/* * net/dsa/mv88e6352.c - Marvell 88e6352 switch chip support * * Copyright (c) 2014 Guenter Roeck * * Derived from mv88e6123_61_65.c * Copyright (c) 2008-2009 Marvell Semiconductor * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include "mv88e6xxx.h" static char *mv88e6352_probe(struct device *host_dev, int sw_addr) { struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev); int ret; if (bus == NULL) return NULL; ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), 0x03); if (ret >= 0) { if ((ret & 0xfff0) == 0x1760) return "Marvell 88E6176"; if (ret == 0x3521) return "Marvell 88E6352 (A0)"; if (ret == 0x3522) return "Marvell 88E6352 (A1)"; if ((ret & 0xfff0) == 0x3520) return "Marvell 88E6352"; } return NULL; } static int mv88e6352_setup_global(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; int i; /* Discard packets with excessive collisions, * mask all interrupt sources, enable PPU (bit 14, undocumented). */ REG_WRITE(REG_GLOBAL, 0x04, 0x6000); /* Set the default address aging time to 5 minutes, and * enable address learn messages to be sent to all message * ports. */ REG_WRITE(REG_GLOBAL, 0x0a, 0x0148); /* Configure the priority mapping registers. */ ret = mv88e6xxx_config_prio(ds); if (ret < 0) return ret; /* Configure the upstream port, and configure the upstream * port as the port to which ingress and egress monitor frames * are to be sent. */ REG_WRITE(REG_GLOBAL, 0x1a, (dsa_upstream_port(ds) * 0x1110)); /* Disable remote management for now, and set the switch's * DSA device number. */ REG_WRITE(REG_GLOBAL, 0x1c, ds->index & 0x1f); /* Send all frames with destination addresses matching * 01:80:c2:00:00:2x to the CPU port. */ REG_WRITE(REG_GLOBAL2, 0x02, 0xffff); /* Send all frames with destination addresses matching * 01:80:c2:00:00:0x to the CPU port. */ REG_WRITE(REG_GLOBAL2, 0x03, 0xffff); /* Disable the loopback filter, disable flow control * messages, disable flood broadcast override, disable * removing of provider tags, disable ATU age violation * interrupts, disable tag flow control, force flow * control priority to the highest, and send all special * multicast frames to the CPU at the highest priority. */ REG_WRITE(REG_GLOBAL2, 0x05, 0x00ff); /* Program the DSA routing table. */ for (i = 0; i < 32; i++) { int nexthop = 0x1f; if (i != ds->index && i < ds->dst->pd->nr_chips) nexthop = ds->pd->rtable[i] & 0x1f; REG_WRITE(REG_GLOBAL2, 0x06, 0x8000 | (i << 8) | nexthop); } /* Clear all trunk masks. */ for (i = 0; i < 8; i++) REG_WRITE(REG_GLOBAL2, 0x07, 0x8000 | (i << 12) | 0x7f); /* Clear all trunk mappings. */ for (i = 0; i < 16; i++) REG_WRITE(REG_GLOBAL2, 0x08, 0x8000 | (i << 11)); /* Disable ingress rate limiting by resetting all ingress * rate limit registers to their initial state. */ for (i = 0; i < ps->num_ports; i++) REG_WRITE(REG_GLOBAL2, 0x09, 0x9000 | (i << 8)); /* Initialise cross-chip port VLAN table to reset defaults. */ REG_WRITE(REG_GLOBAL2, 0x0b, 0x9000); /* Clear the priority override table. */ for (i = 0; i < 16; i++) REG_WRITE(REG_GLOBAL2, 0x0f, 0x8000 | (i << 8)); /* @@@ initialise AVB (22/23) watchdog (27) sdet (29) registers */ return 0; } static int mv88e6352_setup_port(struct dsa_switch *ds, int p) { int addr = REG_PORT(p); u16 val; /* MAC Forcing register: don't force link, speed, duplex * or flow control state to any particular values on physical * ports, but force the CPU port and all DSA ports to 1000 Mb/s * full duplex. */ if (dsa_is_cpu_port(ds, p) || ds->dsa_port_mask & (1 << p)) REG_WRITE(addr, 0x01, 0x003e); else REG_WRITE(addr, 0x01, 0x0003); /* Do not limit the period of time that this port can be * paused for by the remote end or the period of time that * this port can pause the remote end. */ REG_WRITE(addr, 0x02, 0x0000); /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock, * disable Header mode, enable IGMP/MLD snooping, disable VLAN * tunneling, determine priority by looking at 802.1p and IP * priority fields (IP prio has precedence), and set STP state * to Forwarding. * * If this is the CPU link, use DSA or EDSA tagging depending * on which tagging mode was configured. * * If this is a link to another switch, use DSA tagging mode. * * If this is the upstream port for this switch, enable * forwarding of unknown unicasts and multicasts. */ val = 0x0433; if (dsa_is_cpu_port(ds, p)) { if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) val |= 0x3300; else val |= 0x0100; } if (ds->dsa_port_mask & (1 << p)) val |= 0x0100; if (p == dsa_upstream_port(ds)) val |= 0x000c; REG_WRITE(addr, 0x04, val); /* Port Control 2: don't force a good FCS, set the maximum * frame size to 10240 bytes, don't let the switch add or * strip 802.1q tags, don't discard tagged or untagged frames * on this port, do a destination address lookup on all * received packets as usual, disable ARP mirroring and don't * send a copy of all transmitted/received frames on this port * to the CPU. */ REG_WRITE(addr, 0x08, 0x2080); /* Egress rate control: disable egress rate control. */ REG_WRITE(addr, 0x09, 0x0001); /* Egress rate control 2: disable egress rate control. */ REG_WRITE(addr, 0x0a, 0x0000); /* Port Association Vector: when learning source addresses * of packets, add the address to the address database using * a port bitmap that has only the bit for this port set and * the other bits clear. */ REG_WRITE(addr, 0x0b, 1 << p); /* Port ATU control: disable limiting the number of address * database entries that this port is allowed to use. */ REG_WRITE(addr, 0x0c, 0x0000); /* Priority Override: disable DA, SA and VTU priority override. */ REG_WRITE(addr, 0x0d, 0x0000); /* Port Ethertype: use the Ethertype DSA Ethertype value. */ REG_WRITE(addr, 0x0f, ETH_P_EDSA); /* Tag Remap: use an identity 802.1p prio -> switch prio * mapping. */ REG_WRITE(addr, 0x18, 0x3210); /* Tag Remap 2: use an identity 802.1p prio -> switch prio * mapping. */ REG_WRITE(addr, 0x19, 0x7654); return mv88e6xxx_setup_port_common(ds, p); } #ifdef CONFIG_NET_DSA_HWMON static int mv88e6352_get_temp(struct dsa_switch *ds, int *temp) { int ret; *temp = 0; ret = mv88e6xxx_phy_page_read(ds, 0, 6, 27); if (ret < 0) return ret; *temp = (ret & 0xff) - 25; return 0; } static int mv88e6352_get_temp_limit(struct dsa_switch *ds, int *temp) { int ret; *temp = 0; ret = mv88e6xxx_phy_page_read(ds, 0, 6, 26); if (ret < 0) return ret; *temp = (((ret >> 8) & 0x1f) * 5) - 25; return 0; } static int mv88e6352_set_temp_limit(struct dsa_switch *ds, int temp) { int ret; ret = mv88e6xxx_phy_page_read(ds, 0, 6, 26); if (ret < 0) return ret; temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f); return mv88e6xxx_phy_page_write(ds, 0, 6, 26, (ret & 0xe0ff) | (temp << 8)); } static int mv88e6352_get_temp_alarm(struct dsa_switch *ds, bool *alarm) { int ret; *alarm = false; ret = mv88e6xxx_phy_page_read(ds, 0, 6, 26); if (ret < 0) return ret; *alarm = !!(ret & 0x40); return 0; } #endif /* CONFIG_NET_DSA_HWMON */ static int mv88e6352_setup(struct dsa_switch *ds) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; int i; ret = mv88e6xxx_setup_common(ds); if (ret < 0) return ret; ps->num_ports = 7; mutex_init(&ps->eeprom_mutex); ret = mv88e6xxx_switch_reset(ds, true); if (ret < 0) return ret; /* @@@ initialise vtu and atu */ ret = mv88e6352_setup_global(ds); if (ret < 0) return ret; for (i = 0; i < ps->num_ports; i++) { ret = mv88e6352_setup_port(ds, i); if (ret < 0) return ret; } return 0; } static int mv88e6352_port_to_phy_addr(int port) { if (port >= 0 && port <= 4) return port; return -EINVAL; } static int mv88e6352_phy_read(struct dsa_switch *ds, int port, int regnum) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int addr = mv88e6352_port_to_phy_addr(port); int ret; if (addr < 0) return addr; mutex_lock(&ps->phy_mutex); ret = mv88e6xxx_phy_read_indirect(ds, addr, regnum); mutex_unlock(&ps->phy_mutex); return ret; } static int mv88e6352_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int addr = mv88e6352_port_to_phy_addr(port); int ret; if (addr < 0) return addr; mutex_lock(&ps->phy_mutex); ret = mv88e6xxx_phy_write_indirect(ds, addr, regnum, val); mutex_unlock(&ps->phy_mutex); return ret; } static struct mv88e6xxx_hw_stat mv88e6352_hw_stats[] = { { "in_good_octets", 8, 0x00, }, { "in_bad_octets", 4, 0x02, }, { "in_unicast", 4, 0x04, }, { "in_broadcasts", 4, 0x06, }, { "in_multicasts", 4, 0x07, }, { "in_pause", 4, 0x16, }, { "in_undersize", 4, 0x18, }, { "in_fragments", 4, 0x19, }, { "in_oversize", 4, 0x1a, }, { "in_jabber", 4, 0x1b, }, { "in_rx_error", 4, 0x1c, }, { "in_fcs_error", 4, 0x1d, }, { "out_octets", 8, 0x0e, }, { "out_unicast", 4, 0x10, }, { "out_broadcasts", 4, 0x13, }, { "out_multicasts", 4, 0x12, }, { "out_pause", 4, 0x15, }, { "excessive", 4, 0x11, }, { "collisions", 4, 0x1e, }, { "deferred", 4, 0x05, }, { "single", 4, 0x14, }, { "multiple", 4, 0x17, }, { "out_fcs_error", 4, 0x03, }, { "late", 4, 0x1f, }, { "hist_64bytes", 4, 0x08, }, { "hist_65_127bytes", 4, 0x09, }, { "hist_128_255bytes", 4, 0x0a, }, { "hist_256_511bytes", 4, 0x0b, }, { "hist_512_1023bytes", 4, 0x0c, }, { "hist_1024_max_bytes", 4, 0x0d, }, { "sw_in_discards", 4, 0x110, }, { "sw_in_filtered", 2, 0x112, }, { "sw_out_filtered", 2, 0x113, }, }; static int mv88e6352_read_eeprom_word(struct dsa_switch *ds, int addr) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->eeprom_mutex); ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x14, 0xc000 | (addr & 0xff)); if (ret < 0) goto error; ret = mv88e6xxx_eeprom_busy_wait(ds); if (ret < 0) goto error; ret = mv88e6xxx_reg_read(ds, REG_GLOBAL2, 0x15); error: mutex_unlock(&ps->eeprom_mutex); return ret; } static int mv88e6352_get_eeprom(struct dsa_switch *ds, struct ethtool_eeprom *eeprom, u8 *data) { int offset; int len; int ret; offset = eeprom->offset; len = eeprom->len; eeprom->len = 0; eeprom->magic = 0xc3ec4951; ret = mv88e6xxx_eeprom_load_wait(ds); if (ret < 0) return ret; if (offset & 1) { int word; word = mv88e6352_read_eeprom_word(ds, offset >> 1); if (word < 0) return word; *data++ = (word >> 8) & 0xff; offset++; len--; eeprom->len++; } while (len >= 2) { int word; word = mv88e6352_read_eeprom_word(ds, offset >> 1); if (word < 0) return word; *data++ = word & 0xff; *data++ = (word >> 8) & 0xff; offset += 2; len -= 2; eeprom->len += 2; } if (len) { int word; word = mv88e6352_read_eeprom_word(ds, offset >> 1); if (word < 0) return word; *data++ = word & 0xff; offset++; len--; eeprom->len++; } return 0; } static int mv88e6352_eeprom_is_readonly(struct dsa_switch *ds) { int ret; ret = mv88e6xxx_reg_read(ds, REG_GLOBAL2, 0x14); if (ret < 0) return ret; if (!(ret & 0x0400)) return -EROFS; return 0; } static int mv88e6352_write_eeprom_word(struct dsa_switch *ds, int addr, u16 data) { struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); int ret; mutex_lock(&ps->eeprom_mutex); ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x15, data); if (ret < 0) goto error; ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x14, 0xb000 | (addr & 0xff)); if (ret < 0) goto error; ret = mv88e6xxx_eeprom_busy_wait(ds); error: mutex_unlock(&ps->eeprom_mutex); return ret; } static int mv88e6352_set_eeprom(struct dsa_switch *ds, struct ethtool_eeprom *eeprom, u8 *data) { int offset; int ret; int len; if (eeprom->magic != 0xc3ec4951) return -EINVAL; ret = mv88e6352_eeprom_is_readonly(ds); if (ret) return ret; offset = eeprom->offset; len = eeprom->len; eeprom->len = 0; ret = mv88e6xxx_eeprom_load_wait(ds); if (ret < 0) return ret; if (offset & 1) { int word; word = mv88e6352_read_eeprom_word(ds, offset >> 1); if (word < 0) return word; word = (*data++ << 8) | (word & 0xff); ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word); if (ret < 0) return ret; offset++; len--; eeprom->len++; } while (len >= 2) { int word; word = *data++; word |= *data++ << 8; ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word); if (ret < 0) return ret; offset += 2; len -= 2; eeprom->len += 2; } if (len) { int word; word = mv88e6352_read_eeprom_word(ds, offset >> 1); if (word < 0) return word; word = (word & 0xff00) | *data++; ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word); if (ret < 0) return ret; offset++; len--; eeprom->len++; } return 0; } static void mv88e6352_get_strings(struct dsa_switch *ds, int port, uint8_t *data) { mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6352_hw_stats), mv88e6352_hw_stats, port, data); } static void mv88e6352_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { mv88e6xxx_get_ethtool_stats(ds, ARRAY_SIZE(mv88e6352_hw_stats), mv88e6352_hw_stats, port, data); } static int mv88e6352_get_sset_count(struct dsa_switch *ds) { return ARRAY_SIZE(mv88e6352_hw_stats); } struct dsa_switch_driver mv88e6352_switch_driver = { .tag_protocol = DSA_TAG_PROTO_EDSA, .priv_size = sizeof(struct mv88e6xxx_priv_state), .probe = mv88e6352_probe, .setup = mv88e6352_setup, .set_addr = mv88e6xxx_set_addr_indirect, .phy_read = mv88e6352_phy_read, .phy_write = mv88e6352_phy_write, .poll_link = mv88e6xxx_poll_link, .get_strings = mv88e6352_get_strings, .get_ethtool_stats = mv88e6352_get_ethtool_stats, .get_sset_count = mv88e6352_get_sset_count, .set_eee = mv88e6xxx_set_eee, .get_eee = mv88e6xxx_get_eee, #ifdef CONFIG_NET_DSA_HWMON .get_temp = mv88e6352_get_temp, .get_temp_limit = mv88e6352_get_temp_limit, .set_temp_limit = mv88e6352_set_temp_limit, .get_temp_alarm = mv88e6352_get_temp_alarm, #endif .get_eeprom = mv88e6352_get_eeprom, .set_eeprom = mv88e6352_set_eeprom, .get_regs_len = mv88e6xxx_get_regs_len, .get_regs = mv88e6xxx_get_regs, .port_join_bridge = mv88e6xxx_join_bridge, .port_leave_bridge = mv88e6xxx_leave_bridge, .port_stp_update = mv88e6xxx_port_stp_update, .fdb_add = mv88e6xxx_port_fdb_add, .fdb_del = mv88e6xxx_port_fdb_del, .fdb_getnext = mv88e6xxx_port_fdb_getnext, }; MODULE_ALIAS("platform:mv88e6352");