// SPDX-License-Identifier: GPL-2.0-or-later /* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com) * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CPU_FTR_COHERENT_ICACHE #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */ #define CPU_FTR_NOEXECUTE 0 #endif unsigned long long memory_limit; bool init_mem_is_free; pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot) { if (ppc_md.phys_mem_access_prot) return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot); if (!page_is_ram(pfn)) vma_prot = pgprot_noncached(vma_prot); return vma_prot; } EXPORT_SYMBOL(phys_mem_access_prot); #ifdef CONFIG_MEMORY_HOTPLUG #ifdef CONFIG_NUMA int memory_add_physaddr_to_nid(u64 start) { return hot_add_scn_to_nid(start); } #endif int __weak create_section_mapping(unsigned long start, unsigned long end, int nid, pgprot_t prot) { return -ENODEV; } int __weak remove_section_mapping(unsigned long start, unsigned long end) { return -ENODEV; } #define FLUSH_CHUNK_SIZE SZ_1G /** * flush_dcache_range_chunked(): Write any modified data cache blocks out to * memory and invalidate them, in chunks of up to FLUSH_CHUNK_SIZE * Does not invalidate the corresponding instruction cache blocks. * * @start: the start address * @stop: the stop address (exclusive) * @chunk: the max size of the chunks */ static void flush_dcache_range_chunked(unsigned long start, unsigned long stop, unsigned long chunk) { unsigned long i; for (i = start; i < stop; i += chunk) { flush_dcache_range(i, min(stop, i + chunk)); cond_resched(); } } int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params) { unsigned long start_pfn = start >> PAGE_SHIFT; unsigned long nr_pages = size >> PAGE_SHIFT; int rc; start = (unsigned long)__va(start); rc = create_section_mapping(start, start + size, nid, params->pgprot); if (rc) { pr_warn("Unable to create mapping for hot added memory 0x%llx..0x%llx: %d\n", start, start + size, rc); return -EFAULT; } return __add_pages(nid, start_pfn, nr_pages, params); } void __ref arch_remove_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap) { unsigned long start_pfn = start >> PAGE_SHIFT; unsigned long nr_pages = size >> PAGE_SHIFT; int ret; __remove_pages(start_pfn, nr_pages, altmap); /* Remove htab bolted mappings for this section of memory */ start = (unsigned long)__va(start); flush_dcache_range_chunked(start, start + size, FLUSH_CHUNK_SIZE); ret = remove_section_mapping(start, start + size); WARN_ON_ONCE(ret); /* Ensure all vmalloc mappings are flushed in case they also * hit that section of memory */ vm_unmap_aliases(); } #endif #ifndef CONFIG_NEED_MULTIPLE_NODES void __init mem_topology_setup(void) { max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; min_low_pfn = MEMORY_START >> PAGE_SHIFT; #ifdef CONFIG_HIGHMEM max_low_pfn = lowmem_end_addr >> PAGE_SHIFT; #endif /* Place all memblock_regions in the same node and merge contiguous * memblock_regions */ memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); } void __init initmem_init(void) { sparse_init(); } /* mark pages that don't exist as nosave */ static int __init mark_nonram_nosave(void) { unsigned long spfn, epfn, prev = 0; int i; for_each_mem_pfn_range(i, MAX_NUMNODES, &spfn, &epfn, NULL) { if (prev && prev < spfn) register_nosave_region(prev, spfn); prev = epfn; } return 0; } #else /* CONFIG_NEED_MULTIPLE_NODES */ static int __init mark_nonram_nosave(void) { return 0; } #endif /* * Zones usage: * * We setup ZONE_DMA to be 31-bits on all platforms and ZONE_NORMAL to be * everything else. GFP_DMA32 page allocations automatically fall back to * ZONE_DMA. * * By using 31-bit unconditionally, we can exploit zone_dma_bits to inform the * generic DMA mapping code. 32-bit only devices (if not handled by an IOMMU * anyway) will take a first dip into ZONE_NORMAL and get otherwise served by * ZONE_DMA. */ static unsigned long max_zone_pfns[MAX_NR_ZONES]; /* * paging_init() sets up the page tables - in fact we've already done this. */ void __init paging_init(void) { unsigned long long total_ram = memblock_phys_mem_size(); phys_addr_t top_of_ram = memblock_end_of_DRAM(); #ifdef CONFIG_HIGHMEM unsigned long v = __fix_to_virt(FIX_KMAP_END); unsigned long end = __fix_to_virt(FIX_KMAP_BEGIN); for (; v < end; v += PAGE_SIZE) map_kernel_page(v, 0, __pgprot(0)); /* XXX gross */ map_kernel_page(PKMAP_BASE, 0, __pgprot(0)); /* XXX gross */ pkmap_page_table = virt_to_kpte(PKMAP_BASE); #endif /* CONFIG_HIGHMEM */ printk(KERN_DEBUG "Top of RAM: 0x%llx, Total RAM: 0x%llx\n", (unsigned long long)top_of_ram, total_ram); printk(KERN_DEBUG "Memory hole size: %ldMB\n", (long int)((top_of_ram - total_ram) >> 20)); /* * Allow 30-bit DMA for very limited Broadcom wifi chips on many * powerbooks. */ if (IS_ENABLED(CONFIG_PPC32)) zone_dma_bits = 30; else zone_dma_bits = 31; #ifdef CONFIG_ZONE_DMA max_zone_pfns[ZONE_DMA] = min(max_low_pfn, 1UL << (zone_dma_bits - PAGE_SHIFT)); #endif max_zone_pfns[ZONE_NORMAL] = max_low_pfn; #ifdef CONFIG_HIGHMEM max_zone_pfns[ZONE_HIGHMEM] = max_pfn; #endif free_area_init(max_zone_pfns); mark_nonram_nosave(); } void __init mem_init(void) { /* * book3s is limited to 16 page sizes due to encoding this in * a 4-bit field for slices. */ BUILD_BUG_ON(MMU_PAGE_COUNT > 16); #ifdef CONFIG_SWIOTLB /* * Some platforms (e.g. 85xx) limit DMA-able memory way below * 4G. We force memblock to bottom-up mode to ensure that the * memory allocated in swiotlb_init() is DMA-able. * As it's the last memblock allocation, no need to reset it * back to to-down. */ memblock_set_bottom_up(true); if (is_secure_guest()) svm_swiotlb_init(); else swiotlb_init(0); #endif high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); set_max_mapnr(max_pfn); kasan_late_init(); memblock_free_all(); #ifdef CONFIG_HIGHMEM { unsigned long pfn, highmem_mapnr; highmem_mapnr = lowmem_end_addr >> PAGE_SHIFT; for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) { phys_addr_t paddr = (phys_addr_t)pfn << PAGE_SHIFT; struct page *page = pfn_to_page(pfn); if (!memblock_is_reserved(paddr)) free_highmem_page(page); } } #endif /* CONFIG_HIGHMEM */ #if defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_SMP) /* * If smp is enabled, next_tlbcam_idx is initialized in the cpu up * functions.... do it here for the non-smp case. */ per_cpu(next_tlbcam_idx, smp_processor_id()) = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; #endif mem_init_print_info(NULL); #ifdef CONFIG_PPC32 pr_info("Kernel virtual memory layout:\n"); #ifdef CONFIG_KASAN pr_info(" * 0x%08lx..0x%08lx : kasan shadow mem\n", KASAN_SHADOW_START, KASAN_SHADOW_END); #endif pr_info(" * 0x%08lx..0x%08lx : fixmap\n", FIXADDR_START, FIXADDR_TOP); #ifdef CONFIG_HIGHMEM pr_info(" * 0x%08lx..0x%08lx : highmem PTEs\n", PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP)); #endif /* CONFIG_HIGHMEM */ if (ioremap_bot != IOREMAP_TOP) pr_info(" * 0x%08lx..0x%08lx : early ioremap\n", ioremap_bot, IOREMAP_TOP); pr_info(" * 0x%08lx..0x%08lx : vmalloc & ioremap\n", VMALLOC_START, VMALLOC_END); #endif /* CONFIG_PPC32 */ } void free_initmem(void) { ppc_md.progress = ppc_printk_progress; mark_initmem_nx(); init_mem_is_free = true; free_initmem_default(POISON_FREE_INITMEM); } /** * flush_coherent_icache() - if a CPU has a coherent icache, flush it * @addr: The base address to use (can be any valid address, the whole cache will be flushed) * Return true if the cache was flushed, false otherwise */ static inline bool flush_coherent_icache(unsigned long addr) { /* * For a snooping icache, we still need a dummy icbi to purge all the * prefetched instructions from the ifetch buffers. We also need a sync * before the icbi to order the the actual stores to memory that might * have modified instructions with the icbi. */ if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) { mb(); /* sync */ allow_read_from_user((const void __user *)addr, L1_CACHE_BYTES); icbi((void *)addr); prevent_read_from_user((const void __user *)addr, L1_CACHE_BYTES); mb(); /* sync */ isync(); return true; } return false; } /** * invalidate_icache_range() - Flush the icache by issuing icbi across an address range * @start: the start address * @stop: the stop address (exclusive) */ static void invalidate_icache_range(unsigned long start, unsigned long stop) { unsigned long shift = l1_icache_shift(); unsigned long bytes = l1_icache_bytes(); char *addr = (char *)(start & ~(bytes - 1)); unsigned long size = stop - (unsigned long)addr + (bytes - 1); unsigned long i; for (i = 0; i < size >> shift; i++, addr += bytes) icbi(addr); mb(); /* sync */ isync(); } /** * flush_icache_range: Write any modified data cache blocks out to memory * and invalidate the corresponding blocks in the instruction cache * * Generic code will call this after writing memory, before executing from it. * * @start: the start address * @stop: the stop address (exclusive) */ void flush_icache_range(unsigned long start, unsigned long stop) { if (flush_coherent_icache(start)) return; clean_dcache_range(start, stop); if (IS_ENABLED(CONFIG_44x)) { /* * Flash invalidate on 44x because we are passed kmapped * addresses and this doesn't work for userspace pages due to * the virtually tagged icache. */ iccci((void *)start); mb(); /* sync */ isync(); } else invalidate_icache_range(start, stop); } EXPORT_SYMBOL(flush_icache_range); #if !defined(CONFIG_PPC_8xx) && !defined(CONFIG_PPC64) /** * flush_dcache_icache_phys() - Flush a page by it's physical address * @physaddr: the physical address of the page */ static void flush_dcache_icache_phys(unsigned long physaddr) { unsigned long bytes = l1_dcache_bytes(); unsigned long nb = PAGE_SIZE / bytes; unsigned long addr = physaddr & PAGE_MASK; unsigned long msr, msr0; unsigned long loop1 = addr, loop2 = addr; msr0 = mfmsr(); msr = msr0 & ~MSR_DR; /* * This must remain as ASM to prevent potential memory accesses * while the data MMU is disabled */ asm volatile( " mtctr %2;\n" " mtmsr %3;\n" " isync;\n" "0: dcbst 0, %0;\n" " addi %0, %0, %4;\n" " bdnz 0b;\n" " sync;\n" " mtctr %2;\n" "1: icbi 0, %1;\n" " addi %1, %1, %4;\n" " bdnz 1b;\n" " sync;\n" " mtmsr %5;\n" " isync;\n" : "+&r" (loop1), "+&r" (loop2) : "r" (nb), "r" (msr), "i" (bytes), "r" (msr0) : "ctr", "memory"); } NOKPROBE_SYMBOL(flush_dcache_icache_phys) #endif // !defined(CONFIG_PPC_8xx) && !defined(CONFIG_PPC64) /* * This is called when a page has been modified by the kernel. * It just marks the page as not i-cache clean. We do the i-cache * flush later when the page is given to a user process, if necessary. */ void flush_dcache_page(struct page *page) { if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) return; /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &page->flags)) clear_bit(PG_arch_1, &page->flags); } EXPORT_SYMBOL(flush_dcache_page); void flush_dcache_icache_page(struct page *page) { #ifdef CONFIG_HUGETLB_PAGE if (PageCompound(page)) { flush_dcache_icache_hugepage(page); return; } #endif #if defined(CONFIG_PPC_8xx) || defined(CONFIG_PPC64) /* On 8xx there is no need to kmap since highmem is not supported */ __flush_dcache_icache(page_address(page)); #else if (IS_ENABLED(CONFIG_BOOKE) || sizeof(phys_addr_t) > sizeof(void *)) { void *start = kmap_atomic(page); __flush_dcache_icache(start); kunmap_atomic(start); } else { unsigned long addr = page_to_pfn(page) << PAGE_SHIFT; if (flush_coherent_icache(addr)) return; flush_dcache_icache_phys(addr); } #endif } EXPORT_SYMBOL(flush_dcache_icache_page); /** * __flush_dcache_icache(): Flush a particular page from the data cache to RAM. * Note: this is necessary because the instruction cache does *not* * snoop from the data cache. * * @page: the address of the page to flush */ void __flush_dcache_icache(void *p) { unsigned long addr = (unsigned long)p; if (flush_coherent_icache(addr)) return; clean_dcache_range(addr, addr + PAGE_SIZE); /* * We don't flush the icache on 44x. Those have a virtual icache and we * don't have access to the virtual address here (it's not the page * vaddr but where it's mapped in user space). The flushing of the * icache on these is handled elsewhere, when a change in the address * space occurs, before returning to user space. */ if (cpu_has_feature(MMU_FTR_TYPE_44x)) return; invalidate_icache_range(addr, addr + PAGE_SIZE); } void clear_user_page(void *page, unsigned long vaddr, struct page *pg) { clear_page(page); /* * We shouldn't have to do this, but some versions of glibc * require it (ld.so assumes zero filled pages are icache clean) * - Anton */ flush_dcache_page(pg); } EXPORT_SYMBOL(clear_user_page); void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, struct page *pg) { copy_page(vto, vfrom); /* * We should be able to use the following optimisation, however * there are two problems. * Firstly a bug in some versions of binutils meant PLT sections * were not marked executable. * Secondly the first word in the GOT section is blrl, used * to establish the GOT address. Until recently the GOT was * not marked executable. * - Anton */ #if 0 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) return; #endif flush_dcache_page(pg); } void flush_icache_user_page(struct vm_area_struct *vma, struct page *page, unsigned long addr, int len) { unsigned long maddr; maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK); flush_icache_range(maddr, maddr + len); kunmap(page); } /* * System memory should not be in /proc/iomem but various tools expect it * (eg kdump). */ static int __init add_system_ram_resources(void) { phys_addr_t start, end; u64 i; for_each_mem_range(i, &start, &end) { struct resource *res; res = kzalloc(sizeof(struct resource), GFP_KERNEL); WARN_ON(!res); if (res) { res->name = "System RAM"; res->start = start; /* * In memblock, end points to the first byte after * the range while in resourses, end points to the * last byte in the range. */ res->end = end - 1; res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; WARN_ON(request_resource(&iomem_resource, res) < 0); } } return 0; } subsys_initcall(add_system_ram_resources); #ifdef CONFIG_STRICT_DEVMEM /* * devmem_is_allowed(): check to see if /dev/mem access to a certain address * is valid. The argument is a physical page number. * * Access has to be given to non-kernel-ram areas as well, these contain the * PCI mmio resources as well as potential bios/acpi data regions. */ int devmem_is_allowed(unsigned long pfn) { if (page_is_rtas_user_buf(pfn)) return 1; if (iomem_is_exclusive(PFN_PHYS(pfn))) return 0; if (!page_is_ram(pfn)) return 1; return 0; } #endif /* CONFIG_STRICT_DEVMEM */ /* * This is defined in kernel/resource.c but only powerpc needs to export it, for * the EHEA driver. Drop this when drivers/net/ethernet/ibm/ehea is removed. */ EXPORT_SYMBOL_GPL(walk_system_ram_range);