/* * Freescale STMP37XX/STMP378X Application UART driver * * Author: dmitry pervushin * * Copyright 2008-2010 Freescale Semiconductor, Inc. * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved. * * The code contained herein is licensed under the GNU General Public * License. You may obtain a copy of the GNU General Public License * Version 2 or later at the following locations: * * http://www.opensource.org/licenses/gpl-license.html * http://www.gnu.org/copyleft/gpl.html */ #if defined(CONFIG_SERIAL_MXS_AUART_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MXS_AUART_PORTS 5 #define MXS_AUART_FIFO_SIZE 16 #define AUART_CTRL0 0x00000000 #define AUART_CTRL0_SET 0x00000004 #define AUART_CTRL0_CLR 0x00000008 #define AUART_CTRL0_TOG 0x0000000c #define AUART_CTRL1 0x00000010 #define AUART_CTRL1_SET 0x00000014 #define AUART_CTRL1_CLR 0x00000018 #define AUART_CTRL1_TOG 0x0000001c #define AUART_CTRL2 0x00000020 #define AUART_CTRL2_SET 0x00000024 #define AUART_CTRL2_CLR 0x00000028 #define AUART_CTRL2_TOG 0x0000002c #define AUART_LINECTRL 0x00000030 #define AUART_LINECTRL_SET 0x00000034 #define AUART_LINECTRL_CLR 0x00000038 #define AUART_LINECTRL_TOG 0x0000003c #define AUART_LINECTRL2 0x00000040 #define AUART_LINECTRL2_SET 0x00000044 #define AUART_LINECTRL2_CLR 0x00000048 #define AUART_LINECTRL2_TOG 0x0000004c #define AUART_INTR 0x00000050 #define AUART_INTR_SET 0x00000054 #define AUART_INTR_CLR 0x00000058 #define AUART_INTR_TOG 0x0000005c #define AUART_DATA 0x00000060 #define AUART_STAT 0x00000070 #define AUART_DEBUG 0x00000080 #define AUART_VERSION 0x00000090 #define AUART_AUTOBAUD 0x000000a0 #define AUART_CTRL0_SFTRST (1 << 31) #define AUART_CTRL0_CLKGATE (1 << 30) #define AUART_CTRL0_RXTO_ENABLE (1 << 27) #define AUART_CTRL0_RXTIMEOUT(v) (((v) & 0x7ff) << 16) #define AUART_CTRL0_XFER_COUNT(v) ((v) & 0xffff) #define AUART_CTRL1_XFER_COUNT(v) ((v) & 0xffff) #define AUART_CTRL2_DMAONERR (1 << 26) #define AUART_CTRL2_TXDMAE (1 << 25) #define AUART_CTRL2_RXDMAE (1 << 24) #define AUART_CTRL2_CTSEN (1 << 15) #define AUART_CTRL2_RTSEN (1 << 14) #define AUART_CTRL2_RTS (1 << 11) #define AUART_CTRL2_RXE (1 << 9) #define AUART_CTRL2_TXE (1 << 8) #define AUART_CTRL2_UARTEN (1 << 0) #define AUART_LINECTRL_BAUD_DIVINT_SHIFT 16 #define AUART_LINECTRL_BAUD_DIVINT_MASK 0xffff0000 #define AUART_LINECTRL_BAUD_DIVINT(v) (((v) & 0xffff) << 16) #define AUART_LINECTRL_BAUD_DIVFRAC_SHIFT 8 #define AUART_LINECTRL_BAUD_DIVFRAC_MASK 0x00003f00 #define AUART_LINECTRL_BAUD_DIVFRAC(v) (((v) & 0x3f) << 8) #define AUART_LINECTRL_WLEN_MASK 0x00000060 #define AUART_LINECTRL_WLEN(v) (((v) & 0x3) << 5) #define AUART_LINECTRL_FEN (1 << 4) #define AUART_LINECTRL_STP2 (1 << 3) #define AUART_LINECTRL_EPS (1 << 2) #define AUART_LINECTRL_PEN (1 << 1) #define AUART_LINECTRL_BRK (1 << 0) #define AUART_INTR_RTIEN (1 << 22) #define AUART_INTR_TXIEN (1 << 21) #define AUART_INTR_RXIEN (1 << 20) #define AUART_INTR_CTSMIEN (1 << 17) #define AUART_INTR_RTIS (1 << 6) #define AUART_INTR_TXIS (1 << 5) #define AUART_INTR_RXIS (1 << 4) #define AUART_INTR_CTSMIS (1 << 1) #define AUART_STAT_BUSY (1 << 29) #define AUART_STAT_CTS (1 << 28) #define AUART_STAT_TXFE (1 << 27) #define AUART_STAT_TXFF (1 << 25) #define AUART_STAT_RXFE (1 << 24) #define AUART_STAT_OERR (1 << 19) #define AUART_STAT_BERR (1 << 18) #define AUART_STAT_PERR (1 << 17) #define AUART_STAT_FERR (1 << 16) #define AUART_STAT_RXCOUNT_MASK 0xffff static struct uart_driver auart_driver; enum mxs_auart_type { IMX23_AUART, IMX28_AUART, }; struct mxs_auart_port { struct uart_port port; #define MXS_AUART_DMA_ENABLED 0x2 #define MXS_AUART_DMA_TX_SYNC 2 /* bit 2 */ #define MXS_AUART_DMA_RX_READY 3 /* bit 3 */ #define MXS_AUART_RTSCTS 4 /* bit 4 */ unsigned long flags; enum mxs_auart_type devtype; unsigned int irq; struct clk *clk; struct device *dev; /* for DMA */ struct scatterlist tx_sgl; struct dma_chan *tx_dma_chan; void *tx_dma_buf; struct scatterlist rx_sgl; struct dma_chan *rx_dma_chan; void *rx_dma_buf; }; static struct platform_device_id mxs_auart_devtype[] = { { .name = "mxs-auart-imx23", .driver_data = IMX23_AUART }, { .name = "mxs-auart-imx28", .driver_data = IMX28_AUART }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, mxs_auart_devtype); static struct of_device_id mxs_auart_dt_ids[] = { { .compatible = "fsl,imx28-auart", .data = &mxs_auart_devtype[IMX28_AUART] }, { .compatible = "fsl,imx23-auart", .data = &mxs_auart_devtype[IMX23_AUART] }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxs_auart_dt_ids); static inline int is_imx28_auart(struct mxs_auart_port *s) { return s->devtype == IMX28_AUART; } static inline bool auart_dma_enabled(struct mxs_auart_port *s) { return s->flags & MXS_AUART_DMA_ENABLED; } static void mxs_auart_stop_tx(struct uart_port *u); #define to_auart_port(u) container_of(u, struct mxs_auart_port, port) static void mxs_auart_tx_chars(struct mxs_auart_port *s); static void dma_tx_callback(void *param) { struct mxs_auart_port *s = param; struct circ_buf *xmit = &s->port.state->xmit; dma_unmap_sg(s->dev, &s->tx_sgl, 1, DMA_TO_DEVICE); /* clear the bit used to serialize the DMA tx. */ clear_bit(MXS_AUART_DMA_TX_SYNC, &s->flags); smp_mb__after_atomic(); /* wake up the possible processes. */ if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&s->port); mxs_auart_tx_chars(s); } static int mxs_auart_dma_tx(struct mxs_auart_port *s, int size) { struct dma_async_tx_descriptor *desc; struct scatterlist *sgl = &s->tx_sgl; struct dma_chan *channel = s->tx_dma_chan; u32 pio; /* [1] : send PIO. Note, the first pio word is CTRL1. */ pio = AUART_CTRL1_XFER_COUNT(size); desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)&pio, 1, DMA_TRANS_NONE, 0); if (!desc) { dev_err(s->dev, "step 1 error\n"); return -EINVAL; } /* [2] : set DMA buffer. */ sg_init_one(sgl, s->tx_dma_buf, size); dma_map_sg(s->dev, sgl, 1, DMA_TO_DEVICE); desc = dmaengine_prep_slave_sg(channel, sgl, 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(s->dev, "step 2 error\n"); return -EINVAL; } /* [3] : submit the DMA */ desc->callback = dma_tx_callback; desc->callback_param = s; dmaengine_submit(desc); dma_async_issue_pending(channel); return 0; } static void mxs_auart_tx_chars(struct mxs_auart_port *s) { struct circ_buf *xmit = &s->port.state->xmit; if (auart_dma_enabled(s)) { u32 i = 0; int size; void *buffer = s->tx_dma_buf; if (test_and_set_bit(MXS_AUART_DMA_TX_SYNC, &s->flags)) return; while (!uart_circ_empty(xmit) && !uart_tx_stopped(&s->port)) { size = min_t(u32, UART_XMIT_SIZE - i, CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); memcpy(buffer + i, xmit->buf + xmit->tail, size); xmit->tail = (xmit->tail + size) & (UART_XMIT_SIZE - 1); i += size; if (i >= UART_XMIT_SIZE) break; } if (uart_tx_stopped(&s->port)) mxs_auart_stop_tx(&s->port); if (i) { mxs_auart_dma_tx(s, i); } else { clear_bit(MXS_AUART_DMA_TX_SYNC, &s->flags); smp_mb__after_atomic(); } return; } while (!(readl(s->port.membase + AUART_STAT) & AUART_STAT_TXFF)) { if (s->port.x_char) { s->port.icount.tx++; writel(s->port.x_char, s->port.membase + AUART_DATA); s->port.x_char = 0; continue; } if (!uart_circ_empty(xmit) && !uart_tx_stopped(&s->port)) { s->port.icount.tx++; writel(xmit->buf[xmit->tail], s->port.membase + AUART_DATA); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); } else break; } if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&s->port); if (uart_circ_empty(&(s->port.state->xmit))) writel(AUART_INTR_TXIEN, s->port.membase + AUART_INTR_CLR); else writel(AUART_INTR_TXIEN, s->port.membase + AUART_INTR_SET); if (uart_tx_stopped(&s->port)) mxs_auart_stop_tx(&s->port); } static void mxs_auart_rx_char(struct mxs_auart_port *s) { int flag; u32 stat; u8 c; c = readl(s->port.membase + AUART_DATA); stat = readl(s->port.membase + AUART_STAT); flag = TTY_NORMAL; s->port.icount.rx++; if (stat & AUART_STAT_BERR) { s->port.icount.brk++; if (uart_handle_break(&s->port)) goto out; } else if (stat & AUART_STAT_PERR) { s->port.icount.parity++; } else if (stat & AUART_STAT_FERR) { s->port.icount.frame++; } /* * Mask off conditions which should be ingored. */ stat &= s->port.read_status_mask; if (stat & AUART_STAT_BERR) { flag = TTY_BREAK; } else if (stat & AUART_STAT_PERR) flag = TTY_PARITY; else if (stat & AUART_STAT_FERR) flag = TTY_FRAME; if (stat & AUART_STAT_OERR) s->port.icount.overrun++; if (uart_handle_sysrq_char(&s->port, c)) goto out; uart_insert_char(&s->port, stat, AUART_STAT_OERR, c, flag); out: writel(stat, s->port.membase + AUART_STAT); } static void mxs_auart_rx_chars(struct mxs_auart_port *s) { u32 stat = 0; for (;;) { stat = readl(s->port.membase + AUART_STAT); if (stat & AUART_STAT_RXFE) break; mxs_auart_rx_char(s); } writel(stat, s->port.membase + AUART_STAT); tty_flip_buffer_push(&s->port.state->port); } static int mxs_auart_request_port(struct uart_port *u) { return 0; } static int mxs_auart_verify_port(struct uart_port *u, struct serial_struct *ser) { if (u->type != PORT_UNKNOWN && u->type != PORT_IMX) return -EINVAL; return 0; } static void mxs_auart_config_port(struct uart_port *u, int flags) { } static const char *mxs_auart_type(struct uart_port *u) { struct mxs_auart_port *s = to_auart_port(u); return dev_name(s->dev); } static void mxs_auart_release_port(struct uart_port *u) { } static void mxs_auart_set_mctrl(struct uart_port *u, unsigned mctrl) { u32 ctrl = readl(u->membase + AUART_CTRL2); ctrl &= ~(AUART_CTRL2_RTSEN | AUART_CTRL2_RTS); if (mctrl & TIOCM_RTS) { if (uart_cts_enabled(u)) ctrl |= AUART_CTRL2_RTSEN; else ctrl |= AUART_CTRL2_RTS; } writel(ctrl, u->membase + AUART_CTRL2); } static u32 mxs_auart_get_mctrl(struct uart_port *u) { u32 stat = readl(u->membase + AUART_STAT); u32 mctrl = 0; if (stat & AUART_STAT_CTS) mctrl |= TIOCM_CTS; return mctrl; } static int mxs_auart_dma_prep_rx(struct mxs_auart_port *s); static void dma_rx_callback(void *arg) { struct mxs_auart_port *s = (struct mxs_auart_port *) arg; struct tty_port *port = &s->port.state->port; int count; u32 stat; dma_unmap_sg(s->dev, &s->rx_sgl, 1, DMA_FROM_DEVICE); stat = readl(s->port.membase + AUART_STAT); stat &= ~(AUART_STAT_OERR | AUART_STAT_BERR | AUART_STAT_PERR | AUART_STAT_FERR); count = stat & AUART_STAT_RXCOUNT_MASK; tty_insert_flip_string(port, s->rx_dma_buf, count); writel(stat, s->port.membase + AUART_STAT); tty_flip_buffer_push(port); /* start the next DMA for RX. */ mxs_auart_dma_prep_rx(s); } static int mxs_auart_dma_prep_rx(struct mxs_auart_port *s) { struct dma_async_tx_descriptor *desc; struct scatterlist *sgl = &s->rx_sgl; struct dma_chan *channel = s->rx_dma_chan; u32 pio[1]; /* [1] : send PIO */ pio[0] = AUART_CTRL0_RXTO_ENABLE | AUART_CTRL0_RXTIMEOUT(0x80) | AUART_CTRL0_XFER_COUNT(UART_XMIT_SIZE); desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, 1, DMA_TRANS_NONE, 0); if (!desc) { dev_err(s->dev, "step 1 error\n"); return -EINVAL; } /* [2] : send DMA request */ sg_init_one(sgl, s->rx_dma_buf, UART_XMIT_SIZE); dma_map_sg(s->dev, sgl, 1, DMA_FROM_DEVICE); desc = dmaengine_prep_slave_sg(channel, sgl, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(s->dev, "step 2 error\n"); return -1; } /* [3] : submit the DMA, but do not issue it. */ desc->callback = dma_rx_callback; desc->callback_param = s; dmaengine_submit(desc); dma_async_issue_pending(channel); return 0; } static void mxs_auart_dma_exit_channel(struct mxs_auart_port *s) { if (s->tx_dma_chan) { dma_release_channel(s->tx_dma_chan); s->tx_dma_chan = NULL; } if (s->rx_dma_chan) { dma_release_channel(s->rx_dma_chan); s->rx_dma_chan = NULL; } kfree(s->tx_dma_buf); kfree(s->rx_dma_buf); s->tx_dma_buf = NULL; s->rx_dma_buf = NULL; } static void mxs_auart_dma_exit(struct mxs_auart_port *s) { writel(AUART_CTRL2_TXDMAE | AUART_CTRL2_RXDMAE | AUART_CTRL2_DMAONERR, s->port.membase + AUART_CTRL2_CLR); mxs_auart_dma_exit_channel(s); s->flags &= ~MXS_AUART_DMA_ENABLED; clear_bit(MXS_AUART_DMA_TX_SYNC, &s->flags); clear_bit(MXS_AUART_DMA_RX_READY, &s->flags); } static int mxs_auart_dma_init(struct mxs_auart_port *s) { if (auart_dma_enabled(s)) return 0; /* init for RX */ s->rx_dma_chan = dma_request_slave_channel(s->dev, "rx"); if (!s->rx_dma_chan) goto err_out; s->rx_dma_buf = kzalloc(UART_XMIT_SIZE, GFP_KERNEL | GFP_DMA); if (!s->rx_dma_buf) goto err_out; /* init for TX */ s->tx_dma_chan = dma_request_slave_channel(s->dev, "tx"); if (!s->tx_dma_chan) goto err_out; s->tx_dma_buf = kzalloc(UART_XMIT_SIZE, GFP_KERNEL | GFP_DMA); if (!s->tx_dma_buf) goto err_out; /* set the flags */ s->flags |= MXS_AUART_DMA_ENABLED; dev_dbg(s->dev, "enabled the DMA support."); /* The DMA buffer is now the FIFO the TTY subsystem can use */ s->port.fifosize = UART_XMIT_SIZE; return 0; err_out: mxs_auart_dma_exit_channel(s); return -EINVAL; } static void mxs_auart_settermios(struct uart_port *u, struct ktermios *termios, struct ktermios *old) { struct mxs_auart_port *s = to_auart_port(u); u32 bm, ctrl, ctrl2, div; unsigned int cflag, baud; cflag = termios->c_cflag; ctrl = AUART_LINECTRL_FEN; ctrl2 = readl(u->membase + AUART_CTRL2); /* byte size */ switch (cflag & CSIZE) { case CS5: bm = 0; break; case CS6: bm = 1; break; case CS7: bm = 2; break; case CS8: bm = 3; break; default: return; } ctrl |= AUART_LINECTRL_WLEN(bm); /* parity */ if (cflag & PARENB) { ctrl |= AUART_LINECTRL_PEN; if ((cflag & PARODD) == 0) ctrl |= AUART_LINECTRL_EPS; } u->read_status_mask = 0; if (termios->c_iflag & INPCK) u->read_status_mask |= AUART_STAT_PERR; if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) u->read_status_mask |= AUART_STAT_BERR; /* * Characters to ignore */ u->ignore_status_mask = 0; if (termios->c_iflag & IGNPAR) u->ignore_status_mask |= AUART_STAT_PERR; if (termios->c_iflag & IGNBRK) { u->ignore_status_mask |= AUART_STAT_BERR; /* * If we're ignoring parity and break indicators, * ignore overruns too (for real raw support). */ if (termios->c_iflag & IGNPAR) u->ignore_status_mask |= AUART_STAT_OERR; } /* * ignore all characters if CREAD is not set */ if (cflag & CREAD) ctrl2 |= AUART_CTRL2_RXE; else ctrl2 &= ~AUART_CTRL2_RXE; /* figure out the stop bits requested */ if (cflag & CSTOPB) ctrl |= AUART_LINECTRL_STP2; /* figure out the hardware flow control settings */ if (cflag & CRTSCTS) { /* * The DMA has a bug(see errata:2836) in mx23. * So we can not implement the DMA for auart in mx23, * we can only implement the DMA support for auart * in mx28. */ if (is_imx28_auart(s) && test_bit(MXS_AUART_RTSCTS, &s->flags)) { if (!mxs_auart_dma_init(s)) /* enable DMA tranfer */ ctrl2 |= AUART_CTRL2_TXDMAE | AUART_CTRL2_RXDMAE | AUART_CTRL2_DMAONERR; } ctrl2 |= AUART_CTRL2_CTSEN | AUART_CTRL2_RTSEN; } else { ctrl2 &= ~(AUART_CTRL2_CTSEN | AUART_CTRL2_RTSEN); } /* set baud rate */ baud = uart_get_baud_rate(u, termios, old, 0, u->uartclk); div = u->uartclk * 32 / baud; ctrl |= AUART_LINECTRL_BAUD_DIVFRAC(div & 0x3F); ctrl |= AUART_LINECTRL_BAUD_DIVINT(div >> 6); writel(ctrl, u->membase + AUART_LINECTRL); writel(ctrl2, u->membase + AUART_CTRL2); uart_update_timeout(u, termios->c_cflag, baud); /* prepare for the DMA RX. */ if (auart_dma_enabled(s) && !test_and_set_bit(MXS_AUART_DMA_RX_READY, &s->flags)) { if (!mxs_auart_dma_prep_rx(s)) { /* Disable the normal RX interrupt. */ writel(AUART_INTR_RXIEN | AUART_INTR_RTIEN, u->membase + AUART_INTR_CLR); } else { mxs_auart_dma_exit(s); dev_err(s->dev, "We can not start up the DMA.\n"); } } } static irqreturn_t mxs_auart_irq_handle(int irq, void *context) { u32 istat; struct mxs_auart_port *s = context; u32 stat = readl(s->port.membase + AUART_STAT); istat = readl(s->port.membase + AUART_INTR); /* ack irq */ writel(istat & (AUART_INTR_RTIS | AUART_INTR_TXIS | AUART_INTR_RXIS | AUART_INTR_CTSMIS), s->port.membase + AUART_INTR_CLR); if (istat & AUART_INTR_CTSMIS) { uart_handle_cts_change(&s->port, stat & AUART_STAT_CTS); writel(AUART_INTR_CTSMIS, s->port.membase + AUART_INTR_CLR); istat &= ~AUART_INTR_CTSMIS; } if (istat & (AUART_INTR_RTIS | AUART_INTR_RXIS)) { if (!auart_dma_enabled(s)) mxs_auart_rx_chars(s); istat &= ~(AUART_INTR_RTIS | AUART_INTR_RXIS); } if (istat & AUART_INTR_TXIS) { mxs_auart_tx_chars(s); istat &= ~AUART_INTR_TXIS; } return IRQ_HANDLED; } static void mxs_auart_reset(struct uart_port *u) { int i; unsigned int reg; writel(AUART_CTRL0_SFTRST, u->membase + AUART_CTRL0_CLR); for (i = 0; i < 10000; i++) { reg = readl(u->membase + AUART_CTRL0); if (!(reg & AUART_CTRL0_SFTRST)) break; udelay(3); } writel(AUART_CTRL0_CLKGATE, u->membase + AUART_CTRL0_CLR); } static int mxs_auart_startup(struct uart_port *u) { int ret; struct mxs_auart_port *s = to_auart_port(u); ret = clk_prepare_enable(s->clk); if (ret) return ret; writel(AUART_CTRL0_CLKGATE, u->membase + AUART_CTRL0_CLR); writel(AUART_CTRL2_UARTEN, u->membase + AUART_CTRL2_SET); writel(AUART_INTR_RXIEN | AUART_INTR_RTIEN | AUART_INTR_CTSMIEN, u->membase + AUART_INTR); /* Reset FIFO size (it could have changed if DMA was enabled) */ u->fifosize = MXS_AUART_FIFO_SIZE; /* * Enable fifo so all four bytes of a DMA word are written to * output (otherwise, only the LSB is written, ie. 1 in 4 bytes) */ writel(AUART_LINECTRL_FEN, u->membase + AUART_LINECTRL_SET); return 0; } static void mxs_auart_shutdown(struct uart_port *u) { struct mxs_auart_port *s = to_auart_port(u); if (auart_dma_enabled(s)) mxs_auart_dma_exit(s); writel(AUART_CTRL2_UARTEN, u->membase + AUART_CTRL2_CLR); writel(AUART_INTR_RXIEN | AUART_INTR_RTIEN | AUART_INTR_CTSMIEN, u->membase + AUART_INTR_CLR); writel(AUART_CTRL0_CLKGATE, u->membase + AUART_CTRL0_SET); clk_disable_unprepare(s->clk); } static unsigned int mxs_auart_tx_empty(struct uart_port *u) { if (readl(u->membase + AUART_STAT) & AUART_STAT_TXFE) return TIOCSER_TEMT; else return 0; } static void mxs_auart_start_tx(struct uart_port *u) { struct mxs_auart_port *s = to_auart_port(u); /* enable transmitter */ writel(AUART_CTRL2_TXE, u->membase + AUART_CTRL2_SET); mxs_auart_tx_chars(s); } static void mxs_auart_stop_tx(struct uart_port *u) { writel(AUART_CTRL2_TXE, u->membase + AUART_CTRL2_CLR); } static void mxs_auart_stop_rx(struct uart_port *u) { writel(AUART_CTRL2_RXE, u->membase + AUART_CTRL2_CLR); } static void mxs_auart_break_ctl(struct uart_port *u, int ctl) { if (ctl) writel(AUART_LINECTRL_BRK, u->membase + AUART_LINECTRL_SET); else writel(AUART_LINECTRL_BRK, u->membase + AUART_LINECTRL_CLR); } static struct uart_ops mxs_auart_ops = { .tx_empty = mxs_auart_tx_empty, .start_tx = mxs_auart_start_tx, .stop_tx = mxs_auart_stop_tx, .stop_rx = mxs_auart_stop_rx, .break_ctl = mxs_auart_break_ctl, .set_mctrl = mxs_auart_set_mctrl, .get_mctrl = mxs_auart_get_mctrl, .startup = mxs_auart_startup, .shutdown = mxs_auart_shutdown, .set_termios = mxs_auart_settermios, .type = mxs_auart_type, .release_port = mxs_auart_release_port, .request_port = mxs_auart_request_port, .config_port = mxs_auart_config_port, .verify_port = mxs_auart_verify_port, }; static struct mxs_auart_port *auart_port[MXS_AUART_PORTS]; #ifdef CONFIG_SERIAL_MXS_AUART_CONSOLE static void mxs_auart_console_putchar(struct uart_port *port, int ch) { unsigned int to = 1000; while (readl(port->membase + AUART_STAT) & AUART_STAT_TXFF) { if (!to--) break; udelay(1); } writel(ch, port->membase + AUART_DATA); } static void auart_console_write(struct console *co, const char *str, unsigned int count) { struct mxs_auart_port *s; struct uart_port *port; unsigned int old_ctrl0, old_ctrl2; unsigned int to = 20000; if (co->index >= MXS_AUART_PORTS || co->index < 0) return; s = auart_port[co->index]; port = &s->port; clk_enable(s->clk); /* First save the CR then disable the interrupts */ old_ctrl2 = readl(port->membase + AUART_CTRL2); old_ctrl0 = readl(port->membase + AUART_CTRL0); writel(AUART_CTRL0_CLKGATE, port->membase + AUART_CTRL0_CLR); writel(AUART_CTRL2_UARTEN | AUART_CTRL2_TXE, port->membase + AUART_CTRL2_SET); uart_console_write(port, str, count, mxs_auart_console_putchar); /* Finally, wait for transmitter to become empty ... */ while (readl(port->membase + AUART_STAT) & AUART_STAT_BUSY) { udelay(1); if (!to--) break; } /* * ... and restore the TCR if we waited long enough for the transmitter * to be idle. This might keep the transmitter enabled although it is * unused, but that is better than to disable it while it is still * transmitting. */ if (!(readl(port->membase + AUART_STAT) & AUART_STAT_BUSY)) { writel(old_ctrl0, port->membase + AUART_CTRL0); writel(old_ctrl2, port->membase + AUART_CTRL2); } clk_disable(s->clk); } static void __init auart_console_get_options(struct uart_port *port, int *baud, int *parity, int *bits) { unsigned int lcr_h, quot; if (!(readl(port->membase + AUART_CTRL2) & AUART_CTRL2_UARTEN)) return; lcr_h = readl(port->membase + AUART_LINECTRL); *parity = 'n'; if (lcr_h & AUART_LINECTRL_PEN) { if (lcr_h & AUART_LINECTRL_EPS) *parity = 'e'; else *parity = 'o'; } if ((lcr_h & AUART_LINECTRL_WLEN_MASK) == AUART_LINECTRL_WLEN(2)) *bits = 7; else *bits = 8; quot = ((readl(port->membase + AUART_LINECTRL) & AUART_LINECTRL_BAUD_DIVINT_MASK)) >> (AUART_LINECTRL_BAUD_DIVINT_SHIFT - 6); quot |= ((readl(port->membase + AUART_LINECTRL) & AUART_LINECTRL_BAUD_DIVFRAC_MASK)) >> AUART_LINECTRL_BAUD_DIVFRAC_SHIFT; if (quot == 0) quot = 1; *baud = (port->uartclk << 2) / quot; } static int __init auart_console_setup(struct console *co, char *options) { struct mxs_auart_port *s; int baud = 9600; int bits = 8; int parity = 'n'; int flow = 'n'; int ret; /* * Check whether an invalid uart number has been specified, and * if so, search for the first available port that does have * console support. */ if (co->index == -1 || co->index >= ARRAY_SIZE(auart_port)) co->index = 0; s = auart_port[co->index]; if (!s) return -ENODEV; ret = clk_prepare_enable(s->clk); if (ret) return ret; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); else auart_console_get_options(&s->port, &baud, &parity, &bits); ret = uart_set_options(&s->port, co, baud, parity, bits, flow); clk_disable_unprepare(s->clk); return ret; } static struct console auart_console = { .name = "ttyAPP", .write = auart_console_write, .device = uart_console_device, .setup = auart_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &auart_driver, }; #endif static struct uart_driver auart_driver = { .owner = THIS_MODULE, .driver_name = "ttyAPP", .dev_name = "ttyAPP", .major = 0, .minor = 0, .nr = MXS_AUART_PORTS, #ifdef CONFIG_SERIAL_MXS_AUART_CONSOLE .cons = &auart_console, #endif }; /* * This function returns 1 if pdev isn't a device instatiated by dt, 0 if it * could successfully get all information from dt or a negative errno. */ static int serial_mxs_probe_dt(struct mxs_auart_port *s, struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; int ret; if (!np) /* no device tree device */ return 1; ret = of_alias_get_id(np, "serial"); if (ret < 0) { dev_err(&pdev->dev, "failed to get alias id: %d\n", ret); return ret; } s->port.line = ret; if (of_get_property(np, "fsl,uart-has-rtscts", NULL)) set_bit(MXS_AUART_RTSCTS, &s->flags); return 0; } static int mxs_auart_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(mxs_auart_dt_ids, &pdev->dev); struct mxs_auart_port *s; u32 version; int ret = 0; struct resource *r; s = kzalloc(sizeof(struct mxs_auart_port), GFP_KERNEL); if (!s) { ret = -ENOMEM; goto out; } ret = serial_mxs_probe_dt(s, pdev); if (ret > 0) s->port.line = pdev->id < 0 ? 0 : pdev->id; else if (ret < 0) goto out_free; if (of_id) { pdev->id_entry = of_id->data; s->devtype = pdev->id_entry->driver_data; } s->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(s->clk)) { ret = PTR_ERR(s->clk); goto out_free; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { ret = -ENXIO; goto out_free_clk; } s->port.mapbase = r->start; s->port.membase = ioremap(r->start, resource_size(r)); s->port.ops = &mxs_auart_ops; s->port.iotype = UPIO_MEM; s->port.fifosize = MXS_AUART_FIFO_SIZE; s->port.uartclk = clk_get_rate(s->clk); s->port.type = PORT_IMX; s->port.dev = s->dev = &pdev->dev; s->irq = platform_get_irq(pdev, 0); s->port.irq = s->irq; ret = request_irq(s->irq, mxs_auart_irq_handle, 0, dev_name(&pdev->dev), s); if (ret) goto out_free_clk; platform_set_drvdata(pdev, s); auart_port[s->port.line] = s; mxs_auart_reset(&s->port); ret = uart_add_one_port(&auart_driver, &s->port); if (ret) goto out_free_irq; version = readl(s->port.membase + AUART_VERSION); dev_info(&pdev->dev, "Found APPUART %d.%d.%d\n", (version >> 24) & 0xff, (version >> 16) & 0xff, version & 0xffff); return 0; out_free_irq: auart_port[pdev->id] = NULL; free_irq(s->irq, s); out_free_clk: clk_put(s->clk); out_free: kfree(s); out: return ret; } static int mxs_auart_remove(struct platform_device *pdev) { struct mxs_auart_port *s = platform_get_drvdata(pdev); uart_remove_one_port(&auart_driver, &s->port); auart_port[pdev->id] = NULL; clk_put(s->clk); free_irq(s->irq, s); kfree(s); return 0; } static struct platform_driver mxs_auart_driver = { .probe = mxs_auart_probe, .remove = mxs_auart_remove, .driver = { .name = "mxs-auart", .owner = THIS_MODULE, .of_match_table = mxs_auart_dt_ids, }, }; static int __init mxs_auart_init(void) { int r; r = uart_register_driver(&auart_driver); if (r) goto out; r = platform_driver_register(&mxs_auart_driver); if (r) goto out_err; return 0; out_err: uart_unregister_driver(&auart_driver); out: return r; } static void __exit mxs_auart_exit(void) { platform_driver_unregister(&mxs_auart_driver); uart_unregister_driver(&auart_driver); } module_init(mxs_auart_init); module_exit(mxs_auart_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Freescale MXS application uart driver"); MODULE_ALIAS("platform:mxs-auart");