/* * OMAP DMAengine support * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "virt-dma.h" struct omap_dmadev { struct dma_device ddev; spinlock_t lock; struct tasklet_struct task; struct list_head pending; struct omap_system_dma_plat_info *plat; }; struct omap_chan { struct virt_dma_chan vc; struct list_head node; struct omap_system_dma_plat_info *plat; struct dma_slave_config cfg; unsigned dma_sig; bool cyclic; bool paused; int dma_ch; struct omap_desc *desc; unsigned sgidx; }; struct omap_sg { dma_addr_t addr; uint32_t en; /* number of elements (24-bit) */ uint32_t fn; /* number of frames (16-bit) */ }; struct omap_desc { struct virt_dma_desc vd; enum dma_transfer_direction dir; dma_addr_t dev_addr; int16_t fi; /* for OMAP_DMA_SYNC_PACKET */ uint8_t es; /* OMAP_DMA_DATA_TYPE_xxx */ uint32_t ccr; /* CCR value */ uint16_t cicr; /* CICR value */ uint32_t csdp; /* CSDP value */ unsigned sglen; struct omap_sg sg[0]; }; static const unsigned es_bytes[] = { [OMAP_DMA_DATA_TYPE_S8] = 1, [OMAP_DMA_DATA_TYPE_S16] = 2, [OMAP_DMA_DATA_TYPE_S32] = 4, }; static struct of_dma_filter_info omap_dma_info = { .filter_fn = omap_dma_filter_fn, }; static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d) { return container_of(d, struct omap_dmadev, ddev); } static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c) { return container_of(c, struct omap_chan, vc.chan); } static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t) { return container_of(t, struct omap_desc, vd.tx); } static void omap_dma_desc_free(struct virt_dma_desc *vd) { kfree(container_of(vd, struct omap_desc, vd)); } static void omap_dma_start(struct omap_chan *c, struct omap_desc *d) { struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device); uint32_t val; if (__dma_omap15xx(od->plat->dma_attr)) c->plat->dma_write(0, CPC, c->dma_ch); else c->plat->dma_write(0, CDAC, c->dma_ch); if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) { val = c->plat->dma_read(CLNK_CTRL, c->dma_ch); if (dma_omap1()) val &= ~(1 << 14); val |= c->dma_ch | 1 << 15; c->plat->dma_write(val, CLNK_CTRL, c->dma_ch); } else if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS) c->plat->dma_write(c->dma_ch, CLNK_CTRL, c->dma_ch); /* Clear CSR */ if (dma_omap1()) c->plat->dma_read(CSR, c->dma_ch); else c->plat->dma_write(~0, CSR, c->dma_ch); /* Enable interrupts */ c->plat->dma_write(d->cicr, CICR, c->dma_ch); val = c->plat->dma_read(CCR, c->dma_ch); if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING) val |= OMAP_DMA_CCR_BUFFERING_DISABLE; val |= OMAP_DMA_CCR_EN; mb(); c->plat->dma_write(val, CCR, c->dma_ch); } static void omap_dma_stop(struct omap_chan *c) { struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device); uint32_t val; /* disable irq */ c->plat->dma_write(0, CICR, c->dma_ch); /* Clear CSR */ if (dma_omap1()) c->plat->dma_read(CSR, c->dma_ch); else c->plat->dma_write(~0, CSR, c->dma_ch); val = c->plat->dma_read(CCR, c->dma_ch); if (od->plat->errata & DMA_ERRATA_i541 && val & OMAP_DMA_CCR_SEL_SRC_DST_SYNC) { uint32_t sysconfig; unsigned i; sysconfig = c->plat->dma_read(OCP_SYSCONFIG, c->dma_ch); val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK; val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE); c->plat->dma_write(val, OCP_SYSCONFIG, c->dma_ch); val = c->plat->dma_read(CCR, c->dma_ch); val &= ~OMAP_DMA_CCR_EN; c->plat->dma_write(val, CCR, c->dma_ch); /* Wait for sDMA FIFO to drain */ for (i = 0; ; i++) { val = c->plat->dma_read(CCR, c->dma_ch); if (!(val & (OMAP_DMA_CCR_RD_ACTIVE | OMAP_DMA_CCR_WR_ACTIVE))) break; if (i > 100) break; udelay(5); } if (val & (OMAP_DMA_CCR_RD_ACTIVE | OMAP_DMA_CCR_WR_ACTIVE)) dev_err(c->vc.chan.device->dev, "DMA drain did not complete on lch %d\n", c->dma_ch); c->plat->dma_write(sysconfig, OCP_SYSCONFIG, c->dma_ch); } else { val &= ~OMAP_DMA_CCR_EN; c->plat->dma_write(val, CCR, c->dma_ch); } mb(); if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) { val = c->plat->dma_read(CLNK_CTRL, c->dma_ch); if (dma_omap1()) val |= 1 << 14; /* set the STOP_LNK bit */ else val &= ~(1 << 15); /* Clear the ENABLE_LNK bit */ c->plat->dma_write(val, CLNK_CTRL, c->dma_ch); } } static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d, unsigned idx) { struct omap_sg *sg = d->sg + idx; if (d->dir == DMA_DEV_TO_MEM) { c->plat->dma_write(sg->addr, CDSA, c->dma_ch); c->plat->dma_write(0, CDEI, c->dma_ch); c->plat->dma_write(0, CDFI, c->dma_ch); } else { c->plat->dma_write(sg->addr, CSSA, c->dma_ch); c->plat->dma_write(0, CSEI, c->dma_ch); c->plat->dma_write(0, CSFI, c->dma_ch); } c->plat->dma_write(sg->en, CEN, c->dma_ch); c->plat->dma_write(sg->fn, CFN, c->dma_ch); omap_dma_start(c, d); } static void omap_dma_start_desc(struct omap_chan *c) { struct virt_dma_desc *vd = vchan_next_desc(&c->vc); struct omap_desc *d; if (!vd) { c->desc = NULL; return; } list_del(&vd->node); c->desc = d = to_omap_dma_desc(&vd->tx); c->sgidx = 0; c->plat->dma_write(d->ccr, CCR, c->dma_ch); if (dma_omap1()) c->plat->dma_write(d->ccr >> 16, CCR2, c->dma_ch); if (d->dir == DMA_DEV_TO_MEM) { c->plat->dma_write(d->dev_addr, CSSA, c->dma_ch); c->plat->dma_write(0, CSEI, c->dma_ch); c->plat->dma_write(d->fi, CSFI, c->dma_ch); } else { c->plat->dma_write(d->dev_addr, CDSA, c->dma_ch); c->plat->dma_write(0, CDEI, c->dma_ch); c->plat->dma_write(d->fi, CDFI, c->dma_ch); } c->plat->dma_write(d->csdp, CSDP, c->dma_ch); omap_dma_start_sg(c, d, 0); } static void omap_dma_callback(int ch, u16 status, void *data) { struct omap_chan *c = data; struct omap_desc *d; unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); d = c->desc; if (d) { if (!c->cyclic) { if (++c->sgidx < d->sglen) { omap_dma_start_sg(c, d, c->sgidx); } else { omap_dma_start_desc(c); vchan_cookie_complete(&d->vd); } } else { vchan_cyclic_callback(&d->vd); } } spin_unlock_irqrestore(&c->vc.lock, flags); } /* * This callback schedules all pending channels. We could be more * clever here by postponing allocation of the real DMA channels to * this point, and freeing them when our virtual channel becomes idle. * * We would then need to deal with 'all channels in-use' */ static void omap_dma_sched(unsigned long data) { struct omap_dmadev *d = (struct omap_dmadev *)data; LIST_HEAD(head); spin_lock_irq(&d->lock); list_splice_tail_init(&d->pending, &head); spin_unlock_irq(&d->lock); while (!list_empty(&head)) { struct omap_chan *c = list_first_entry(&head, struct omap_chan, node); spin_lock_irq(&c->vc.lock); list_del_init(&c->node); omap_dma_start_desc(c); spin_unlock_irq(&c->vc.lock); } } static int omap_dma_alloc_chan_resources(struct dma_chan *chan) { struct omap_chan *c = to_omap_dma_chan(chan); dev_dbg(c->vc.chan.device->dev, "allocating channel for %u\n", c->dma_sig); return omap_request_dma(c->dma_sig, "DMA engine", omap_dma_callback, c, &c->dma_ch); } static void omap_dma_free_chan_resources(struct dma_chan *chan) { struct omap_chan *c = to_omap_dma_chan(chan); vchan_free_chan_resources(&c->vc); omap_free_dma(c->dma_ch); dev_dbg(c->vc.chan.device->dev, "freeing channel for %u\n", c->dma_sig); } static size_t omap_dma_sg_size(struct omap_sg *sg) { return sg->en * sg->fn; } static size_t omap_dma_desc_size(struct omap_desc *d) { unsigned i; size_t size; for (size = i = 0; i < d->sglen; i++) size += omap_dma_sg_size(&d->sg[i]); return size * es_bytes[d->es]; } static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr) { unsigned i; size_t size, es_size = es_bytes[d->es]; for (size = i = 0; i < d->sglen; i++) { size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size; if (size) size += this_size; else if (addr >= d->sg[i].addr && addr < d->sg[i].addr + this_size) size += d->sg[i].addr + this_size - addr; } return size; } static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c) { struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device); dma_addr_t addr; if (__dma_omap15xx(od->plat->dma_attr)) addr = c->plat->dma_read(CPC, c->dma_ch); else addr = c->plat->dma_read(CSAC, c->dma_ch); if (od->plat->errata & DMA_ERRATA_3_3 && addr == 0) addr = c->plat->dma_read(CSAC, c->dma_ch); if (!__dma_omap15xx(od->plat->dma_attr)) { /* * CDAC == 0 indicates that the DMA transfer on the channel has * not been started (no data has been transferred so far). * Return the programmed source start address in this case. */ if (c->plat->dma_read(CDAC, c->dma_ch)) addr = c->plat->dma_read(CSAC, c->dma_ch); else addr = c->plat->dma_read(CSSA, c->dma_ch); } if (dma_omap1()) addr |= c->plat->dma_read(CSSA, c->dma_ch) & 0xffff0000; return addr; } static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c) { struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device); dma_addr_t addr; if (__dma_omap15xx(od->plat->dma_attr)) addr = c->plat->dma_read(CPC, c->dma_ch); else addr = c->plat->dma_read(CDAC, c->dma_ch); /* * omap 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is * read before the DMA controller finished disabling the channel. */ if (!__dma_omap15xx(od->plat->dma_attr) && addr == 0) { addr = c->plat->dma_read(CDAC, c->dma_ch); /* * CDAC == 0 indicates that the DMA transfer on the channel has * not been started (no data has been transferred so far). * Return the programmed destination start address in this case. */ if (addr == 0) addr = c->plat->dma_read(CDSA, c->dma_ch); } if (dma_omap1()) addr |= c->plat->dma_read(CDSA, c->dma_ch) & 0xffff0000; return addr; } static enum dma_status omap_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct omap_chan *c = to_omap_dma_chan(chan); struct virt_dma_desc *vd; enum dma_status ret; unsigned long flags; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_COMPLETE || !txstate) return ret; spin_lock_irqsave(&c->vc.lock, flags); vd = vchan_find_desc(&c->vc, cookie); if (vd) { txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx)); } else if (c->desc && c->desc->vd.tx.cookie == cookie) { struct omap_desc *d = c->desc; dma_addr_t pos; if (d->dir == DMA_MEM_TO_DEV) pos = omap_dma_get_src_pos(c); else if (d->dir == DMA_DEV_TO_MEM) pos = omap_dma_get_dst_pos(c); else pos = 0; txstate->residue = omap_dma_desc_size_pos(d, pos); } else { txstate->residue = 0; } spin_unlock_irqrestore(&c->vc.lock, flags); return ret; } static void omap_dma_issue_pending(struct dma_chan *chan) { struct omap_chan *c = to_omap_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); if (vchan_issue_pending(&c->vc) && !c->desc) { /* * c->cyclic is used only by audio and in this case the DMA need * to be started without delay. */ if (!c->cyclic) { struct omap_dmadev *d = to_omap_dma_dev(chan->device); spin_lock(&d->lock); if (list_empty(&c->node)) list_add_tail(&c->node, &d->pending); spin_unlock(&d->lock); tasklet_schedule(&d->task); } else { omap_dma_start_desc(c); } } spin_unlock_irqrestore(&c->vc.lock, flags); } static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen, enum dma_transfer_direction dir, unsigned long tx_flags, void *context) { struct omap_chan *c = to_omap_dma_chan(chan); enum dma_slave_buswidth dev_width; struct scatterlist *sgent; struct omap_desc *d; dma_addr_t dev_addr; unsigned i, j = 0, es, en, frame_bytes; u32 burst; if (dir == DMA_DEV_TO_MEM) { dev_addr = c->cfg.src_addr; dev_width = c->cfg.src_addr_width; burst = c->cfg.src_maxburst; } else if (dir == DMA_MEM_TO_DEV) { dev_addr = c->cfg.dst_addr; dev_width = c->cfg.dst_addr_width; burst = c->cfg.dst_maxburst; } else { dev_err(chan->device->dev, "%s: bad direction?\n", __func__); return NULL; } /* Bus width translates to the element size (ES) */ switch (dev_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: es = OMAP_DMA_DATA_TYPE_S8; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: es = OMAP_DMA_DATA_TYPE_S16; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: es = OMAP_DMA_DATA_TYPE_S32; break; default: /* not reached */ return NULL; } /* Now allocate and setup the descriptor. */ d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC); if (!d) return NULL; d->dir = dir; d->dev_addr = dev_addr; d->es = es; d->ccr = 0; if (dir == DMA_DEV_TO_MEM) d->ccr |= OMAP_DMA_AMODE_POST_INC << 14 | OMAP_DMA_AMODE_CONSTANT << 12; else d->ccr |= OMAP_DMA_AMODE_CONSTANT << 14 | OMAP_DMA_AMODE_POST_INC << 12; d->cicr = OMAP_DMA_DROP_IRQ | OMAP_DMA_BLOCK_IRQ; d->csdp = es; if (dma_omap1()) { d->ccr |= 1 << 5; /* frame sync */ if (__dma_omap16xx(od->plat->dma_attr)) { d->ccr |= 1 << 10; /* disable 3.0/3.1 compatibility mode */ /* Duplicate what plat-omap/dma.c does */ d->ccr |= c->dma_ch + 1; } else { d->ccr |= c->dma_sig & 0x1f; } d->cicr |= OMAP1_DMA_TOUT_IRQ; if (dir == DMA_DEV_TO_MEM) d->csdp |= OMAP_DMA_PORT_EMIFF << 9 | OMAP_DMA_PORT_TIPB << 2; else d->csdp |= OMAP_DMA_PORT_TIPB << 9 | OMAP_DMA_PORT_EMIFF << 2; } else { d->ccr |= (c->dma_sig & ~0x1f) << 14; d->ccr |= c->dma_sig & 0x1f; d->ccr |= 1 << 5; /* frame sync */ if (dir == DMA_DEV_TO_MEM) d->ccr |= 1 << 24; /* source synch */ d->cicr |= OMAP2_DMA_MISALIGNED_ERR_IRQ | OMAP2_DMA_TRANS_ERR_IRQ; } /* * Build our scatterlist entries: each contains the address, * the number of elements (EN) in each frame, and the number of * frames (FN). Number of bytes for this entry = ES * EN * FN. * * Burst size translates to number of elements with frame sync. * Note: DMA engine defines burst to be the number of dev-width * transfers. */ en = burst; frame_bytes = es_bytes[es] * en; for_each_sg(sgl, sgent, sglen, i) { d->sg[j].addr = sg_dma_address(sgent); d->sg[j].en = en; d->sg[j].fn = sg_dma_len(sgent) / frame_bytes; j++; } d->sglen = j; return vchan_tx_prep(&c->vc, &d->vd, tx_flags); } static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags, void *context) { struct omap_dmadev *od = to_omap_dma_dev(chan->device); struct omap_chan *c = to_omap_dma_chan(chan); enum dma_slave_buswidth dev_width; struct omap_desc *d; dma_addr_t dev_addr; unsigned es; u32 burst; if (dir == DMA_DEV_TO_MEM) { dev_addr = c->cfg.src_addr; dev_width = c->cfg.src_addr_width; burst = c->cfg.src_maxburst; } else if (dir == DMA_MEM_TO_DEV) { dev_addr = c->cfg.dst_addr; dev_width = c->cfg.dst_addr_width; burst = c->cfg.dst_maxburst; } else { dev_err(chan->device->dev, "%s: bad direction?\n", __func__); return NULL; } /* Bus width translates to the element size (ES) */ switch (dev_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: es = OMAP_DMA_DATA_TYPE_S8; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: es = OMAP_DMA_DATA_TYPE_S16; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: es = OMAP_DMA_DATA_TYPE_S32; break; default: /* not reached */ return NULL; } /* Now allocate and setup the descriptor. */ d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC); if (!d) return NULL; d->dir = dir; d->dev_addr = dev_addr; d->fi = burst; d->es = es; d->sg[0].addr = buf_addr; d->sg[0].en = period_len / es_bytes[es]; d->sg[0].fn = buf_len / period_len; d->sglen = 1; d->ccr = 0; if (__dma_omap15xx(od->plat->dma_attr)) d->ccr = 3 << 8; if (dir == DMA_DEV_TO_MEM) d->ccr |= OMAP_DMA_AMODE_POST_INC << 14 | OMAP_DMA_AMODE_CONSTANT << 12; else d->ccr |= OMAP_DMA_AMODE_CONSTANT << 14 | OMAP_DMA_AMODE_POST_INC << 12; d->cicr = OMAP_DMA_DROP_IRQ; if (flags & DMA_PREP_INTERRUPT) d->cicr |= OMAP_DMA_FRAME_IRQ; d->csdp = es; if (dma_omap1()) { if (__dma_omap16xx(od->plat->dma_attr)) { d->ccr |= 1 << 10; /* disable 3.0/3.1 compatibility mode */ /* Duplicate what plat-omap/dma.c does */ d->ccr |= c->dma_ch + 1; } else { d->ccr |= c->dma_sig & 0x1f; } d->cicr |= OMAP1_DMA_TOUT_IRQ; if (dir == DMA_DEV_TO_MEM) d->csdp |= OMAP_DMA_PORT_EMIFF << 9 | OMAP_DMA_PORT_MPUI << 2; else d->csdp |= OMAP_DMA_PORT_MPUI << 9 | OMAP_DMA_PORT_EMIFF << 2; } else { d->ccr |= (c->dma_sig & ~0x1f) << 14; d->ccr |= c->dma_sig & 0x1f; if (burst) d->ccr |= 1 << 18 | 1 << 5; /* packet */ if (dir == DMA_DEV_TO_MEM) d->ccr |= 1 << 24; /* source synch */ d->cicr |= OMAP2_DMA_MISALIGNED_ERR_IRQ | OMAP2_DMA_TRANS_ERR_IRQ; /* src and dst burst mode 16 */ d->csdp |= 3 << 14 | 3 << 7; } c->cyclic = true; return vchan_tx_prep(&c->vc, &d->vd, flags); } static int omap_dma_slave_config(struct omap_chan *c, struct dma_slave_config *cfg) { if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) return -EINVAL; memcpy(&c->cfg, cfg, sizeof(c->cfg)); return 0; } static int omap_dma_terminate_all(struct omap_chan *c) { struct omap_dmadev *d = to_omap_dma_dev(c->vc.chan.device); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&c->vc.lock, flags); /* Prevent this channel being scheduled */ spin_lock(&d->lock); list_del_init(&c->node); spin_unlock(&d->lock); /* * Stop DMA activity: we assume the callback will not be called * after omap_dma_stop() returns (even if it does, it will see * c->desc is NULL and exit.) */ if (c->desc) { c->desc = NULL; /* Avoid stopping the dma twice */ if (!c->paused) omap_dma_stop(c); } if (c->cyclic) { c->cyclic = false; c->paused = false; } vchan_get_all_descriptors(&c->vc, &head); spin_unlock_irqrestore(&c->vc.lock, flags); vchan_dma_desc_free_list(&c->vc, &head); return 0; } static int omap_dma_pause(struct omap_chan *c) { /* Pause/Resume only allowed with cyclic mode */ if (!c->cyclic) return -EINVAL; if (!c->paused) { omap_dma_stop(c); c->paused = true; } return 0; } static int omap_dma_resume(struct omap_chan *c) { /* Pause/Resume only allowed with cyclic mode */ if (!c->cyclic) return -EINVAL; if (c->paused) { omap_dma_start(c, c->desc); c->paused = false; } return 0; } static int omap_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { struct omap_chan *c = to_omap_dma_chan(chan); int ret; switch (cmd) { case DMA_SLAVE_CONFIG: ret = omap_dma_slave_config(c, (struct dma_slave_config *)arg); break; case DMA_TERMINATE_ALL: ret = omap_dma_terminate_all(c); break; case DMA_PAUSE: ret = omap_dma_pause(c); break; case DMA_RESUME: ret = omap_dma_resume(c); break; default: ret = -ENXIO; break; } return ret; } static int omap_dma_chan_init(struct omap_dmadev *od, int dma_sig) { struct omap_chan *c; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return -ENOMEM; c->plat = od->plat; c->dma_sig = dma_sig; c->vc.desc_free = omap_dma_desc_free; vchan_init(&c->vc, &od->ddev); INIT_LIST_HEAD(&c->node); od->ddev.chancnt++; return 0; } static void omap_dma_free(struct omap_dmadev *od) { tasklet_kill(&od->task); while (!list_empty(&od->ddev.channels)) { struct omap_chan *c = list_first_entry(&od->ddev.channels, struct omap_chan, vc.chan.device_node); list_del(&c->vc.chan.device_node); tasklet_kill(&c->vc.task); kfree(c); } } static int omap_dma_probe(struct platform_device *pdev) { struct omap_dmadev *od; int rc, i; od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL); if (!od) return -ENOMEM; od->plat = omap_get_plat_info(); if (!od->plat) return -EPROBE_DEFER; dma_cap_set(DMA_SLAVE, od->ddev.cap_mask); dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask); od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources; od->ddev.device_free_chan_resources = omap_dma_free_chan_resources; od->ddev.device_tx_status = omap_dma_tx_status; od->ddev.device_issue_pending = omap_dma_issue_pending; od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg; od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic; od->ddev.device_control = omap_dma_control; od->ddev.dev = &pdev->dev; INIT_LIST_HEAD(&od->ddev.channels); INIT_LIST_HEAD(&od->pending); spin_lock_init(&od->lock); tasklet_init(&od->task, omap_dma_sched, (unsigned long)od); for (i = 0; i < 127; i++) { rc = omap_dma_chan_init(od, i); if (rc) { omap_dma_free(od); return rc; } } rc = dma_async_device_register(&od->ddev); if (rc) { pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n", rc); omap_dma_free(od); return rc; } platform_set_drvdata(pdev, od); if (pdev->dev.of_node) { omap_dma_info.dma_cap = od->ddev.cap_mask; /* Device-tree DMA controller registration */ rc = of_dma_controller_register(pdev->dev.of_node, of_dma_simple_xlate, &omap_dma_info); if (rc) { pr_warn("OMAP-DMA: failed to register DMA controller\n"); dma_async_device_unregister(&od->ddev); omap_dma_free(od); } } dev_info(&pdev->dev, "OMAP DMA engine driver\n"); return rc; } static int omap_dma_remove(struct platform_device *pdev) { struct omap_dmadev *od = platform_get_drvdata(pdev); if (pdev->dev.of_node) of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&od->ddev); omap_dma_free(od); return 0; } static const struct of_device_id omap_dma_match[] = { { .compatible = "ti,omap2420-sdma", }, { .compatible = "ti,omap2430-sdma", }, { .compatible = "ti,omap3430-sdma", }, { .compatible = "ti,omap3630-sdma", }, { .compatible = "ti,omap4430-sdma", }, {}, }; MODULE_DEVICE_TABLE(of, omap_dma_match); static struct platform_driver omap_dma_driver = { .probe = omap_dma_probe, .remove = omap_dma_remove, .driver = { .name = "omap-dma-engine", .owner = THIS_MODULE, .of_match_table = of_match_ptr(omap_dma_match), }, }; bool omap_dma_filter_fn(struct dma_chan *chan, void *param) { if (chan->device->dev->driver == &omap_dma_driver.driver) { struct omap_chan *c = to_omap_dma_chan(chan); unsigned req = *(unsigned *)param; return req == c->dma_sig; } return false; } EXPORT_SYMBOL_GPL(omap_dma_filter_fn); static int omap_dma_init(void) { return platform_driver_register(&omap_dma_driver); } subsys_initcall(omap_dma_init); static void __exit omap_dma_exit(void) { platform_driver_unregister(&omap_dma_driver); } module_exit(omap_dma_exit); MODULE_AUTHOR("Russell King"); MODULE_LICENSE("GPL");