/* * ADS1015 - Texas Instruments Analog-to-Digital Converter * * Copyright (c) 2016, Intel Corporation. * * This file is subject to the terms and conditions of version 2 of * the GNU General Public License. See the file COPYING in the main * directory of this archive for more details. * * IIO driver for ADS1015 ADC 7-bit I2C slave address: * * 0x48 - ADDR connected to Ground * * 0x49 - ADDR connected to Vdd * * 0x4A - ADDR connected to SDA * * 0x4B - ADDR connected to SCL */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ADS1015_DRV_NAME "ads1015" #define ADS1015_CONV_REG 0x00 #define ADS1015_CFG_REG 0x01 #define ADS1015_CFG_DR_SHIFT 5 #define ADS1015_CFG_MOD_SHIFT 8 #define ADS1015_CFG_PGA_SHIFT 9 #define ADS1015_CFG_MUX_SHIFT 12 #define ADS1015_CFG_DR_MASK GENMASK(7, 5) #define ADS1015_CFG_MOD_MASK BIT(8) #define ADS1015_CFG_PGA_MASK GENMASK(11, 9) #define ADS1015_CFG_MUX_MASK GENMASK(14, 12) /* device operating modes */ #define ADS1015_CONTINUOUS 0 #define ADS1015_SINGLESHOT 1 #define ADS1015_SLEEP_DELAY_MS 2000 #define ADS1015_DEFAULT_PGA 2 #define ADS1015_DEFAULT_DATA_RATE 4 #define ADS1015_DEFAULT_CHAN 0 enum chip_ids { ADS1015, ADS1115, }; enum ads1015_channels { ADS1015_AIN0_AIN1 = 0, ADS1015_AIN0_AIN3, ADS1015_AIN1_AIN3, ADS1015_AIN2_AIN3, ADS1015_AIN0, ADS1015_AIN1, ADS1015_AIN2, ADS1015_AIN3, ADS1015_TIMESTAMP, }; static const unsigned int ads1015_data_rate[] = { 128, 250, 490, 920, 1600, 2400, 3300, 3300 }; static const unsigned int ads1115_data_rate[] = { 8, 16, 32, 64, 128, 250, 475, 860 }; /* * Translation from PGA bits to full-scale positive and negative input voltage * range in mV */ static int ads1015_fullscale_range[] = { 6144, 4096, 2048, 1024, 512, 256, 256, 256 }; #define ADS1015_V_CHAN(_chan, _addr) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .address = _addr, \ .channel = _chan, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _addr, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_CPU, \ }, \ .datasheet_name = "AIN"#_chan, \ } #define ADS1015_V_DIFF_CHAN(_chan, _chan2, _addr) { \ .type = IIO_VOLTAGE, \ .differential = 1, \ .indexed = 1, \ .address = _addr, \ .channel = _chan, \ .channel2 = _chan2, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _addr, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_CPU, \ }, \ .datasheet_name = "AIN"#_chan"-AIN"#_chan2, \ } #define ADS1115_V_CHAN(_chan, _addr) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .address = _addr, \ .channel = _chan, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _addr, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ }, \ .datasheet_name = "AIN"#_chan, \ } #define ADS1115_V_DIFF_CHAN(_chan, _chan2, _addr) { \ .type = IIO_VOLTAGE, \ .differential = 1, \ .indexed = 1, \ .address = _addr, \ .channel = _chan, \ .channel2 = _chan2, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _addr, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ }, \ .datasheet_name = "AIN"#_chan"-AIN"#_chan2, \ } struct ads1015_data { struct regmap *regmap; /* * Protects ADC ops, e.g: concurrent sysfs/buffered * data reads, configuration updates */ struct mutex lock; struct ads1015_channel_data channel_data[ADS1015_CHANNELS]; unsigned int *data_rate; /* * Set to true when the ADC is switched to the continuous-conversion * mode and exits from a power-down state. This flag is used to avoid * getting the stale result from the conversion register. */ bool conv_invalid; }; static bool ads1015_is_writeable_reg(struct device *dev, unsigned int reg) { return (reg == ADS1015_CFG_REG); } static const struct regmap_config ads1015_regmap_config = { .reg_bits = 8, .val_bits = 16, .max_register = ADS1015_CFG_REG, .writeable_reg = ads1015_is_writeable_reg, }; static const struct iio_chan_spec ads1015_channels[] = { ADS1015_V_DIFF_CHAN(0, 1, ADS1015_AIN0_AIN1), ADS1015_V_DIFF_CHAN(0, 3, ADS1015_AIN0_AIN3), ADS1015_V_DIFF_CHAN(1, 3, ADS1015_AIN1_AIN3), ADS1015_V_DIFF_CHAN(2, 3, ADS1015_AIN2_AIN3), ADS1015_V_CHAN(0, ADS1015_AIN0), ADS1015_V_CHAN(1, ADS1015_AIN1), ADS1015_V_CHAN(2, ADS1015_AIN2), ADS1015_V_CHAN(3, ADS1015_AIN3), IIO_CHAN_SOFT_TIMESTAMP(ADS1015_TIMESTAMP), }; static const struct iio_chan_spec ads1115_channels[] = { ADS1115_V_DIFF_CHAN(0, 1, ADS1015_AIN0_AIN1), ADS1115_V_DIFF_CHAN(0, 3, ADS1015_AIN0_AIN3), ADS1115_V_DIFF_CHAN(1, 3, ADS1015_AIN1_AIN3), ADS1115_V_DIFF_CHAN(2, 3, ADS1015_AIN2_AIN3), ADS1115_V_CHAN(0, ADS1015_AIN0), ADS1115_V_CHAN(1, ADS1015_AIN1), ADS1115_V_CHAN(2, ADS1015_AIN2), ADS1115_V_CHAN(3, ADS1015_AIN3), IIO_CHAN_SOFT_TIMESTAMP(ADS1015_TIMESTAMP), }; static int ads1015_set_power_state(struct ads1015_data *data, bool on) { int ret; struct device *dev = regmap_get_device(data->regmap); if (on) { ret = pm_runtime_get_sync(dev); if (ret < 0) pm_runtime_put_noidle(dev); } else { pm_runtime_mark_last_busy(dev); ret = pm_runtime_put_autosuspend(dev); } return ret < 0 ? ret : 0; } static int ads1015_get_adc_result(struct ads1015_data *data, int chan, int *val) { int ret, pga, dr, conv_time; unsigned int old, mask, cfg; if (chan < 0 || chan >= ADS1015_CHANNELS) return -EINVAL; ret = regmap_read(data->regmap, ADS1015_CFG_REG, &old); if (ret) return ret; pga = data->channel_data[chan].pga; dr = data->channel_data[chan].data_rate; mask = ADS1015_CFG_MUX_MASK | ADS1015_CFG_PGA_MASK | ADS1015_CFG_DR_MASK; cfg = chan << ADS1015_CFG_MUX_SHIFT | pga << ADS1015_CFG_PGA_SHIFT | dr << ADS1015_CFG_DR_SHIFT; cfg = (old & ~mask) | (cfg & mask); ret = regmap_write(data->regmap, ADS1015_CFG_REG, cfg); if (ret) return ret; if (old != cfg || data->conv_invalid) { int dr_old = (old & ADS1015_CFG_DR_MASK) >> ADS1015_CFG_DR_SHIFT; conv_time = DIV_ROUND_UP(USEC_PER_SEC, data->data_rate[dr_old]); conv_time += DIV_ROUND_UP(USEC_PER_SEC, data->data_rate[dr]); usleep_range(conv_time, conv_time + 1); data->conv_invalid = false; } return regmap_read(data->regmap, ADS1015_CONV_REG, val); } static irqreturn_t ads1015_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ads1015_data *data = iio_priv(indio_dev); s16 buf[8]; /* 1x s16 ADC val + 3x s16 padding + 4x s16 timestamp */ int chan, ret, res; memset(buf, 0, sizeof(buf)); mutex_lock(&data->lock); chan = find_first_bit(indio_dev->active_scan_mask, indio_dev->masklength); ret = ads1015_get_adc_result(data, chan, &res); if (ret < 0) { mutex_unlock(&data->lock); goto err; } buf[0] = res; mutex_unlock(&data->lock); iio_push_to_buffers_with_timestamp(indio_dev, buf, iio_get_time_ns(indio_dev)); err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int ads1015_set_scale(struct ads1015_data *data, struct iio_chan_spec const *chan, int scale, int uscale) { int i; int fullscale = div_s64((scale * 1000000LL + uscale) << (chan->scan_type.realbits - 1), 1000000); for (i = 0; i < ARRAY_SIZE(ads1015_fullscale_range); i++) { if (ads1015_fullscale_range[i] == fullscale) { data->channel_data[chan->address].pga = i; return 0; } } return -EINVAL; } static int ads1015_set_data_rate(struct ads1015_data *data, int chan, int rate) { int i; for (i = 0; i < ARRAY_SIZE(ads1015_data_rate); i++) { if (data->data_rate[i] == rate) { data->channel_data[chan].data_rate = i; return 0; } } return -EINVAL; } static int ads1015_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret, idx; struct ads1015_data *data = iio_priv(indio_dev); mutex_lock(&indio_dev->mlock); mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_RAW: { int shift = chan->scan_type.shift; if (iio_buffer_enabled(indio_dev)) { ret = -EBUSY; break; } ret = ads1015_set_power_state(data, true); if (ret < 0) break; ret = ads1015_get_adc_result(data, chan->address, val); if (ret < 0) { ads1015_set_power_state(data, false); break; } *val = sign_extend32(*val >> shift, 15 - shift); ret = ads1015_set_power_state(data, false); if (ret < 0) break; ret = IIO_VAL_INT; break; } case IIO_CHAN_INFO_SCALE: idx = data->channel_data[chan->address].pga; *val = ads1015_fullscale_range[idx]; *val2 = chan->scan_type.realbits - 1; ret = IIO_VAL_FRACTIONAL_LOG2; break; case IIO_CHAN_INFO_SAMP_FREQ: idx = data->channel_data[chan->address].data_rate; *val = data->data_rate[idx]; ret = IIO_VAL_INT; break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); mutex_unlock(&indio_dev->mlock); return ret; } static int ads1015_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ads1015_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_SCALE: ret = ads1015_set_scale(data, chan, val, val2); break; case IIO_CHAN_INFO_SAMP_FREQ: ret = ads1015_set_data_rate(data, chan->address, val); break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); return ret; } static int ads1015_buffer_preenable(struct iio_dev *indio_dev) { return ads1015_set_power_state(iio_priv(indio_dev), true); } static int ads1015_buffer_postdisable(struct iio_dev *indio_dev) { return ads1015_set_power_state(iio_priv(indio_dev), false); } static const struct iio_buffer_setup_ops ads1015_buffer_setup_ops = { .preenable = ads1015_buffer_preenable, .postenable = iio_triggered_buffer_postenable, .predisable = iio_triggered_buffer_predisable, .postdisable = ads1015_buffer_postdisable, .validate_scan_mask = &iio_validate_scan_mask_onehot, }; static IIO_CONST_ATTR_NAMED(ads1015_scale_available, scale_available, "3 2 1 0.5 0.25 0.125"); static IIO_CONST_ATTR_NAMED(ads1115_scale_available, scale_available, "0.1875 0.125 0.0625 0.03125 0.015625 0.007813"); static IIO_CONST_ATTR_NAMED(ads1015_sampling_frequency_available, sampling_frequency_available, "128 250 490 920 1600 2400 3300"); static IIO_CONST_ATTR_NAMED(ads1115_sampling_frequency_available, sampling_frequency_available, "8 16 32 64 128 250 475 860"); static struct attribute *ads1015_attributes[] = { &iio_const_attr_ads1015_scale_available.dev_attr.attr, &iio_const_attr_ads1015_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group ads1015_attribute_group = { .attrs = ads1015_attributes, }; static struct attribute *ads1115_attributes[] = { &iio_const_attr_ads1115_scale_available.dev_attr.attr, &iio_const_attr_ads1115_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group ads1115_attribute_group = { .attrs = ads1115_attributes, }; static const struct iio_info ads1015_info = { .driver_module = THIS_MODULE, .read_raw = ads1015_read_raw, .write_raw = ads1015_write_raw, .attrs = &ads1015_attribute_group, }; static const struct iio_info ads1115_info = { .driver_module = THIS_MODULE, .read_raw = ads1015_read_raw, .write_raw = ads1015_write_raw, .attrs = &ads1115_attribute_group, }; #ifdef CONFIG_OF static int ads1015_get_channels_config_of(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ads1015_data *data = iio_priv(indio_dev); struct device_node *node; if (!client->dev.of_node || !of_get_next_child(client->dev.of_node, NULL)) return -EINVAL; for_each_child_of_node(client->dev.of_node, node) { u32 pval; unsigned int channel; unsigned int pga = ADS1015_DEFAULT_PGA; unsigned int data_rate = ADS1015_DEFAULT_DATA_RATE; if (of_property_read_u32(node, "reg", &pval)) { dev_err(&client->dev, "invalid reg on %pOF\n", node); continue; } channel = pval; if (channel >= ADS1015_CHANNELS) { dev_err(&client->dev, "invalid channel index %d on %pOF\n", channel, node); continue; } if (!of_property_read_u32(node, "ti,gain", &pval)) { pga = pval; if (pga > 6) { dev_err(&client->dev, "invalid gain on %pOF\n", node); of_node_put(node); return -EINVAL; } } if (!of_property_read_u32(node, "ti,datarate", &pval)) { data_rate = pval; if (data_rate > 7) { dev_err(&client->dev, "invalid data_rate on %pOF\n", node); of_node_put(node); return -EINVAL; } } data->channel_data[channel].pga = pga; data->channel_data[channel].data_rate = data_rate; } return 0; } #endif static void ads1015_get_channels_config(struct i2c_client *client) { unsigned int k; struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ads1015_data *data = iio_priv(indio_dev); struct ads1015_platform_data *pdata = dev_get_platdata(&client->dev); /* prefer platform data */ if (pdata) { memcpy(data->channel_data, pdata->channel_data, sizeof(data->channel_data)); return; } #ifdef CONFIG_OF if (!ads1015_get_channels_config_of(client)) return; #endif /* fallback on default configuration */ for (k = 0; k < ADS1015_CHANNELS; ++k) { data->channel_data[k].pga = ADS1015_DEFAULT_PGA; data->channel_data[k].data_rate = ADS1015_DEFAULT_DATA_RATE; } } static int ads1015_set_conv_mode(struct ads1015_data *data, int mode) { return regmap_update_bits(data->regmap, ADS1015_CFG_REG, ADS1015_CFG_MOD_MASK, mode << ADS1015_CFG_MOD_SHIFT); } static int ads1015_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct iio_dev *indio_dev; struct ads1015_data *data; int ret; enum chip_ids chip; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); mutex_init(&data->lock); indio_dev->dev.parent = &client->dev; indio_dev->dev.of_node = client->dev.of_node; indio_dev->name = ADS1015_DRV_NAME; indio_dev->modes = INDIO_DIRECT_MODE; if (client->dev.of_node) chip = (enum chip_ids)of_device_get_match_data(&client->dev); else chip = id->driver_data; switch (chip) { case ADS1015: indio_dev->channels = ads1015_channels; indio_dev->num_channels = ARRAY_SIZE(ads1015_channels); indio_dev->info = &ads1015_info; data->data_rate = (unsigned int *) &ads1015_data_rate; break; case ADS1115: indio_dev->channels = ads1115_channels; indio_dev->num_channels = ARRAY_SIZE(ads1115_channels); indio_dev->info = &ads1115_info; data->data_rate = (unsigned int *) &ads1115_data_rate; break; } /* we need to keep this ABI the same as used by hwmon ADS1015 driver */ ads1015_get_channels_config(client); data->regmap = devm_regmap_init_i2c(client, &ads1015_regmap_config); if (IS_ERR(data->regmap)) { dev_err(&client->dev, "Failed to allocate register map\n"); return PTR_ERR(data->regmap); } ret = iio_triggered_buffer_setup(indio_dev, NULL, ads1015_trigger_handler, &ads1015_buffer_setup_ops); if (ret < 0) { dev_err(&client->dev, "iio triggered buffer setup failed\n"); return ret; } ret = ads1015_set_conv_mode(data, ADS1015_CONTINUOUS); if (ret) return ret; data->conv_invalid = true; ret = pm_runtime_set_active(&client->dev); if (ret) goto err_buffer_cleanup; pm_runtime_set_autosuspend_delay(&client->dev, ADS1015_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); pm_runtime_enable(&client->dev); ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "Failed to register IIO device\n"); goto err_buffer_cleanup; } return 0; err_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); return ret; } static int ads1015_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ads1015_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); pm_runtime_put_noidle(&client->dev); iio_triggered_buffer_cleanup(indio_dev); /* power down single shot mode */ return ads1015_set_conv_mode(data, ADS1015_SINGLESHOT); } #ifdef CONFIG_PM static int ads1015_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct ads1015_data *data = iio_priv(indio_dev); return ads1015_set_conv_mode(data, ADS1015_SINGLESHOT); } static int ads1015_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct ads1015_data *data = iio_priv(indio_dev); int ret; ret = ads1015_set_conv_mode(data, ADS1015_CONTINUOUS); if (!ret) data->conv_invalid = true; return ret; } #endif static const struct dev_pm_ops ads1015_pm_ops = { SET_RUNTIME_PM_OPS(ads1015_runtime_suspend, ads1015_runtime_resume, NULL) }; static const struct i2c_device_id ads1015_id[] = { {"ads1015", ADS1015}, {"ads1115", ADS1115}, {} }; MODULE_DEVICE_TABLE(i2c, ads1015_id); static const struct of_device_id ads1015_of_match[] = { { .compatible = "ti,ads1015", .data = (void *)ADS1015 }, { .compatible = "ti,ads1115", .data = (void *)ADS1115 }, {} }; MODULE_DEVICE_TABLE(of, ads1015_of_match); static struct i2c_driver ads1015_driver = { .driver = { .name = ADS1015_DRV_NAME, .of_match_table = ads1015_of_match, .pm = &ads1015_pm_ops, }, .probe = ads1015_probe, .remove = ads1015_remove, .id_table = ads1015_id, }; module_i2c_driver(ads1015_driver); MODULE_AUTHOR("Daniel Baluta "); MODULE_DESCRIPTION("Texas Instruments ADS1015 ADC driver"); MODULE_LICENSE("GPL v2");