/* * PowerPC64 SLB support. * * Copyright (C) 2004 David Gibson , IBM * Based on earlier code written by: * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com * Copyright (c) 2001 Dave Engebretsen * Copyright (C) 2002 Anton Blanchard , IBM * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include enum slb_index { LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */ KSTACK_INDEX = 1, /* Kernel stack map */ }; static long slb_allocate_user(struct mm_struct *mm, unsigned long ea); #define slb_esid_mask(ssize) \ (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T) static inline unsigned long mk_esid_data(unsigned long ea, int ssize, enum slb_index index) { return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index; } static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize, unsigned long flags) { return (vsid << slb_vsid_shift(ssize)) | flags | ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); } static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, unsigned long flags) { return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags); } static inline void slb_shadow_update(unsigned long ea, int ssize, unsigned long flags, enum slb_index index) { struct slb_shadow *p = get_slb_shadow(); /* * Clear the ESID first so the entry is not valid while we are * updating it. No write barriers are needed here, provided * we only update the current CPU's SLB shadow buffer. */ WRITE_ONCE(p->save_area[index].esid, 0); WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags))); WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index))); } static inline void slb_shadow_clear(enum slb_index index) { WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index)); } static inline void create_shadowed_slbe(unsigned long ea, int ssize, unsigned long flags, enum slb_index index) { /* * Updating the shadow buffer before writing the SLB ensures * we don't get a stale entry here if we get preempted by PHYP * between these two statements. */ slb_shadow_update(ea, ssize, flags, index); asm volatile("slbmte %0,%1" : : "r" (mk_vsid_data(ea, ssize, flags)), "r" (mk_esid_data(ea, ssize, index)) : "memory" ); } /* * Insert bolted entries into SLB (which may not be empty, so don't clear * slb_cache_ptr). */ void __slb_restore_bolted_realmode(void) { struct slb_shadow *p = get_slb_shadow(); enum slb_index index; /* No isync needed because realmode. */ for (index = 0; index < SLB_NUM_BOLTED; index++) { asm volatile("slbmte %0,%1" : : "r" (be64_to_cpu(p->save_area[index].vsid)), "r" (be64_to_cpu(p->save_area[index].esid))); } } /* * Insert the bolted entries into an empty SLB. * This is not the same as rebolt because the bolted segments are not * changed, just loaded from the shadow area. */ void slb_restore_bolted_realmode(void) { __slb_restore_bolted_realmode(); get_paca()->slb_cache_ptr = 0; } /* * This flushes all SLB entries including 0, so it must be realmode. */ void slb_flush_all_realmode(void) { /* * This flushes all SLB entries including 0, so it must be realmode. */ asm volatile("slbmte %0,%0; slbia" : : "r" (0)); } void slb_flush_and_rebolt(void) { /* If you change this make sure you change SLB_NUM_BOLTED * and PR KVM appropriately too. */ unsigned long linear_llp, lflags; unsigned long ksp_esid_data, ksp_vsid_data; WARN_ON(!irqs_disabled()); /* * We can't take a PMU exception in the following code, so hard * disable interrupts. */ hard_irq_disable(); linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; lflags = SLB_VSID_KERNEL | linear_llp; ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX); if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) { ksp_esid_data &= ~SLB_ESID_V; ksp_vsid_data = 0; slb_shadow_clear(KSTACK_INDEX); } else { /* Update stack entry; others don't change */ slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX); ksp_vsid_data = be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid); } /* We need to do this all in asm, so we're sure we don't touch * the stack between the slbia and rebolting it. */ asm volatile("isync\n" "slbia\n" /* Slot 1 - kernel stack */ "slbmte %0,%1\n" "isync" :: "r"(ksp_vsid_data), "r"(ksp_esid_data) : "memory"); get_paca()->slb_cache_ptr = 0; } void slb_save_contents(struct slb_entry *slb_ptr) { int i; unsigned long e, v; /* Save slb_cache_ptr value. */ get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr; if (!slb_ptr) return; for (i = 0; i < mmu_slb_size; i++) { asm volatile("slbmfee %0,%1" : "=r" (e) : "r" (i)); asm volatile("slbmfev %0,%1" : "=r" (v) : "r" (i)); slb_ptr->esid = e; slb_ptr->vsid = v; slb_ptr++; } } void slb_dump_contents(struct slb_entry *slb_ptr) { int i, n; unsigned long e, v; unsigned long llp; if (!slb_ptr) return; pr_err("SLB contents of cpu 0x%x\n", smp_processor_id()); pr_err("Last SLB entry inserted at slot %lld\n", get_paca()->stab_rr); for (i = 0; i < mmu_slb_size; i++) { e = slb_ptr->esid; v = slb_ptr->vsid; slb_ptr++; if (!e && !v) continue; pr_err("%02d %016lx %016lx\n", i, e, v); if (!(e & SLB_ESID_V)) { pr_err("\n"); continue; } llp = v & SLB_VSID_LLP; if (v & SLB_VSID_B_1T) { pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n", GET_ESID_1T(e), (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp); } else { pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n", GET_ESID(e), (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp); } } pr_err("----------------------------------\n"); /* Dump slb cache entires as well. */ pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr); pr_err("Valid SLB cache entries:\n"); n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES); for (i = 0; i < n; i++) pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); pr_err("Rest of SLB cache entries:\n"); for (i = n; i < SLB_CACHE_ENTRIES; i++) pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); } void slb_vmalloc_update(void) { slb_flush_and_rebolt(); } /* Helper function to compare esids. There are four cases to handle. * 1. The system is not 1T segment size capable. Use the GET_ESID compare. * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare. * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match. * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare. */ static inline int esids_match(unsigned long addr1, unsigned long addr2) { int esid_1t_count; /* System is not 1T segment size capable. */ if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) return (GET_ESID(addr1) == GET_ESID(addr2)); esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) + ((addr2 >> SID_SHIFT_1T) != 0)); /* both addresses are < 1T */ if (esid_1t_count == 0) return (GET_ESID(addr1) == GET_ESID(addr2)); /* One address < 1T, the other > 1T. Not a match */ if (esid_1t_count == 1) return 0; /* Both addresses are > 1T. */ return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2)); } /* Flush all user entries from the segment table of the current processor. */ void switch_slb(struct task_struct *tsk, struct mm_struct *mm) { unsigned long pc = KSTK_EIP(tsk); unsigned long stack = KSTK_ESP(tsk); unsigned long exec_base; /* * We need interrupts hard-disabled here, not just soft-disabled, * so that a PMU interrupt can't occur, which might try to access * user memory (to get a stack trace) and possible cause an SLB miss * which would update the slb_cache/slb_cache_ptr fields in the PACA. */ hard_irq_disable(); if (cpu_has_feature(CPU_FTR_ARCH_300)) { /* * SLBIA IH=3 invalidates all Class=1 SLBEs and their * associated lookaside structures, which matches what * switch_slb wants. So ARCH_300 does not use the slb * cache. */ asm volatile("isync ; " PPC_SLBIA(3)" ; isync"); } else { unsigned long offset = get_paca()->slb_cache_ptr; if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && offset <= SLB_CACHE_ENTRIES) { unsigned long slbie_data = 0; int i; asm volatile("isync" : : : "memory"); for (i = 0; i < offset; i++) { /* EA */ slbie_data = (unsigned long) get_paca()->slb_cache[i] << SID_SHIFT; slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT; slbie_data |= SLBIE_C; /* user slbs have C=1 */ asm volatile("slbie %0" : : "r" (slbie_data)); } /* Workaround POWER5 < DD2.1 issue */ if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1) asm volatile("slbie %0" : : "r" (slbie_data)); asm volatile("isync" : : : "memory"); } else { struct slb_shadow *p = get_slb_shadow(); unsigned long ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid); unsigned long ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid); asm volatile("isync\n" PPC_SLBIA(1) "\n" "slbmte %0,%1\n" "isync" :: "r"(ksp_vsid_data), "r"(ksp_esid_data)); } get_paca()->slb_cache_ptr = 0; } copy_mm_to_paca(mm); /* * preload some userspace segments into the SLB. * Almost all 32 and 64bit PowerPC executables are linked at * 0x10000000 so it makes sense to preload this segment. */ exec_base = 0x10000000; if (is_kernel_addr(pc) || is_kernel_addr(stack) || is_kernel_addr(exec_base)) return; slb_allocate_user(mm, pc); if (!esids_match(pc, stack)) slb_allocate_user(mm, stack); if (!esids_match(pc, exec_base) && !esids_match(stack, exec_base)) slb_allocate_user(mm, exec_base); } void slb_set_size(u16 size) { mmu_slb_size = size; } void slb_initialize(void) { unsigned long linear_llp, vmalloc_llp, io_llp; unsigned long lflags; static int slb_encoding_inited; #ifdef CONFIG_SPARSEMEM_VMEMMAP unsigned long vmemmap_llp; #endif /* Prepare our SLB miss handler based on our page size */ linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; io_llp = mmu_psize_defs[mmu_io_psize].sllp; vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; #ifdef CONFIG_SPARSEMEM_VMEMMAP vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; #endif if (!slb_encoding_inited) { slb_encoding_inited = 1; pr_devel("SLB: linear LLP = %04lx\n", linear_llp); pr_devel("SLB: io LLP = %04lx\n", io_llp); #ifdef CONFIG_SPARSEMEM_VMEMMAP pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); #endif } get_paca()->stab_rr = SLB_NUM_BOLTED - 1; lflags = SLB_VSID_KERNEL | linear_llp; /* Invalidate the entire SLB (even entry 0) & all the ERATS */ asm volatile("isync":::"memory"); asm volatile("slbmte %0,%0"::"r" (0) : "memory"); asm volatile("isync; slbia; isync":::"memory"); create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); /* For the boot cpu, we're running on the stack in init_thread_union, * which is in the first segment of the linear mapping, and also * get_paca()->kstack hasn't been initialized yet. * For secondary cpus, we need to bolt the kernel stack entry now. */ slb_shadow_clear(KSTACK_INDEX); if (raw_smp_processor_id() != boot_cpuid && (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) create_shadowed_slbe(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX); asm volatile("isync":::"memory"); } static void slb_cache_update(unsigned long esid_data) { int slb_cache_index; if (cpu_has_feature(CPU_FTR_ARCH_300)) return; /* ISAv3.0B and later does not use slb_cache */ /* * Now update slb cache entries */ slb_cache_index = local_paca->slb_cache_ptr; if (slb_cache_index < SLB_CACHE_ENTRIES) { /* * We have space in slb cache for optimized switch_slb(). * Top 36 bits from esid_data as per ISA */ local_paca->slb_cache[slb_cache_index++] = esid_data >> 28; local_paca->slb_cache_ptr++; } else { /* * Our cache is full and the current cache content strictly * doesn't indicate the active SLB conents. Bump the ptr * so that switch_slb() will ignore the cache. */ local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1; } } static enum slb_index alloc_slb_index(void) { enum slb_index index; /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */ index = get_paca()->stab_rr; if (index < (mmu_slb_size - 1)) index++; else index = SLB_NUM_BOLTED; get_paca()->stab_rr = index; return index; } static long slb_insert_entry(unsigned long ea, unsigned long context, unsigned long flags, int ssize, bool kernel) { unsigned long vsid; unsigned long vsid_data, esid_data; enum slb_index index; vsid = get_vsid(context, ea, ssize); if (!vsid) return -EFAULT; /* * There must not be a kernel SLB fault in alloc_slb_index or before * slbmte here or the allocation bitmaps could get out of whack with * the SLB. * * User SLB faults or preloads take this path which might get inlined * into the caller, so add compiler barriers here to ensure unsafe * memory accesses do not come between. */ barrier(); index = alloc_slb_index(); vsid_data = __mk_vsid_data(vsid, ssize, flags); esid_data = mk_esid_data(ea, ssize, index); /* * No need for an isync before or after this slbmte. The exception * we enter with and the rfid we exit with are context synchronizing. * User preloads should add isync afterwards in case the kernel * accesses user memory before it returns to userspace with rfid. */ asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)); barrier(); if (!kernel) slb_cache_update(esid_data); return 0; } static long slb_allocate_kernel(unsigned long ea, unsigned long id) { unsigned long context; unsigned long flags; int ssize; if ((ea & ~REGION_MASK) >= (1ULL << MAX_EA_BITS_PER_CONTEXT)) return -EFAULT; if (id == KERNEL_REGION_ID) { flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp; #ifdef CONFIG_SPARSEMEM_VMEMMAP } else if (id == VMEMMAP_REGION_ID) { flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp; #endif } else if (id == VMALLOC_REGION_ID) { if (ea < H_VMALLOC_END) flags = get_paca()->vmalloc_sllp; else flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp; } else { return -EFAULT; } ssize = MMU_SEGSIZE_1T; if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) ssize = MMU_SEGSIZE_256M; context = id - KERNEL_REGION_CONTEXT_OFFSET; return slb_insert_entry(ea, context, flags, ssize, true); } static long slb_allocate_user(struct mm_struct *mm, unsigned long ea) { unsigned long context; unsigned long flags; int bpsize; int ssize; /* * consider this as bad access if we take a SLB miss * on an address above addr limit. */ if (ea >= mm->context.slb_addr_limit) return -EFAULT; context = get_ea_context(&mm->context, ea); if (!context) return -EFAULT; if (unlikely(ea >= H_PGTABLE_RANGE)) { WARN_ON(1); return -EFAULT; } ssize = user_segment_size(ea); bpsize = get_slice_psize(mm, ea); flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp; return slb_insert_entry(ea, context, flags, ssize, false); } long do_slb_fault(struct pt_regs *regs, unsigned long ea) { unsigned long id = REGION_ID(ea); /* IRQs are not reconciled here, so can't check irqs_disabled */ VM_WARN_ON(mfmsr() & MSR_EE); if (unlikely(!(regs->msr & MSR_RI))) return -EINVAL; /* * SLB kernel faults must be very careful not to touch anything * that is not bolted. E.g., PACA and global variables are okay, * mm->context stuff is not. * * SLB user faults can access all of kernel memory, but must be * careful not to touch things like IRQ state because it is not * "reconciled" here. The difficulty is that we must use * fast_exception_return to return from kernel SLB faults without * looking at possible non-bolted memory. We could test user vs * kernel faults in the interrupt handler asm and do a full fault, * reconcile, ret_from_except for user faults which would make them * first class kernel code. But for performance it's probably nicer * if they go via fast_exception_return too. */ if (id >= KERNEL_REGION_ID) { return slb_allocate_kernel(ea, id); } else { struct mm_struct *mm = current->mm; if (unlikely(!mm)) return -EFAULT; return slb_allocate_user(mm, ea); } } void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err) { if (err == -EFAULT) { if (user_mode(regs)) _exception(SIGSEGV, regs, SEGV_BNDERR, ea); else bad_page_fault(regs, ea, SIGSEGV); } else if (err == -EINVAL) { unrecoverable_exception(regs); } else { BUG(); } }