/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include #include "i915_drv.h" #include "i915_trace.h" #include "intel_breadcrumbs.h" #include "intel_gt_pm.h" #include "intel_gt_requests.h" static void irq_enable(struct intel_engine_cs *engine) { if (!engine->irq_enable) return; /* Caller disables interrupts */ spin_lock(&engine->gt->irq_lock); engine->irq_enable(engine); spin_unlock(&engine->gt->irq_lock); } static void irq_disable(struct intel_engine_cs *engine) { if (!engine->irq_disable) return; /* Caller disables interrupts */ spin_lock(&engine->gt->irq_lock); engine->irq_disable(engine); spin_unlock(&engine->gt->irq_lock); } static void __intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b) { lockdep_assert_held(&b->irq_lock); if (!b->irq_engine || b->irq_armed) return; if (!intel_gt_pm_get_if_awake(b->irq_engine->gt)) return; /* * The breadcrumb irq will be disarmed on the interrupt after the * waiters are signaled. This gives us a single interrupt window in * which we can add a new waiter and avoid the cost of re-enabling * the irq. */ WRITE_ONCE(b->irq_armed, true); /* * Since we are waiting on a request, the GPU should be busy * and should have its own rpm reference. This is tracked * by i915->gt.awake, we can forgo holding our own wakref * for the interrupt as before i915->gt.awake is released (when * the driver is idle) we disarm the breadcrumbs. */ if (!b->irq_enabled++) irq_enable(b->irq_engine); } static void __intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b) { lockdep_assert_held(&b->irq_lock); if (!b->irq_engine || !b->irq_armed) return; GEM_BUG_ON(!b->irq_enabled); if (!--b->irq_enabled) irq_disable(b->irq_engine); WRITE_ONCE(b->irq_armed, false); intel_gt_pm_put_async(b->irq_engine->gt); } static inline bool __request_completed(const struct i915_request *rq) { return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno); } __maybe_unused static bool check_signal_order(struct intel_context *ce, struct i915_request *rq) { if (!list_is_last(&rq->signal_link, &ce->signals) && i915_seqno_passed(rq->fence.seqno, list_next_entry(rq, signal_link)->fence.seqno)) return false; if (!list_is_first(&rq->signal_link, &ce->signals) && i915_seqno_passed(list_prev_entry(rq, signal_link)->fence.seqno, rq->fence.seqno)) return false; return true; } static bool __dma_fence_signal(struct dma_fence *fence) { return !test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags); } static void __dma_fence_signal__timestamp(struct dma_fence *fence, ktime_t timestamp) { fence->timestamp = timestamp; set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags); trace_dma_fence_signaled(fence); } static void __dma_fence_signal__notify(struct dma_fence *fence, const struct list_head *list) { struct dma_fence_cb *cur, *tmp; lockdep_assert_held(fence->lock); list_for_each_entry_safe(cur, tmp, list, node) { INIT_LIST_HEAD(&cur->node); cur->func(fence, cur); } } static void add_retire(struct intel_breadcrumbs *b, struct intel_timeline *tl) { if (b->irq_engine) intel_engine_add_retire(b->irq_engine, tl); } static bool __signal_request(struct i915_request *rq, struct list_head *signals) { clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags); if (!__dma_fence_signal(&rq->fence)) return false; i915_request_get(rq); list_add_tail(&rq->signal_link, signals); return true; } static void signal_irq_work(struct irq_work *work) { struct intel_breadcrumbs *b = container_of(work, typeof(*b), irq_work); const ktime_t timestamp = ktime_get(); struct intel_context *ce, *cn; struct list_head *pos, *next; LIST_HEAD(signal); spin_lock(&b->irq_lock); if (list_empty(&b->signalers)) __intel_breadcrumbs_disarm_irq(b); list_splice_init(&b->signaled_requests, &signal); list_for_each_entry_safe(ce, cn, &b->signalers, signal_link) { GEM_BUG_ON(list_empty(&ce->signals)); list_for_each_safe(pos, next, &ce->signals) { struct i915_request *rq = list_entry(pos, typeof(*rq), signal_link); GEM_BUG_ON(!check_signal_order(ce, rq)); if (!__request_completed(rq)) break; /* * Queue for execution after dropping the signaling * spinlock as the callback chain may end up adding * more signalers to the same context or engine. */ __signal_request(rq, &signal); } /* * We process the list deletion in bulk, only using a list_add * (not list_move) above but keeping the status of * rq->signal_link known with the I915_FENCE_FLAG_SIGNAL bit. */ if (!list_is_first(pos, &ce->signals)) { /* Advance the list to the first incomplete request */ __list_del_many(&ce->signals, pos); if (&ce->signals == pos) { /* now empty */ list_del_init(&ce->signal_link); add_retire(b, ce->timeline); } } } spin_unlock(&b->irq_lock); list_for_each_safe(pos, next, &signal) { struct i915_request *rq = list_entry(pos, typeof(*rq), signal_link); struct list_head cb_list; spin_lock(&rq->lock); list_replace(&rq->fence.cb_list, &cb_list); __dma_fence_signal__timestamp(&rq->fence, timestamp); __dma_fence_signal__notify(&rq->fence, &cb_list); spin_unlock(&rq->lock); i915_request_put(rq); } } struct intel_breadcrumbs * intel_breadcrumbs_create(struct intel_engine_cs *irq_engine) { struct intel_breadcrumbs *b; b = kzalloc(sizeof(*b), GFP_KERNEL); if (!b) return NULL; spin_lock_init(&b->irq_lock); INIT_LIST_HEAD(&b->signalers); INIT_LIST_HEAD(&b->signaled_requests); init_irq_work(&b->irq_work, signal_irq_work); b->irq_engine = irq_engine; return b; } void intel_breadcrumbs_reset(struct intel_breadcrumbs *b) { unsigned long flags; if (!b->irq_engine) return; spin_lock_irqsave(&b->irq_lock, flags); if (b->irq_enabled) irq_enable(b->irq_engine); else irq_disable(b->irq_engine); spin_unlock_irqrestore(&b->irq_lock, flags); } void intel_breadcrumbs_park(struct intel_breadcrumbs *b) { unsigned long flags; if (!READ_ONCE(b->irq_armed)) return; spin_lock_irqsave(&b->irq_lock, flags); __intel_breadcrumbs_disarm_irq(b); spin_unlock_irqrestore(&b->irq_lock, flags); } void intel_breadcrumbs_free(struct intel_breadcrumbs *b) { kfree(b); } static void insert_breadcrumb(struct i915_request *rq, struct intel_breadcrumbs *b) { struct intel_context *ce = rq->context; struct list_head *pos; if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) return; /* * If the request is already completed, we can transfer it * straight onto a signaled list, and queue the irq worker for * its signal completion. */ if (__request_completed(rq)) { if (__signal_request(rq, &b->signaled_requests)) irq_work_queue(&b->irq_work); return; } __intel_breadcrumbs_arm_irq(b); /* * We keep the seqno in retirement order, so we can break * inside intel_engine_signal_breadcrumbs as soon as we've * passed the last completed request (or seen a request that * hasn't event started). We could walk the timeline->requests, * but keeping a separate signalers_list has the advantage of * hopefully being much smaller than the full list and so * provides faster iteration and detection when there are no * more interrupts required for this context. * * We typically expect to add new signalers in order, so we * start looking for our insertion point from the tail of * the list. */ list_for_each_prev(pos, &ce->signals) { struct i915_request *it = list_entry(pos, typeof(*it), signal_link); if (i915_seqno_passed(rq->fence.seqno, it->fence.seqno)) break; } list_add(&rq->signal_link, pos); if (pos == &ce->signals) /* catch transitions from empty list */ list_move_tail(&ce->signal_link, &b->signalers); GEM_BUG_ON(!check_signal_order(ce, rq)); set_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags); /* Check after attaching to irq, interrupt may have already fired. */ if (__request_completed(rq)) irq_work_queue(&b->irq_work); } bool i915_request_enable_breadcrumb(struct i915_request *rq) { struct intel_breadcrumbs *b; /* Serialises with i915_request_retire() using rq->lock */ if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) return true; /* * Peek at i915_request_submit()/i915_request_unsubmit() status. * * If the request is not yet active (and not signaled), we will * attach the breadcrumb later. */ if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) return true; /* * rq->engine is locked by rq->engine->active.lock. That however * is not known until after rq->engine has been dereferenced and * the lock acquired. Hence we acquire the lock and then validate * that rq->engine still matches the lock we hold for it. * * Here, we are using the breadcrumb lock as a proxy for the * rq->engine->active.lock, and we know that since the breadcrumb * will be serialised within i915_request_submit/i915_request_unsubmit, * the engine cannot change while active as long as we hold the * breadcrumb lock on that engine. * * From the dma_fence_enable_signaling() path, we are outside of the * request submit/unsubmit path, and so we must be more careful to * acquire the right lock. */ b = READ_ONCE(rq->engine)->breadcrumbs; spin_lock(&b->irq_lock); while (unlikely(b != READ_ONCE(rq->engine)->breadcrumbs)) { spin_unlock(&b->irq_lock); b = READ_ONCE(rq->engine)->breadcrumbs; spin_lock(&b->irq_lock); } /* * Now that we are finally serialised with request submit/unsubmit, * [with b->irq_lock] and with i915_request_retire() [via checking * SIGNALED with rq->lock] confirm the request is indeed active. If * it is no longer active, the breadcrumb will be attached upon * i915_request_submit(). */ if (test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) insert_breadcrumb(rq, b); spin_unlock(&b->irq_lock); return true; } void i915_request_cancel_breadcrumb(struct i915_request *rq) { struct intel_breadcrumbs *b = rq->engine->breadcrumbs; /* * We must wait for b->irq_lock so that we know the interrupt handler * has released its reference to the intel_context and has completed * the DMA_FENCE_FLAG_SIGNALED_BIT/I915_FENCE_FLAG_SIGNAL dance (if * required). */ spin_lock(&b->irq_lock); if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) { struct intel_context *ce = rq->context; list_del(&rq->signal_link); if (list_empty(&ce->signals)) list_del_init(&ce->signal_link); clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags); } spin_unlock(&b->irq_lock); } void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine, struct drm_printer *p) { struct intel_breadcrumbs *b = engine->breadcrumbs; struct intel_context *ce; struct i915_request *rq; if (!b || list_empty(&b->signalers)) return; drm_printf(p, "Signals:\n"); spin_lock_irq(&b->irq_lock); list_for_each_entry(ce, &b->signalers, signal_link) { list_for_each_entry(rq, &ce->signals, signal_link) { drm_printf(p, "\t[%llx:%llx%s] @ %dms\n", rq->fence.context, rq->fence.seqno, i915_request_completed(rq) ? "!" : i915_request_started(rq) ? "*" : "", jiffies_to_msecs(jiffies - rq->emitted_jiffies)); } } spin_unlock_irq(&b->irq_lock); }