0x00000007); REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); ah->eep_ops->set_addac(ah, chan); if (AR_SREV_5416_22_OR_LATER(ah)) { REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites); } else { struct ar5416IniArray temp; u32 addacSize = sizeof(u32) * ah->iniAddac.ia_rows * ah->iniAddac.ia_columns; memcpy(ah->addac5416_21, ah->iniAddac.ia_array, addacSize); (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0; temp.ia_array = ah->addac5416_21; temp.ia_columns = ah->iniAddac.ia_columns; temp.ia_rows = ah->iniAddac.ia_rows; REG_WRITE_ARRAY(&temp, 1, regWrites); } REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); for (i = 0; i < ah->iniModes.ia_rows; i++) { u32 reg = INI_RA(&ah->iniModes, i, 0); u32 val = INI_RA(&ah->iniModes, i, modesIndex); REG_WRITE(ah, reg, val); if (reg >= 0x7800 && reg < 0x78a0 && ah->config.analog_shiftreg) { udelay(100); } DO_DELAY(regWrites); } if (AR_SREV_9280(ah)) REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites); if (AR_SREV_9280(ah) || (AR_SREV_9285(ah) && AR_SREV_9285_12_OR_LATER(ah))) REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites); for (i = 0; i < ah->iniCommon.ia_rows; i++) { u32 reg = INI_RA(&ah->iniCommon, i, 0); u32 val = INI_RA(&ah->iniCommon, i, 1); REG_WRITE(ah, reg, val); if (reg >= 0x7800 && reg < 0x78a0 && ah->config.analog_shiftreg) { udelay(100); } DO_DELAY(regWrites); } ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites); if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) { REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex, regWrites); } ath9k_hw_override_ini(ah, chan); ath9k_hw_set_regs(ah, chan, macmode); ath9k_hw_init_chain_masks(ah); if (OLC_FOR_AR9280_20_LATER) ath9k_olc_init(ah); status = ah->eep_ops->set_txpower(ah, chan, ath9k_regd_get_ctl(&ah->regulatory, chan), channel->max_antenna_gain * 2, channel->max_power * 2, min((u32) MAX_RATE_POWER, (u32) ah->regulatory.power_limit)); if (status != 0) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Error initializing transmit power\n"); return -EIO; } if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "ar5416SetRfRegs failed\n"); return -EIO; } return 0; } /****************************************/ /* Reset and Channel Switching Routines */ /****************************************/ static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan) { u32 rfMode = 0; if (chan == NULL) return; rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan)) ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; if (!AR_SREV_9280_10_OR_LATER(ah)) rfMode |= (IS_CHAN_5GHZ(chan)) ? AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); REG_WRITE(ah, AR_PHY_MODE, rfMode); } static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah) { REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); } static inline void ath9k_hw_set_dma(struct ath_hw *ah) { u32 regval; regval = REG_READ(ah, AR_AHB_MODE); REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN); regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK; REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B); REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK; REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B); REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); if (AR_SREV_9285(ah)) { REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); } else { REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); } } static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) { u32 val; val = REG_READ(ah, AR_STA_ID1); val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC); switch (opmode) { case NL80211_IFTYPE_AP: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE); REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE); REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_MONITOR: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); break; } } static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, u32 *coef_mantissa, u32 *coef_exponent) { u32 coef_exp, coef_man; for (coef_exp = 31; coef_exp > 0; coef_exp--) if ((coef_scaled >> coef_exp) & 0x1) break; coef_exp = 14 - (coef_exp - COEF_SCALE_S); coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); *coef_exponent = coef_exp - 16; } static void ath9k_hw_set_delta_slope(struct ath_hw *ah, struct ath9k_channel *chan) { u32 coef_scaled, ds_coef_exp, ds_coef_man; u32 clockMhzScaled = 0x64000000; struct chan_centers centers; if (IS_CHAN_HALF_RATE(chan)) clockMhzScaled = clockMhzScaled >> 1; else if (IS_CHAN_QUARTER_RATE(chan)) clockMhzScaled = clockMhzScaled >> 2; ath9k_hw_get_channel_centers(ah, chan, ¢ers); coef_scaled = clockMhzScaled / centers.synth_center; ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_MAN, ds_coef_man); REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); coef_scaled = (9 * coef_scaled) / 10; ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); REG_RMW_FIELD(ah, AR_PHY_HALFGI, AR_PHY_HALFGI_DSC_MAN, ds_coef_man); REG_RMW_FIELD(ah, AR_PHY_HALFGI, AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); } static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) { u32 rst_flags; u32 tmpReg; if (AR_SREV_9100(ah)) { u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK); val &= ~AR_RTC_DERIVED_CLK_PERIOD; val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); (void)REG_READ(ah, AR_RTC_DERIVED_CLK); } REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); if (AR_SREV_9100(ah)) { rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; } else { tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); } else { REG_WRITE(ah, AR_RC, AR_RC_AHB); } rst_flags = AR_RTC_RC_MAC_WARM; if (type == ATH9K_RESET_COLD) rst_flags |= AR_RTC_RC_MAC_COLD; } REG_WRITE(ah, AR_RTC_RC, rst_flags); udelay(50); REG_WRITE(ah, AR_RTC_RC, 0); if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC stuck in MAC reset\n"); return false; } if (!AR_SREV_9100(ah)) REG_WRITE(ah, AR_RC, 0); ath9k_hw_init_pll(ah, NULL); if (AR_SREV_9100(ah)) udelay(50); return true; } static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) { REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); REG_WRITE(ah, AR_RTC_RESET, 0); udelay(2); REG_WRITE(ah, AR_RTC_RESET, 1); if (!ath9k_hw_wait(ah, AR_RTC_STATUS, AR_RTC_STATUS_M, AR_RTC_STATUS_ON, AH_WAIT_TIMEOUT)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n"); return false; } ath9k_hw_read_revisions(ah); return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); } static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) { REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); switch (type) { case ATH9K_RESET_POWER_ON: return ath9k_hw_set_reset_power_on(ah); break; case ATH9K_RESET_WARM: case ATH9K_RESET_COLD: return ath9k_hw_set_reset(ah, type); break; default: return false; } } static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode) { u32 phymode; u32 enableDacFifo = 0; if (AR_SREV_9285_10_OR_LATER(ah)) enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO); phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo; if (IS_CHAN_HT40(chan)) { phymode |= AR_PHY_FC_DYN2040_EN; if ((chan->chanmode == CHANNEL_A_HT40PLUS) || (chan->chanmode == CHANNEL_G_HT40PLUS)) phymode |= AR_PHY_FC_DYN2040_PRI_CH; if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25) phymode |= AR_PHY_FC_DYN2040_EXT_CH; } REG_WRITE(ah, AR_PHY_TURBO, phymode); ath9k_hw_set11nmac2040(ah, macmode); REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); } static bool ath9k_hw_chip_reset(struct ath_hw *ah, struct ath9k_channel *chan) { if (OLC_FOR_AR9280_20_LATER) { if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) return false; } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) return false; if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return false; ah->chip_fullsleep = false; ath9k_hw_init_pll(ah, chan); ath9k_hw_set_rfmode(ah, chan); return true; } static bool ath9k_hw_channel_change(struct ath_hw *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode) { struct ieee80211_channel *channel = chan->chan; u32 synthDelay, qnum; for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { if (ath9k_hw_numtxpending(ah, qnum)) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "Transmit frames pending on queue %d\n", qnum); return false; } } REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Could not kill baseband RX\n"); return false; } ath9k_hw_set_regs(ah, chan, macmode); if (AR_SREV_9280_10_OR_LATER(ah)) { if (!(ath9k_hw_ar9280_set_channel(ah, chan))) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Failed to set channel\n"); return false; } } else { if (!(ath9k_hw_set_channel(ah, chan))) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Failed to set channel\n"); return false; } } if (ah->eep_ops->set_txpower(ah, chan, ath9k_regd_get_ctl(&ah->regulatory, chan), channel->max_antenna_gain * 2, channel->max_power * 2, min((u32) MAX_RATE_POWER, (u32) ah->regulatory.power_limit)) != 0) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Error initializing transmit power\n"); return false; } synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; if (IS_CHAN_B(chan)) synthDelay = (4 * synthDelay) / 22; else synthDelay /= 10; udelay(synthDelay + BASE_ACTIVATE_DELAY); REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) ath9k_hw_set_delta_slope(ah, chan); if (AR_SREV_9280_10_OR_LATER(ah)) ath9k_hw_9280_spur_mitigate(ah, chan); else ath9k_hw_spur_mitigate(ah, chan); if (!chan->oneTimeCalsDone) chan->oneTimeCalsDone = true; return true; } static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan) { int bb_spur = AR_NO_SPUR; int freq; int bin, cur_bin; int bb_spur_off, spur_subchannel_sd; int spur_freq_sd; int spur_delta_phase; int denominator; int upper, lower, cur_vit_mask; int tmp, newVal; int i; int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 }; int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 }; int inc[4] = { 0, 100, 0, 0 }; struct chan_centers centers; int8_t mask_m[123]; int8_t mask_p[123]; int8_t mask_amt; int tmp_mask; int cur_bb_spur; bool is2GHz = IS_CHAN_2GHZ(chan); memset(&mask_m, 0, sizeof(int8_t) * 123); memset(&mask_p, 0, sizeof(int8_t) * 123); ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = centers.synth_center; ah->config.spurmode = SPUR_ENABLE_EEPROM; for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz); if (is2GHz) cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ; else cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ; if (AR_NO_SPUR == cur_bb_spur) break; cur_bb_spur = cur_bb_spur - freq; if (IS_CHAN_HT40(chan)) { if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) { bb_spur = cur_bb_spur; break; } } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) && (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) { bb_spur = cur_bb_spur; break; } } if (AR_NO_SPUR == bb_spur) { REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); return; } else { REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); } bin = bb_spur * 320; tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal); newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | AR_PHY_SPUR_REG_MASK_RATE_SELECT | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); REG_WRITE(ah, AR_PHY_SPUR_REG, newVal); if (IS_CHAN_HT40(chan)) { if (bb_spur < 0) { spur_subchannel_sd = 1; bb_spur_off = bb_spur + 10; } else { spur_subchannel_sd = 0; bb_spur_off = bb_spur - 10; } } else { spur_subchannel_sd = 0; bb_spur_off = bb_spur; } if (IS_CHAN_HT40(chan)) spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; else spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; denominator = IS_CHAN_2GHZ(chan) ? 44 : 40; spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff; newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); REG_WRITE(ah, AR_PHY_TIMING11, newVal); newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S; REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal); cur_bin = -6000; upper = bin + 100; lower = bin - 100; for (i = 0; i < 4; i++) { int pilot_mask = 0; int chan_mask = 0; int bp = 0; for (bp = 0; bp < 30; bp++) { if ((cur_bin > lower) && (cur_bin < upper)) { pilot_mask = pilot_mask | 0x1 << bp; chan_mask = chan_mask | 0x1 << bp; } cur_bin += 100; } cur_bin += inc[i]; REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); REG_WRITE(ah, chan_mask_reg[i], chan_mask); } cur_vit_mask = 6100; upper = bin + 120; lower = bin - 120; for (i = 0; i < 123; i++) { if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { /* workaround for gcc bug #37014 */ volatile int tmp_v = abs(cur_vit_mask - bin); if (tmp_v < 75) mask_amt = 1; else mask_amt = 0; if (cur_vit_mask < 0) mask_m[abs(cur_vit_mask / 100)] = mask_amt; else mask_p[cur_vit_mask / 100] = mask_amt; } cur_vit_mask -= 100; } tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) | (mask_m[48] << 26) | (mask_m[49] << 24) | (mask_m[50] << 22) | (mask_m[51] << 20) | (mask_m[52] << 18) | (mask_m[53] << 16) | (mask_m[54] << 14) | (mask_m[55] << 12) | (mask_m[56] << 10) | (mask_m[57] << 8) | (mask_m[58] << 6) | (mask_m[59] << 4) | (mask_m[60] << 2) | (mask_m[61] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); tmp_mask = (mask_m[31] << 28) | (mask_m[32] << 26) | (mask_m[33] << 24) | (mask_m[34] << 22) | (mask_m[35] << 20) | (mask_m[36] << 18) | (mask_m[37] << 16) | (mask_m[48] << 14) | (mask_m[39] << 12) | (mask_m[40] << 10) | (mask_m[41] << 8) | (mask_m[42] << 6) | (mask_m[43] << 4) | (mask_m[44] << 2) | (mask_m[45] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) | (mask_m[18] << 26) | (mask_m[18] << 24) | (mask_m[20] << 22) | (mask_m[20] << 20) | (mask_m[22] << 18) | (mask_m[22] << 16) | (mask_m[24] << 14) | (mask_m[24] << 12) | (mask_m[25] << 10) | (mask_m[26] << 8) | (mask_m[27] << 6) | (mask_m[28] << 4) | (mask_m[29] << 2) | (mask_m[30] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) | (mask_m[2] << 26) | (mask_m[3] << 24) | (mask_m[4] << 22) | (mask_m[5] << 20) | (mask_m[6] << 18) | (mask_m[7] << 16) | (mask_m[8] << 14) | (mask_m[9] << 12) | (mask_m[10] << 10) | (mask_m[11] << 8) | (mask_m[12] << 6) | (mask_m[13] << 4) | (mask_m[14] << 2) | (mask_m[15] << 0); REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); tmp_mask = (mask_p[15] << 28) | (mask_p[14] << 26) | (mask_p[13] << 24) | (mask_p[12] << 22) | (mask_p[11] << 20) | (mask_p[10] << 18) | (mask_p[9] << 16) | (mask_p[8] << 14) | (mask_p[7] << 12) | (mask_p[6] << 10) | (mask_p[5] << 8) | (mask_p[4] << 6) | (mask_p[3] << 4) | (mask_p[2] << 2) | (mask_p[1] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); tmp_mask = (mask_p[30] << 28) | (mask_p[29] << 26) | (mask_p[28] << 24) | (mask_p[27] << 22) | (mask_p[26] << 20) | (mask_p[25] << 18) | (mask_p[24] << 16) | (mask_p[23] << 14) | (mask_p[22] << 12) | (mask_p[21] << 10) | (mask_p[20] << 8) | (mask_p[19] << 6) | (mask_p[18] << 4) | (mask_p[17] << 2) | (mask_p[16] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); tmp_mask = (mask_p[45] << 28) | (mask_p[44] << 26) | (mask_p[43] << 24) | (mask_p[42] << 22) | (mask_p[41] << 20) | (mask_p[40] << 18) | (mask_p[39] << 16) | (mask_p[38] << 14) | (mask_p[37] << 12) | (mask_p[36] << 10) | (mask_p[35] << 8) | (mask_p[34] << 6) | (mask_p[33] << 4) | (mask_p[32] << 2) | (mask_p[31] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) | (mask_p[59] << 26) | (mask_p[58] << 24) | (mask_p[57] << 22) | (mask_p[56] << 20) | (mask_p[55] << 18) | (mask_p[54] << 16) | (mask_p[53] << 14) | (mask_p[52] << 12) | (mask_p[51] << 10) | (mask_p[50] << 8) | (mask_p[49] << 6) | (mask_p[48] << 4) | (mask_p[47] << 2) | (mask_p[46] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); } static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan) { int bb_spur = AR_NO_SPUR; int bin, cur_bin; int spur_freq_sd; int spur_delta_phase; int denominator; int upper, lower, cur_vit_mask; int tmp, new; int i; int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 }; int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 }; int inc[4] = { 0, 100, 0, 0 }; int8_t mask_m[123]; int8_t mask_p[123]; int8_t mask_amt; int tmp_mask; int cur_bb_spur; bool is2GHz = IS_CHAN_2GHZ(chan); memset(&mask_m, 0, sizeof(int8_t) * 123); memset(&mask_p, 0, sizeof(int8_t) * 123); for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz); if (AR_NO_SPUR == cur_bb_spur) break; cur_bb_spur = cur_bb_spur - (chan->channel * 10); if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) { bb_spur = cur_bb_spur; break; } } if (AR_NO_SPUR == bb_spur) return; bin = bb_spur * 32; tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new); new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | AR_PHY_SPUR_REG_MASK_RATE_SELECT | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); REG_WRITE(ah, AR_PHY_SPUR_REG, new); spur_delta_phase = ((bb_spur * 524288) / 100) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; denominator = IS_CHAN_2GHZ(chan) ? 440 : 400; spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff; new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); REG_WRITE(ah, AR_PHY_TIMING11, new); cur_bin = -6000; upper = bin + 100; lower = bin - 100; for (i = 0; i < 4; i++) { int pilot_mask = 0; int chan_mask = 0; int bp = 0; for (bp = 0; bp < 30; bp++) { if ((cur_bin > lower) && (cur_bin < upper)) { pilot_mask = pilot_mask | 0x1 << bp; chan_mask = chan_mask | 0x1 << bp; } cur_bin += 100; } cur_bin += inc[i]; REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); REG_WRITE(ah, chan_mask_reg[i], chan_mask); } cur_vit_mask = 6100; upper = bin + 120; lower = bin - 120; for (i = 0; i < 123; i++) { if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { /* workaround for gcc bug #37014 */ volatile int tmp_v = abs(cur_vit_mask - bin); if (tmp_v < 75) mask_amt = 1; else mask_amt = 0; if (cur_vit_mask < 0) mask_m[abs(cur_vit_mask / 100)] = mask_amt; else mask_p[cur_vit_mask / 100] = mask_amt; } cur_vit_mask -= 100; } tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) | (mask_m[48] << 26) | (mask_m[49] << 24) | (mask_m[50] << 22) | (mask_m[51] << 20) | (mask_m[52] << 18) | (mask_m[53] << 16) | (mask_m[54] << 14) | (mask_m[55] << 12) | (mask_m[56] << 10) | (mask_m[57] << 8) | (mask_m[58] << 6) | (mask_m[59] << 4) | (mask_m[60] << 2) | (mask_m[61] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); tmp_mask = (mask_m[31] << 28) | (mask_m[32] << 26) | (mask_m[33] << 24) | (mask_m[34] << 22) | (mask_m[35] << 20) | (mask_m[36] << 18) | (mask_m[37] << 16) | (mask_m[48] << 14) | (mask_m[39] << 12) | (mask_m[40] << 10) | (mask_m[41] << 8) | (mask_m[42] << 6) | (mask_m[43] << 4) | (mask_m[44] << 2) | (mask_m[45] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) | (mask_m[18] << 26) | (mask_m[18] << 24) | (mask_m[20] << 22) | (mask_m[20] << 20) | (mask_m[22] << 18) | (mask_m[22] << 16) | (mask_m[24] << 14) | (mask_m[24] << 12) | (mask_m[25] << 10) | (mask_m[26] << 8) | (mask_m[27] << 6) | (mask_m[28] << 4) | (mask_m[29] << 2) | (mask_m[30] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) | (mask_m[2] << 26) | (mask_m[3] << 24) | (mask_m[4] << 22) | (mask_m[5] << 20) | (mask_m[6] << 18) | (mask_m[7] << 16) | (mask_m[8] << 14) | (mask_m[9] << 12) | (mask_m[10] << 10) | (mask_m[11] << 8) | (mask_m[12] << 6) | (mask_m[13] << 4) | (mask_m[14] << 2) | (mask_m[15] << 0); REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); tmp_mask = (mask_p[15] << 28) | (mask_p[14] << 26) | (mask_p[13] << 24) | (mask_p[12] << 22) | (mask_p[11] << 20) | (mask_p[10] << 18) | (mask_p[9] << 16) | (mask_p[8] << 14) | (mask_p[7] << 12) | (mask_p[6] << 10) | (mask_p[5] << 8) | (mask_p[4] << 6) | (mask_p[3] << 4) | (mask_p[2] << 2) | (mask_p[1] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); tmp_mask = (mask_p[30] << 28) | (mask_p[29] << 26) | (mask_p[28] << 24) | (mask_p[27] << 22) | (mask_p[26] << 20) | (mask_p[25] << 18) | (mask_p[24] << 16) | (mask_p[23] << 14) | (mask_p[22] << 12) | (mask_p[21] << 10) | (mask_p[20] << 8) | (mask_p[19] << 6) | (mask_p[18] << 4) | (mask_p[17] << 2) | (mask_p[16] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); tmp_mask = (mask_p[45] << 28) | (mask_p[44] << 26) | (mask_p[43] << 24) | (mask_p[42] << 22) | (mask_p[41] << 20) | (mask_p[40] << 18) | (mask_p[39] << 16) | (mask_p[38] << 14) | (mask_p[37] << 12) | (mask_p[36] << 10) | (mask_p[35] << 8) | (mask_p[34] << 6) | (mask_p[33] << 4) | (mask_p[32] << 2) | (mask_p[31] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) | (mask_p[59] << 26) | (mask_p[58] << 24) | (mask_p[57] << 22) | (mask_p[56] << 20) | (mask_p[55] << 18) | (mask_p[54] << 16) | (mask_p[53] << 14) | (mask_p[52] << 12) | (mask_p[51] << 10) | (mask_p[50] << 8) | (mask_p[49] << 6) | (mask_p[48] << 4) | (mask_p[47] << 2) | (mask_p[46] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); } int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, bool bChannelChange) { u32 saveLedState; struct ath_softc *sc = ah->ah_sc; struct ath9k_channel *curchan = ah->curchan; u32 saveDefAntenna; u32 macStaId1; int i, rx_chainmask, r; ah->extprotspacing = sc->ht_extprotspacing; ah->txchainmask = sc->tx_chainmask; ah->rxchainmask = sc->rx_chainmask; if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return -EIO; if (curchan) ath9k_hw_getnf(ah, curchan); if (bChannelChange && (ah->chip_fullsleep != true) && (ah->curchan != NULL) && (chan->channel != ah->curchan->channel) && ((chan->channelFlags & CHANNEL_ALL) == (ah->curchan->channelFlags & CHANNEL_ALL)) && (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) && !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) { if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) { ath9k_hw_loadnf(ah, ah->curchan); ath9k_hw_start_nfcal(ah); return 0; } } saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); if (saveDefAntenna == 0) saveDefAntenna = 1; macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; saveLedState = REG_READ(ah, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); ath9k_hw_mark_phy_inactive(ah); if (!ath9k_hw_chip_reset(ah, chan)) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n"); return -EINVAL; } if (AR_SREV_9280_10_OR_LATER(ah)) REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width); if (r) return r; /* Setup MFP options for CCMP */ if (AR_SREV_9280_20_OR_LATER(ah)) { /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt * frames when constructing CCMP AAD. */ REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 0xc7ff); ah->sw_mgmt_crypto = false; } else if (AR_SREV_9160_10_OR_LATER(ah)) { /* Disable hardware crypto for management frames */ REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); REG_SET_BIT(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); ah->sw_mgmt_crypto = true; } else ah->sw_mgmt_crypto = true; if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) ath9k_hw_set_delta_slope(ah, chan); if (AR_SREV_9280_10_OR_LATER(ah)) ath9k_hw_9280_spur_mitigate(ah, chan); else ath9k_hw_spur_mitigate(ah, chan); ah->eep_ops->set_board_values(ah, chan); ath9k_hw_decrease_chain_power(ah, chan); REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr)); REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4) | macStaId1 | AR_STA_ID1_RTS_USE_DEF | (ah->config. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) | ah->sta_id1_defaults); ath9k_hw_set_operating_mode(ah, ah->opmode); REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask)); REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4)); REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid)); REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) | ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); REG_WRITE(ah, AR_ISR, ~0); REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); if (AR_SREV_9280_10_OR_LATER(ah)) { if (!(ath9k_hw_ar9280_set_channel(ah, chan))) return -EIO; } else { if (!(ath9k_hw_set_channel(ah, chan))) return -EIO; } for (i = 0; i < AR_NUM_DCU; i++) REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); ah->intr_txqs = 0; for (i = 0; i < ah->caps.total_queues; i++) ath9k_hw_resettxqueue(ah, i); ath9k_hw_init_interrupt_masks(ah, ah->opmode); ath9k_hw_init_qos(ah); #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) ath9k_enable_rfkill(ah); #endif ath9k_hw_init_user_settings(ah); REG_WRITE(ah, AR_STA_ID1, REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); ath9k_hw_set_dma(ah); REG_WRITE(ah, AR_OBS, 8); if (ah->config.intr_mitigation) { REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); } ath9k_hw_init_bb(ah, chan); if (!ath9k_hw_init_cal(ah, chan)) return -EIO;; rx_chainmask = ah->rxchainmask; if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) { REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); } REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); if (AR_SREV_9100(ah)) { u32 mask; mask = REG_READ(ah, AR_CFG); if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "CFG Byte Swap Set 0x%x\n", mask); } else { mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; REG_WRITE(ah, AR_CFG, mask); DPRINTF(ah->ah_sc, ATH_DBG_RESET, "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG)); } } else { #ifdef __BIG_ENDIAN REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); #endif } return 0; } /************************/ /* Key Cache Management */ /************************/ bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry) { u32 keyType; if (entry >= ah->caps.keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "keychache entry %u out of range\n", entry); return false; } keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry)); REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0); REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR); REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0); REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0); if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { u16 micentry = entry + 64; REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); } if (ah->curchan == NULL) return true; return true; } bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac) { u32 macHi, macLo; if (entry >= ah->caps.keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "keychache entry %u out of range\n", entry); return false; } if (mac != NULL) { macHi = (mac[5] << 8) | mac[4]; macLo = (mac[3] << 24) | (mac[2] << 16) | (mac[1] << 8) | mac[0]; macLo >>= 1; macLo |= (macHi & 1) << 31; macHi >>= 1; } else { macLo = macHi = 0; } REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo); REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID); return true; } bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry, const struct ath9k_keyval *k, const u8 *mac) { const struct ath9k_hw_capabilities *pCap = &ah->caps; u32 key0, key1, key2, key3, key4; u32 keyType; if (entry >= pCap->keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "keycache entry %u out of range\n", entry); return false; } switch (k->kv_type) { case ATH9K_CIPHER_AES_OCB: keyType = AR_KEYTABLE_TYPE_AES; break; case ATH9K_CIPHER_AES_CCM: if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "AES-CCM not supported by mac rev 0x%x\n", ah->hw_version.macRev); return false; } keyType = AR_KEYTABLE_TYPE_CCM; break; case ATH9K_CIPHER_TKIP: keyType = AR_KEYTABLE_TYPE_TKIP; if (ATH9K_IS_MIC_ENABLED(ah) && entry + 64 >= pCap->keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "entry %u inappropriate for TKIP\n", entry); return false; } break; case ATH9K_CIPHER_WEP: if (k->kv_len < LEN_WEP40) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "WEP key length %u too small\n", k->kv_len); return false; } if (k->kv_len <= LEN_WEP40) keyType = AR_KEYTABLE_TYPE_40; else if (k->kv_len <= LEN_WEP104) keyType = AR_KEYTABLE_TYPE_104; else keyType = AR_KEYTABLE_TYPE_128; break; case ATH9K_CIPHER_CLR: keyType = AR_KEYTABLE_TYPE_CLR; break; default: DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "cipher %u not supported\n", k->kv_type); return false; } key0 = get_unaligned_le32(k->kv_val + 0); key1 = get_unaligned_le16(k->kv_val + 4); key2 = get_unaligned_le32(k->kv_val + 6); key3 = get_unaligned_le16(k->kv_val + 10); key4 = get_unaligned_le32(k->kv_val + 12); if (k->kv_len <= LEN_WEP104) key4 &= 0xff; /* * Note: Key cache registers access special memory area that requires * two 32-bit writes to actually update the values in the internal * memory. Consequently, the exact order and pairs used here must be * maintained. */ if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { u16 micentry = entry + 64; /* * Write inverted key[47:0] first to avoid Michael MIC errors * on frames that could be sent or received at the same time. * The correct key will be written in the end once everything * else is ready. */ REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1); /* Write key[95:48] */ REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); /* Write key[127:96] and key type */ REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); /* Write MAC address for the entry */ (void) ath9k_hw_keysetmac(ah, entry, mac); if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) { /* * TKIP uses two key cache entries: * Michael MIC TX/RX keys in the same key cache entry * (idx = main index + 64): * key0 [31:0] = RX key [31:0] * key1 [15:0] = TX key [31:16] * key1 [31:16] = reserved * key2 [31:0] = RX key [63:32] * key3 [15:0] = TX key [15:0] * key3 [31:16] = reserved * key4 [31:0] = TX key [63:32] */ u32 mic0, mic1, mic2, mic3, mic4; mic0 = get_unaligned_le32(k->kv_mic + 0); mic2 = get_unaligned_le32(k->kv_mic + 4); mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff; mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff; mic4 = get_unaligned_le32(k->kv_txmic + 4); /* Write RX[31:0] and TX[31:16] */ REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1); /* Write RX[63:32] and TX[15:0] */ REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3); /* Write TX[63:32] and keyType(reserved) */ REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4); REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR); } else { /* * TKIP uses four key cache entries (two for group * keys): * Michael MIC TX/RX keys are in different key cache * entries (idx = main index + 64 for TX and * main index + 32 + 96 for RX): * key0 [31:0] = TX/RX MIC key [31:0] * key1 [31:0] = reserved * key2 [31:0] = TX/RX MIC key [63:32] * key3 [31:0] = reserved * key4 [31:0] = reserved * * Upper layer code will call this function separately * for TX and RX keys when these registers offsets are * used. */ u32 mic0, mic2; mic0 = get_unaligned_le32(k->kv_mic + 0); mic2 = get_unaligned_le32(k->kv_mic + 4); /* Write MIC key[31:0] */ REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); /* Write MIC key[63:32] */ REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); /* Write TX[63:32] and keyType(reserved) */ REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR); } /* MAC address registers are reserved for the MIC entry */ REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0); /* * Write the correct (un-inverted) key[47:0] last to enable * TKIP now that all other registers are set with correct * values. */ REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); } else { /* Write key[47:0] */ REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); /* Write key[95:48] */ REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); /* Write key[127:96] and key type */ REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); /* Write MAC address for the entry */ (void) ath9k_hw_keysetmac(ah, entry, mac); } return true; } bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry) { if (entry < ah->caps.keycache_size) { u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry)); if (val & AR_KEYTABLE_VALID) return true; } return false; } /******************************/ /* Power Management (Chipset) */ /******************************/ static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip) { REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); if (setChip) { REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); if (!AR_SREV_9100(ah)) REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); REG_CLR_BIT(ah, (AR_RTC_RESET), AR_RTC_RESET_EN); } } static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip) { REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); if (setChip) { struct ath9k_hw_capabilities *pCap = &ah->caps; if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_ON_INT); } else { REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); } } } static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip) { u32 val; int i; if (setChip) { if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { if (ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON) != true) { return false; } } if (AR_SREV_9100(ah)) REG_SET_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); udelay(50); for (i = POWER_UP_TIME / 50; i > 0; i--) { val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; if (val == AR_RTC_STATUS_ON) break; udelay(50); REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); } if (i == 0) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Failed to wakeup in %uus\n", POWER_UP_TIME / 20); return false; } } REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); return true; } bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) { int status = true, setChip = true; static const char *modes[] = { "AWAKE", "FULL-SLEEP", "NETWORK SLEEP", "UNDEFINED" }; DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n", modes[ah->power_mode], modes[mode]); switch (mode) { case ATH9K_PM_AWAKE: status = ath9k_hw_set_power_awake(ah, setChip); break; case ATH9K_PM_FULL_SLEEP: ath9k_set_power_sleep(ah, setChip); ah->chip_fullsleep = true; break; case ATH9K_PM_NETWORK_SLEEP: ath9k_set_power_network_sleep(ah, setChip); break; default: DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Unknown power mode %u\n", mode); return false; } ah->power_mode = mode; return status; } /* * Helper for ASPM support. * * Disable PLL when in L0s as well as receiver clock when in L1. * This power saving option must be enabled through the SerDes. * * Programming the SerDes must go through the same 288 bit serial shift * register as the other analog registers. Hence the 9 writes. */ void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore) { u8 i; if (ah->is_pciexpress != true) return; /* Do not touch SerDes registers */ if (ah->config.pcie_powersave_enable == 2) return; /* Nothing to do on restore for 11N */ if (restore) return; if (AR_SREV_9280_20_OR_LATER(ah)) { /* * AR9280 2.0 or later chips use SerDes values from the * initvals.h initialized depending on chipset during * ath9k_hw_do_attach() */ for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) { REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0), INI_RA(&ah->iniPcieSerdes, i, 1)); } } else if (AR_SREV_9280(ah) && (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) { REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00); REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); /* RX shut off when elecidle is asserted */ REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019); REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820); REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560); /* Shut off CLKREQ active in L1 */ if (ah->config.pcie_clock_req) REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc); else REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd); REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007); /* Load the new settings */ REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); } else { REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); /* RX shut off when elecidle is asserted */ REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039); REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824); REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579); /* * Ignore ah->ah_config.pcie_clock_req setting for * pre-AR9280 11n */ REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff); REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007); /* Load the new settings */ REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); } udelay(1000); /* set bit 19 to allow forcing of pcie core into L1 state */ REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA); /* Several PCIe massages to ensure proper behaviour */ if (ah->config.pcie_waen) { REG_WRITE(ah, AR_WA, ah->config.pcie_waen); } else { if (AR_SREV_9285(ah)) REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT); /* * On AR9280 chips bit 22 of 0x4004 needs to be set to * otherwise card may disappear. */ else if (AR_SREV_9280(ah)) REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT); else REG_WRITE(ah, AR_WA, AR_WA_DEFAULT); } } /**********************/ /* Interrupt Handling */ /**********************/ bool ath9k_hw_intrpend(struct ath_hw *ah) { u32 host_isr; if (AR_SREV_9100(ah)) return true; host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE); if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS)) return true; host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE); if ((host_isr & AR_INTR_SYNC_DEFAULT) && (host_isr != AR_INTR_SPURIOUS)) return true; return false; } bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked) { u32 isr = 0; u32 mask2 = 0; struct ath9k_hw_capabilities *pCap = &ah->caps; u32 sync_cause = 0; bool fatal_int = false; if (!AR_SREV_9100(ah)) { if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) { if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) { isr = REG_READ(ah, AR_ISR); } } sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) & AR_INTR_SYNC_DEFAULT; *masked = 0; if (!isr && !sync_cause) return false; } else { *masked = 0; isr = REG_READ(ah, AR_ISR); } if (isr) { if (isr & AR_ISR_BCNMISC) { u32 isr2; isr2 = REG_READ(ah, AR_ISR_S2); if (isr2 & AR_ISR_S2_TIM) mask2 |= ATH9K_INT_TIM; if (isr2 & AR_ISR_S2_DTIM) mask2 |= ATH9K_INT_DTIM; if (isr2 & AR_ISR_S2_DTIMSYNC) mask2 |= ATH9K_INT_DTIMSYNC; if (isr2 & (AR_ISR_S2_CABEND)) mask2 |= ATH9K_INT_CABEND; if (isr2 & AR_ISR_S2_GTT) mask2 |= ATH9K_INT_GTT; if (isr2 & AR_ISR_S2_CST) mask2 |= ATH9K_INT_CST; if (isr2 & AR_ISR_S2_TSFOOR) mask2 |= ATH9K_INT_TSFOOR; } isr = REG_READ(ah, AR_ISR_RAC); if (isr == 0xffffffff) { *masked = 0; return false; } *masked = isr & ATH9K_INT_COMMON; if (ah->config.intr_mitigation) { if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) *masked |= ATH9K_INT_RX; } if (isr & (AR_ISR_RXOK | AR_ISR_RXERR)) *masked |= ATH9K_INT_RX; if (isr & (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR | AR_ISR_TXEOL)) { u32 s0_s, s1_s; *masked |= ATH9K_INT_TX; s0_s = REG_READ(ah, AR_ISR_S0_S); ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK); ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC); s1_s = REG_READ(ah, AR_ISR_S1_S); ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR); ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL); } if (isr & AR_ISR_RXORN) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "receive FIFO overrun interrupt\n"); } if (!AR_SREV_9100(ah)) { if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { u32 isr5 = REG_READ(ah, AR_ISR_S5_S); if (isr5 & AR_ISR_S5_TIM_TIMER) *masked |= ATH9K_INT_TIM_TIMER; } } *masked |= mask2; } if (AR_SREV_9100(ah)) return true; if (sync_cause) { fatal_int = (sync_cause & (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) ? true : false; if (fatal_int) { if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "received PCI FATAL interrupt\n"); } if (sync_cause & AR_INTR_SYNC_HOST1_PERR) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "received PCI PERR interrupt\n"); } *masked |= ATH9K_INT_FATAL; } if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n"); REG_WRITE(ah, AR_RC, AR_RC_HOSTIF); REG_WRITE(ah, AR_RC, 0); *masked |= ATH9K_INT_FATAL; } if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_INTR_SYNC_LOCAL_TIMEOUT\n"); } REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause); (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR); } return true; } enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah) { return ah->mask_reg; } enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints) { u32 omask = ah->mask_reg; u32 mask, mask2; struct ath9k_hw_capabilities *pCap = &ah->caps; DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints); if (omask & ATH9K_INT_GLOBAL) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n"); REG_WRITE(ah, AR_IER, AR_IER_DISABLE); (void) REG_READ(ah, AR_IER); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0); (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); (void) REG_READ(ah, AR_INTR_SYNC_ENABLE); } } mask = ints & ATH9K_INT_COMMON; mask2 = 0; if (ints & ATH9K_INT_TX) { if (ah->txok_interrupt_mask) mask |= AR_IMR_TXOK; if (ah->txdesc_interrupt_mask) mask |= AR_IMR_TXDESC; if (ah->txerr_interrupt_mask) mask |= AR_IMR_TXERR; if (ah->txeol_interrupt_mask) mask |= AR_IMR_TXEOL; } if (ints & ATH9K_INT_RX) { mask |= AR_IMR_RXERR; if (ah->config.intr_mitigation) mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM; else mask |= AR_IMR_RXOK | AR_IMR_RXDESC; if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) mask |= AR_IMR_GENTMR; } if (ints & (ATH9K_INT_BMISC)) { mask |= AR_IMR_BCNMISC; if (ints & ATH9K_INT_TIM) mask2 |= AR_IMR_S2_TIM; if (ints & ATH9K_INT_DTIM) mask2 |= AR_IMR_S2_DTIM; if (ints & ATH9K_INT_DTIMSYNC) mask2 |= AR_IMR_S2_DTIMSYNC; if (ints & ATH9K_INT_CABEND) mask2 |= AR_IMR_S2_CABEND; if (ints & ATH9K_INT_TSFOOR) mask2 |= AR_IMR_S2_TSFOOR; } if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) { mask |= AR_IMR_BCNMISC; if (ints & ATH9K_INT_GTT) mask2 |= AR_IMR_S2_GTT; if (ints & ATH9K_INT_CST) mask2 |= AR_IMR_S2_CST; } DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask); REG_WRITE(ah, AR_IMR, mask); mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST); REG_WRITE(ah, AR_IMR_S2, mask | mask2); ah->mask_reg = ints; if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { if (ints & ATH9K_INT_TIM_TIMER) REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); else REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); } if (ints & ATH9K_INT_GLOBAL) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n"); REG_WRITE(ah, AR_IER, AR_IER_ENABLE); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ); REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); REG_WRITE(ah, AR_INTR_SYNC_MASK, AR_INTR_SYNC_DEFAULT); } DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n", REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER)); } return omask; } /*******************/ /* Beacon Handling */ /*******************/ void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) { int flags = 0; ah->beacon_interval = beacon_period; switch (ah->opmode) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_MONITOR: REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff); REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff); flags |= AR_TBTT_TIMER_EN; break; case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: REG_SET_BIT(ah, AR_TXCFG, AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); REG_WRITE(ah, AR_NEXT_NDP_TIMER, TU_TO_USEC(next_beacon + (ah->atim_window ? ah-> atim_window : 1))); flags |= AR_NDP_TIMER_EN; case NL80211_IFTYPE_AP: REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, TU_TO_USEC(next_beacon - ah->config. dma_beacon_response_time)); REG_WRITE(ah, AR_NEXT_SWBA, TU_TO_USEC(next_beacon - ah->config. sw_beacon_response_time)); flags |= AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; break; default: DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: unsupported opmode: %d\n", __func__, ah->opmode); return; break; } REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period)); beacon_period &= ~ATH9K_BEACON_ENA; if (beacon_period & ATH9K_BEACON_RESET_TSF) { beacon_period &= ~ATH9K_BEACON_RESET_TSF; ath9k_hw_reset_tsf(ah); } REG_SET_BIT(ah, AR_TIMER_MODE, flags); } void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, const struct ath9k_beacon_state *bs) { u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; struct ath9k_hw_capabilities *pCap = &ah->caps; REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD; if (bs->bs_sleepduration > beaconintval) beaconintval = bs->bs_sleepduration; dtimperiod = bs->bs_dtimperiod; if (bs->bs_sleepduration > dtimperiod) dtimperiod = bs->bs_sleepduration; if (beaconintval == dtimperiod) nextTbtt = bs->bs_nextdtim; else nextTbtt = bs->bs_nexttbtt; DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim); DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt); DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval); DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod); REG_WRITE(ah, AR_NEXT_DTIM, TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); REG_WRITE(ah, AR_SLEEP1, SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) | AR_SLEEP1_ASSUME_DTIM); if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) beacontimeout = (BEACON_TIMEOUT_VAL << 3); else beacontimeout = MIN_BEACON_TIMEOUT_VAL; REG_WRITE(ah, AR_SLEEP2, SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); REG_SET_BIT(ah, AR_TIMER_MODE, AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN); /* TSF Out of Range Threshold */ REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); } /*******************/ /* HW Capabilities */ /*******************/ void ath9k_hw_fill_cap_info(struct ath_hw *ah) { struct ath9k_hw_capabilities *pCap = &ah->caps; u16 capField = 0, eeval; eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); ah->regulatory.current_rd = eeval; eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1); if (AR_SREV_9285_10_OR_LATER(ah)) eeval |= AR9285_RDEXT_DEFAULT; ah->regulatory.current_rd_ext = eeval; capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP); if (ah->opmode != NL80211_IFTYPE_AP && ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { if (ah->regulatory.current_rd == 0x64 || ah->regulatory.current_rd == 0x65) ah->regulatory.current_rd += 5; else if (ah->regulatory.current_rd == 0x41) ah->regulatory.current_rd = 0x43; DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY, "regdomain mapped to 0x%x\n", ah->regulatory.current_rd); } eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX); if (eeval & AR5416_OPFLAGS_11A) { set_bit(ATH9K_MODE_11A, pCap->wireless_modes); if (ah->config.ht_enable) { if (!(eeval & AR5416_OPFLAGS_N_5G_HT20)) set_bit(ATH9K_MODE_11NA_HT20, pCap->wireless_modes); if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) { set_bit(ATH9K_MODE_11NA_HT40PLUS, pCap->wireless_modes); set_bit(ATH9K_MODE_11NA_HT40MINUS, pCap->wireless_modes); } } } if (eeval & AR5416_OPFLAGS_11G) { set_bit(ATH9K_MODE_11B, pCap->wireless_modes); set_bit(ATH9K_MODE_11G, pCap->wireless_modes); if (ah->config.ht_enable) { if (!(eeval & AR5416_OPFLAGS_N_2G_HT20)) set_bit(ATH9K_MODE_11NG_HT20, pCap->wireless_modes); if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) { set_bit(ATH9K_MODE_11NG_HT40PLUS, pCap->wireless_modes); set_bit(ATH9K_MODE_11NG_HT40MINUS, pCap->wireless_modes); } } } pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); if ((ah->hw_version.devid == AR5416_DEVID_PCI) && !(eeval & AR5416_OPFLAGS_11A)) pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; else pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0))) ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; pCap->low_2ghz_chan = 2312; pCap->high_2ghz_chan = 2732; pCap->low_5ghz_chan = 4920; pCap->high_5ghz_chan = 6100; pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP; pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP; pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM; pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP; pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP; pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM; if (ah->config.ht_enable) pCap->hw_caps |= ATH9K_HW_CAP_HT; else pCap->hw_caps &= ~ATH9K_HW_CAP_HT; pCap->hw_caps |= ATH9K_HW_CAP_GTT; pCap->hw_caps |= ATH9K_HW_CAP_VEOL; pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK; pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH; if (capField & AR_EEPROM_EEPCAP_MAXQCU) pCap->total_queues = MS(capField, AR_EEPROM_EEPCAP_MAXQCU); else pCap->total_queues = ATH9K_NUM_TX_QUEUES; if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES) pCap->keycache_size = 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES); else pCap->keycache_size = AR_KEYTABLE_SIZE; pCap->hw_caps |= ATH9K_HW_CAP_FASTCC; pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD; if (AR_SREV_9285_10_OR_LATER(ah)) pCap->num_gpio_pins = AR9285_NUM_GPIO; else if (AR_SREV_9280_10_OR_LATER(ah)) pCap->num_gpio_pins = AR928X_NUM_GPIO; else pCap->num_gpio_pins = AR_NUM_GPIO; if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) { pCap->hw_caps |= ATH9K_HW_CAP_CST; pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; } else { pCap->rts_aggr_limit = (8 * 1024); } pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM; #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); if (ah->rfsilent & EEP_RFSILENT_ENABLED) { ah->rfkill_gpio = MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); ah->rfkill_polarity = MS(ah->rfsilent, EEP_RFSILENT_POLARITY); pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; } #endif if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) || (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) || (ah->hw_version.macVersion == AR_SREV_VERSION_9160) || (ah->hw_version.macVersion == AR_SREV_VERSION_9100) || (ah->hw_version.macVersion == AR_SREV_VERSION_9280) || (ah->hw_version.macVersion == AR_SREV_VERSION_9285)) pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; else pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; else pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) { pCap->reg_cap = AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN | AR_EEPROM_EEREGCAP_EN_KK_U2 | AR_EEPROM_EEREGCAP_EN_KK_MIDBAND; } else { pCap->reg_cap = AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN; } pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND; pCap->num_antcfg_5ghz = ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ); pCap->num_antcfg_2ghz = ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ); if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) { pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX; ah->btactive_gpio = 6; ah->wlanactive_gpio = 5; } } bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type, u32 capability, u32 *result) { switch (type) { case ATH9K_CAP_CIPHER: switch (capability) { case ATH9K_CIPHER_AES_CCM: case ATH9K_CIPHER_AES_OCB: case ATH9K_CIPHER_TKIP: case ATH9K_CIPHER_WEP: case ATH9K_CIPHER_MIC: case ATH9K_CIPHER_CLR: return true; default: return false; } case ATH9K_CAP_TKIP_MIC: switch (capability) { case 0: return true; case 1: return (ah->sta_id1_defaults & AR_STA_ID1_CRPT_MIC_ENABLE) ? true : false; } case ATH9K_CAP_TKIP_SPLIT: return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ? false : true; case ATH9K_CAP_DIVERSITY: return (REG_READ(ah, AR_PHY_CCK_DETECT) & AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ? true : false; case ATH9K_CAP_MCAST_KEYSRCH: switch (capability) { case 0: return true; case 1: if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) { return false; } else { return (ah->sta_id1_defaults & AR_STA_ID1_MCAST_KSRCH) ? true : false; } } return false; case ATH9K_CAP_TXPOW: switch (capability) { case 0: return 0; case 1: *result = ah->regulatory.power_limit; return 0; case 2: *result = ah->regulatory.max_power_level; return 0; case 3: *result = ah->regulatory.tp_scale; return 0; } return false; case ATH9K_CAP_DS: return (AR_SREV_9280_20_OR_LATER(ah) && (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1)) ? false : true; default: return false; } } bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type, u32 capability, u32 setting, int *status) { u32 v; switch (type) { case ATH9K_CAP_TKIP_MIC: if (setting) ah->sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE; else ah->sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE; return true; case ATH9K_CAP_DIVERSITY: v = REG_READ(ah, AR_PHY_CCK_DETECT); if (setting) v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; else v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; REG_WRITE(ah, AR_PHY_CCK_DETECT, v); return true; case ATH9K_CAP_MCAST_KEYSRCH: if (setting) ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH; else ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH; return true; default: return false; } } /****************************/ /* GPIO / RFKILL / Antennae */ /****************************/ static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type) { int addr; u32 gpio_shift, tmp; if (gpio > 11) addr = AR_GPIO_OUTPUT_MUX3; else if (gpio > 5) addr = AR_GPIO_OUTPUT_MUX2; else addr = AR_GPIO_OUTPUT_MUX1; gpio_shift = (gpio % 6) * 5; if (AR_SREV_9280_20_OR_LATER(ah) || (addr != AR_GPIO_OUTPUT_MUX1)) { REG_RMW(ah, addr, (type << gpio_shift), (0x1f << gpio_shift)); } else { tmp = REG_READ(ah, addr); tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); tmp &= ~(0x1f << gpio_shift); tmp |= (type << gpio_shift); REG_WRITE(ah, addr, tmp); } } void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) { u32 gpio_shift; ASSERT(gpio < ah->caps.num_gpio_pins); gpio_shift = gpio << 1; REG_RMW(ah, AR_GPIO_OE_OUT, (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), (AR_GPIO_OE_OUT_DRV << gpio_shift)); } u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) { #define MS_REG_READ(x, y) \ (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) if (gpio >= ah->caps.num_gpio_pins) return 0xffffffff; if (AR_SREV_9285_10_OR_LATER(ah)) return MS_REG_READ(AR9285, gpio) != 0; else if (AR_SREV_9280_10_OR_LATER(ah)) return MS_REG_READ(AR928X, gpio) != 0; else return MS_REG_READ(AR, gpio) != 0; } void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, u32 ah_signal_type) { u32 gpio_shift; ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); gpio_shift = 2 * gpio; REG_RMW(ah, AR_GPIO_OE_OUT, (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), (AR_GPIO_OE_OUT_DRV << gpio_shift)); } void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) { REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), AR_GPIO_BIT(gpio)); } #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) void ath9k_enable_rfkill(struct ath_hw *ah) { REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2, AR_GPIO_INPUT_MUX2_RFSILENT); ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB); } #endif u32 ath9k_hw_getdefantenna(struct ath_hw *ah) { return REG_READ(ah, AR_DEF_ANTENNA) & 0x7; } void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) { REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); } bool ath9k_hw_setantennaswitch(struct ath_hw *ah, enum ath9k_ant_setting settings, struct ath9k_channel *chan, u8 *tx_chainmask, u8 *rx_chainmask, u8 *antenna_cfgd) { static u8 tx_chainmask_cfg, rx_chainmask_cfg; if (AR_SREV_9280(ah)) { if (!tx_chainmask_cfg) { tx_chainmask_cfg = *tx_chainmask; rx_chainmask_cfg = *rx_chainmask; } switch (settings) { case ATH9K_ANT_FIXED_A: *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK; *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK; *antenna_cfgd = true; break; case ATH9K_ANT_FIXED_B: if (ah->caps.tx_chainmask > ATH9K_ANTENNA1_CHAINMASK) { *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK; } *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK; *antenna_cfgd = true; break; case ATH9K_ANT_VARIABLE: *tx_chainmask = tx_chainmask_cfg; *rx_chainmask = rx_chainmask_cfg; *antenna_cfgd = true; break; default: break; } } else { ah->diversity_control = settings; } return true; } /*********************/ /* General Operation */ /*********************/ u32 ath9k_hw_getrxfilter(struct ath_hw *ah) { u32 bits = REG_READ(ah, AR_RX_FILTER); u32 phybits = REG_READ(ah, AR_PHY_ERR); if (phybits & AR_PHY_ERR_RADAR) bits |= ATH9K_RX_FILTER_PHYRADAR; if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) bits |= ATH9K_RX_FILTER_PHYERR; return bits; } void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) { u32 phybits; REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR); phybits = 0; if (bits & ATH9K_RX_FILTER_PHYRADAR) phybits |= AR_PHY_ERR_RADAR; if (bits & ATH9K_RX_FILTER_PHYERR) phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; REG_WRITE(ah, AR_PHY_ERR, phybits); if (phybits) REG_WRITE(ah, AR_RXCFG, REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA); else REG_WRITE(ah, AR_RXCFG, REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA); } bool ath9k_hw_phy_disable(struct ath_hw *ah) { return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM); } bool ath9k_hw_disable(struct ath_hw *ah) { if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return false; return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD); } bool ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit) { struct ath9k_channel *chan = ah->curchan; struct ieee80211_channel *channel = chan->chan; ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER); if (ah->eep_ops->set_txpower(ah, chan, ath9k_regd_get_ctl(&ah->regulatory, chan), channel->max_antenna_gain * 2, channel->max_power * 2, min((u32) MAX_RATE_POWER, (u32) ah->regulatory.power_limit)) != 0) return false; return true; } void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac) { memcpy(ah->macaddr, mac, ETH_ALEN); } void ath9k_hw_setopmode(struct ath_hw *ah) { ath9k_hw_set_operating_mode(ah, ah->opmode); } void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) { REG_WRITE(ah, AR_MCAST_FIL0, filter0); REG_WRITE(ah, AR_MCAST_FIL1, filter1); } void ath9k_hw_setbssidmask(struct ath_softc *sc) { REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask)); REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4)); } void ath9k_hw_write_associd(struct ath_softc *sc) { REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid)); REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) | ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); } u64 ath9k_hw_gettsf64(struct ath_hw *ah) { u64 tsf; tsf = REG_READ(ah, AR_TSF_U32); tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32); return tsf; } void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) { REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); } void ath9k_hw_reset_tsf(struct ath_hw *ah) { int count; count = 0; while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) { count++; if (count > 10) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); break; } udelay(10); } REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); } bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting) { if (setting) ah->misc_mode |= AR_PCU_TX_ADD_TSF; else ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; return true; } bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us) { if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us); ah->slottime = (u32) -1; return false; } else { REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us)); ah->slottime = us; return true; } } void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode) { u32 macmode; if (mode == ATH9K_HT_MACMODE_2040 && !ah->config.cwm_ignore_extcca) macmode = AR_2040_JOINED_RX_CLEAR; else macmode = 0; REG_WRITE(ah, AR_2040_MODE, macmode); } /***************************/ /* Bluetooth Coexistence */ /***************************/ void ath9k_hw_btcoex_enable(struct ath_hw *ah) { /* connect bt_active to baseband */ REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL, (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF | AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF)); REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB); /* Set input mux for bt_active to gpio pin */ REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1, AR_GPIO_INPUT_MUX1_BT_ACTIVE, ah->btactive_gpio); /* Configure the desired gpio port for input */ ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio); /* Configure the desired GPIO port for TX_FRAME output */ ath9k_hw_cfg_output(ah, ah->wlanactive_gpio, AR_GPIO_OUTPUT_MUX_AS_TX_FRAME); }