/* * Copyright (C) 2015 IT University of Copenhagen * Initial release: Matias Bjorling * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs. */ #include "rrpc.h" static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache; static DECLARE_RWSEM(rrpc_lock); static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd, unsigned long flags); #define rrpc_for_each_lun(rrpc, rlun, i) \ for ((i) = 0, rlun = &(rrpc)->luns[0]; \ (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)]) static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a) { struct rrpc_block *rblk = a->rblk; unsigned int pg_offset; lockdep_assert_held(&rrpc->rev_lock); if (a->addr == ADDR_EMPTY || !rblk) return; spin_lock(&rblk->lock); div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset); WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages)); rblk->nr_invalid_pages++; spin_unlock(&rblk->lock); rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY; } static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba, unsigned len) { sector_t i; spin_lock(&rrpc->rev_lock); for (i = slba; i < slba + len; i++) { struct rrpc_addr *gp = &rrpc->trans_map[i]; rrpc_page_invalidate(rrpc, gp); gp->rblk = NULL; } spin_unlock(&rrpc->rev_lock); } static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc, sector_t laddr, unsigned int pages) { struct nvm_rq *rqd; struct rrpc_inflight_rq *inf; rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC); if (!rqd) return ERR_PTR(-ENOMEM); inf = rrpc_get_inflight_rq(rqd); if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) { mempool_free(rqd, rrpc->rq_pool); return NULL; } return rqd; } static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd) { struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd); rrpc_unlock_laddr(rrpc, inf); mempool_free(rqd, rrpc->rq_pool); } static void rrpc_discard(struct rrpc *rrpc, struct bio *bio) { sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG; sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE; struct nvm_rq *rqd; do { rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len); schedule(); } while (!rqd); if (IS_ERR(rqd)) { pr_err("rrpc: unable to acquire inflight IO\n"); bio_io_error(bio); return; } rrpc_invalidate_range(rrpc, slba, len); rrpc_inflight_laddr_release(rrpc, rqd); } static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk) { return (rblk->next_page == rrpc->dev->pgs_per_blk); } static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk) { struct nvm_block *blk = rblk->parent; return blk->id * rrpc->dev->pgs_per_blk; } static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev, struct ppa_addr r) { struct ppa_addr l; int secs, pgs, blks, luns; sector_t ppa = r.ppa; l.ppa = 0; div_u64_rem(ppa, dev->sec_per_pg, &secs); l.g.sec = secs; sector_div(ppa, dev->sec_per_pg); div_u64_rem(ppa, dev->sec_per_blk, &pgs); l.g.pg = pgs; sector_div(ppa, dev->pgs_per_blk); div_u64_rem(ppa, dev->blks_per_lun, &blks); l.g.blk = blks; sector_div(ppa, dev->blks_per_lun); div_u64_rem(ppa, dev->luns_per_chnl, &luns); l.g.lun = luns; sector_div(ppa, dev->luns_per_chnl); l.g.ch = ppa; return l; } static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr) { struct ppa_addr paddr; paddr.ppa = addr; return linear_to_generic_addr(dev, paddr); } /* requires lun->lock taken */ static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk) { struct rrpc *rrpc = rlun->rrpc; BUG_ON(!rblk); if (rlun->cur) { spin_lock(&rlun->cur->lock); WARN_ON(!block_is_full(rrpc, rlun->cur)); spin_unlock(&rlun->cur->lock); } rlun->cur = rblk; } static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun, unsigned long flags) { struct nvm_block *blk; struct rrpc_block *rblk; blk = nvm_get_blk(rrpc->dev, rlun->parent, flags); if (!blk) return NULL; rblk = &rlun->blocks[blk->id]; blk->priv = rblk; bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk); rblk->next_page = 0; rblk->nr_invalid_pages = 0; atomic_set(&rblk->data_cmnt_size, 0); return rblk; } static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk) { nvm_put_blk(rrpc->dev, rblk->parent); } static void rrpc_put_blks(struct rrpc *rrpc) { struct rrpc_lun *rlun; int i; for (i = 0; i < rrpc->nr_luns; i++) { rlun = &rrpc->luns[i]; if (rlun->cur) rrpc_put_blk(rrpc, rlun->cur); if (rlun->gc_cur) rrpc_put_blk(rrpc, rlun->gc_cur); } } static struct rrpc_lun *get_next_lun(struct rrpc *rrpc) { int next = atomic_inc_return(&rrpc->next_lun); return &rrpc->luns[next % rrpc->nr_luns]; } static void rrpc_gc_kick(struct rrpc *rrpc) { struct rrpc_lun *rlun; unsigned int i; for (i = 0; i < rrpc->nr_luns; i++) { rlun = &rrpc->luns[i]; queue_work(rrpc->krqd_wq, &rlun->ws_gc); } } /* * timed GC every interval. */ static void rrpc_gc_timer(unsigned long data) { struct rrpc *rrpc = (struct rrpc *)data; rrpc_gc_kick(rrpc); mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10)); } static void rrpc_end_sync_bio(struct bio *bio) { struct completion *waiting = bio->bi_private; if (bio->bi_error) pr_err("nvm: gc request failed (%u).\n", bio->bi_error); complete(waiting); } /* * rrpc_move_valid_pages -- migrate live data off the block * @rrpc: the 'rrpc' structure * @block: the block from which to migrate live pages * * Description: * GC algorithms may call this function to migrate remaining live * pages off the block prior to erasing it. This function blocks * further execution until the operation is complete. */ static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk) { struct request_queue *q = rrpc->dev->q; struct rrpc_rev_addr *rev; struct nvm_rq *rqd; struct bio *bio; struct page *page; int slot; int nr_pgs_per_blk = rrpc->dev->pgs_per_blk; u64 phys_addr; DECLARE_COMPLETION_ONSTACK(wait); if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) return 0; bio = bio_alloc(GFP_NOIO, 1); if (!bio) { pr_err("nvm: could not alloc bio to gc\n"); return -ENOMEM; } page = mempool_alloc(rrpc->page_pool, GFP_NOIO); while ((slot = find_first_zero_bit(rblk->invalid_pages, nr_pgs_per_blk)) < nr_pgs_per_blk) { /* Lock laddr */ phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot; try: spin_lock(&rrpc->rev_lock); /* Get logical address from physical to logical table */ rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset]; /* already updated by previous regular write */ if (rev->addr == ADDR_EMPTY) { spin_unlock(&rrpc->rev_lock); continue; } rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1); if (IS_ERR_OR_NULL(rqd)) { spin_unlock(&rrpc->rev_lock); schedule(); goto try; } spin_unlock(&rrpc->rev_lock); /* Perform read to do GC */ bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr); bio->bi_rw = READ; bio->bi_private = &wait; bio->bi_end_io = rrpc_end_sync_bio; /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */ bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0); if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) { pr_err("rrpc: gc read failed.\n"); rrpc_inflight_laddr_release(rrpc, rqd); goto finished; } wait_for_completion_io(&wait); bio_reset(bio); reinit_completion(&wait); bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr); bio->bi_rw = WRITE; bio->bi_private = &wait; bio->bi_end_io = rrpc_end_sync_bio; bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0); /* turn the command around and write the data back to a new * address */ if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) { pr_err("rrpc: gc write failed.\n"); rrpc_inflight_laddr_release(rrpc, rqd); goto finished; } wait_for_completion_io(&wait); rrpc_inflight_laddr_release(rrpc, rqd); bio_reset(bio); } finished: mempool_free(page, rrpc->page_pool); bio_put(bio); if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) { pr_err("nvm: failed to garbage collect block\n"); return -EIO; } return 0; } static void rrpc_block_gc(struct work_struct *work) { struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc, ws_gc); struct rrpc *rrpc = gcb->rrpc; struct rrpc_block *rblk = gcb->rblk; struct nvm_dev *dev = rrpc->dev; pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id); if (rrpc_move_valid_pages(rrpc, rblk)) goto done; nvm_erase_blk(dev, rblk->parent); rrpc_put_blk(rrpc, rblk); done: mempool_free(gcb, rrpc->gcb_pool); } /* the block with highest number of invalid pages, will be in the beginning * of the list */ static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra, struct rrpc_block *rb) { if (ra->nr_invalid_pages == rb->nr_invalid_pages) return ra; return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra; } /* linearly find the block with highest number of invalid pages * requires lun->lock */ static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun) { struct list_head *prio_list = &rlun->prio_list; struct rrpc_block *rblock, *max; BUG_ON(list_empty(prio_list)); max = list_first_entry(prio_list, struct rrpc_block, prio); list_for_each_entry(rblock, prio_list, prio) max = rblock_max_invalid(max, rblock); return max; } static void rrpc_lun_gc(struct work_struct *work) { struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc); struct rrpc *rrpc = rlun->rrpc; struct nvm_lun *lun = rlun->parent; struct rrpc_block_gc *gcb; unsigned int nr_blocks_need; nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE; if (nr_blocks_need < rrpc->nr_luns) nr_blocks_need = rrpc->nr_luns; spin_lock(&lun->lock); while (nr_blocks_need > lun->nr_free_blocks && !list_empty(&rlun->prio_list)) { struct rrpc_block *rblock = block_prio_find_max(rlun); struct nvm_block *block = rblock->parent; if (!rblock->nr_invalid_pages) break; list_del_init(&rblock->prio); BUG_ON(!block_is_full(rrpc, rblock)); pr_debug("rrpc: selected block '%lu' for GC\n", block->id); gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC); if (!gcb) break; gcb->rrpc = rrpc; gcb->rblk = rblock; INIT_WORK(&gcb->ws_gc, rrpc_block_gc); queue_work(rrpc->kgc_wq, &gcb->ws_gc); nr_blocks_need--; } spin_unlock(&lun->lock); /* TODO: Hint that request queue can be started again */ } static void rrpc_gc_queue(struct work_struct *work) { struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc, ws_gc); struct rrpc *rrpc = gcb->rrpc; struct rrpc_block *rblk = gcb->rblk; struct nvm_lun *lun = rblk->parent->lun; struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset]; spin_lock(&rlun->lock); list_add_tail(&rblk->prio, &rlun->prio_list); spin_unlock(&rlun->lock); mempool_free(gcb, rrpc->gcb_pool); pr_debug("nvm: block '%lu' is full, allow GC (sched)\n", rblk->parent->id); } static const struct block_device_operations rrpc_fops = { .owner = THIS_MODULE, }; static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc) { unsigned int i; struct rrpc_lun *rlun, *max_free; if (!is_gc) return get_next_lun(rrpc); /* during GC, we don't care about RR, instead we want to make * sure that we maintain evenness between the block luns. */ max_free = &rrpc->luns[0]; /* prevent GC-ing lun from devouring pages of a lun with * little free blocks. We don't take the lock as we only need an * estimate. */ rrpc_for_each_lun(rrpc, rlun, i) { if (rlun->parent->nr_free_blocks > max_free->parent->nr_free_blocks) max_free = rlun; } return max_free; } static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr, struct rrpc_block *rblk, u64 paddr) { struct rrpc_addr *gp; struct rrpc_rev_addr *rev; BUG_ON(laddr >= rrpc->nr_pages); gp = &rrpc->trans_map[laddr]; spin_lock(&rrpc->rev_lock); if (gp->rblk) rrpc_page_invalidate(rrpc, gp); gp->addr = paddr; gp->rblk = rblk; rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset]; rev->addr = laddr; spin_unlock(&rrpc->rev_lock); return gp; } static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk) { u64 addr = ADDR_EMPTY; spin_lock(&rblk->lock); if (block_is_full(rrpc, rblk)) goto out; addr = block_to_addr(rrpc, rblk) + rblk->next_page; rblk->next_page++; out: spin_unlock(&rblk->lock); return addr; } /* Simple round-robin Logical to physical address translation. * * Retrieve the mapping using the active append point. Then update the ap for * the next write to the disk. * * Returns rrpc_addr with the physical address and block. Remember to return to * rrpc->addr_cache when request is finished. */ static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr, int is_gc) { struct rrpc_lun *rlun; struct rrpc_block *rblk; struct nvm_lun *lun; u64 paddr; rlun = rrpc_get_lun_rr(rrpc, is_gc); lun = rlun->parent; if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4) return NULL; spin_lock(&rlun->lock); rblk = rlun->cur; retry: paddr = rrpc_alloc_addr(rrpc, rblk); if (paddr == ADDR_EMPTY) { rblk = rrpc_get_blk(rrpc, rlun, 0); if (rblk) { rrpc_set_lun_cur(rlun, rblk); goto retry; } if (is_gc) { /* retry from emergency gc block */ paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur); if (paddr == ADDR_EMPTY) { rblk = rrpc_get_blk(rrpc, rlun, 1); if (!rblk) { pr_err("rrpc: no more blocks"); goto err; } rlun->gc_cur = rblk; paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur); } rblk = rlun->gc_cur; } } spin_unlock(&rlun->lock); return rrpc_update_map(rrpc, laddr, rblk, paddr); err: spin_unlock(&rlun->lock); return NULL; } static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk) { struct rrpc_block_gc *gcb; gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC); if (!gcb) { pr_err("rrpc: unable to queue block for gc."); return; } gcb->rrpc = rrpc; gcb->rblk = rblk; INIT_WORK(&gcb->ws_gc, rrpc_gc_queue); queue_work(rrpc->kgc_wq, &gcb->ws_gc); } static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd, sector_t laddr, uint8_t npages) { struct rrpc_addr *p; struct rrpc_block *rblk; struct nvm_lun *lun; int cmnt_size, i; for (i = 0; i < npages; i++) { p = &rrpc->trans_map[laddr + i]; rblk = p->rblk; lun = rblk->parent->lun; cmnt_size = atomic_inc_return(&rblk->data_cmnt_size); if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk)) rrpc_run_gc(rrpc, rblk); } } static int rrpc_end_io(struct nvm_rq *rqd, int error) { struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance); struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd); uint8_t npages = rqd->nr_pages; sector_t laddr = rrpc_get_laddr(rqd->bio) - npages; if (bio_data_dir(rqd->bio) == WRITE) rrpc_end_io_write(rrpc, rrqd, laddr, npages); bio_put(rqd->bio); if (rrqd->flags & NVM_IOTYPE_GC) return 0; rrpc_unlock_rq(rrpc, rqd); if (npages > 1) nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list); if (rqd->metadata) nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata); mempool_free(rqd, rrpc->rq_pool); return 0; } static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd, unsigned long flags, int npages) { struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd); struct rrpc_addr *gp; sector_t laddr = rrpc_get_laddr(bio); int is_gc = flags & NVM_IOTYPE_GC; int i; if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) { nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list); return NVM_IO_REQUEUE; } for (i = 0; i < npages; i++) { /* We assume that mapping occurs at 4KB granularity */ BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages)); gp = &rrpc->trans_map[laddr + i]; if (gp->rblk) { rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr); } else { BUG_ON(is_gc); rrpc_unlock_laddr(rrpc, r); nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list); return NVM_IO_DONE; } } rqd->opcode = NVM_OP_HBREAD; return NVM_IO_OK; } static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd, unsigned long flags) { struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd); int is_gc = flags & NVM_IOTYPE_GC; sector_t laddr = rrpc_get_laddr(bio); struct rrpc_addr *gp; if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) return NVM_IO_REQUEUE; BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages)); gp = &rrpc->trans_map[laddr]; if (gp->rblk) { rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr); } else { BUG_ON(is_gc); rrpc_unlock_rq(rrpc, rqd); return NVM_IO_DONE; } rqd->opcode = NVM_OP_HBREAD; rrqd->addr = gp; return NVM_IO_OK; } static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd, unsigned long flags, int npages) { struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd); struct rrpc_addr *p; sector_t laddr = rrpc_get_laddr(bio); int is_gc = flags & NVM_IOTYPE_GC; int i; if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) { nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list); return NVM_IO_REQUEUE; } for (i = 0; i < npages; i++) { /* We assume that mapping occurs at 4KB granularity */ p = rrpc_map_page(rrpc, laddr + i, is_gc); if (!p) { BUG_ON(is_gc); rrpc_unlock_laddr(rrpc, r); nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list); rrpc_gc_kick(rrpc); return NVM_IO_REQUEUE; } rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev, p->addr); } rqd->opcode = NVM_OP_HBWRITE; return NVM_IO_OK; } static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd, unsigned long flags) { struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd); struct rrpc_addr *p; int is_gc = flags & NVM_IOTYPE_GC; sector_t laddr = rrpc_get_laddr(bio); if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) return NVM_IO_REQUEUE; p = rrpc_map_page(rrpc, laddr, is_gc); if (!p) { BUG_ON(is_gc); rrpc_unlock_rq(rrpc, rqd); rrpc_gc_kick(rrpc); return NVM_IO_REQUEUE; } rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr); rqd->opcode = NVM_OP_HBWRITE; rrqd->addr = p; return NVM_IO_OK; } static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd, unsigned long flags, uint8_t npages) { if (npages > 1) { rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL, &rqd->dma_ppa_list); if (!rqd->ppa_list) { pr_err("rrpc: not able to allocate ppa list\n"); return NVM_IO_ERR; } if (bio_rw(bio) == WRITE) return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags, npages); return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages); } if (bio_rw(bio) == WRITE) return rrpc_write_rq(rrpc, bio, rqd, flags); return rrpc_read_rq(rrpc, bio, rqd, flags); } static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd, unsigned long flags) { int err; struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd); uint8_t nr_pages = rrpc_get_pages(bio); int bio_size = bio_sectors(bio) << 9; if (bio_size < rrpc->dev->sec_size) return NVM_IO_ERR; else if (bio_size > rrpc->dev->max_rq_size) return NVM_IO_ERR; err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages); if (err) return err; bio_get(bio); rqd->bio = bio; rqd->ins = &rrpc->instance; rqd->nr_pages = nr_pages; rrq->flags = flags; err = nvm_submit_io(rrpc->dev, rqd); if (err) { pr_err("rrpc: I/O submission failed: %d\n", err); bio_put(bio); return NVM_IO_ERR; } return NVM_IO_OK; } static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio) { struct rrpc *rrpc = q->queuedata; struct nvm_rq *rqd; int err; if (bio->bi_rw & REQ_DISCARD) { rrpc_discard(rrpc, bio); return BLK_QC_T_NONE; } rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL); if (!rqd) { pr_err_ratelimited("rrpc: not able to queue bio."); bio_io_error(bio); return BLK_QC_T_NONE; } memset(rqd, 0, sizeof(struct nvm_rq)); err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE); switch (err) { case NVM_IO_OK: return BLK_QC_T_NONE; case NVM_IO_ERR: bio_io_error(bio); break; case NVM_IO_DONE: bio_endio(bio); break; case NVM_IO_REQUEUE: spin_lock(&rrpc->bio_lock); bio_list_add(&rrpc->requeue_bios, bio); spin_unlock(&rrpc->bio_lock); queue_work(rrpc->kgc_wq, &rrpc->ws_requeue); break; } mempool_free(rqd, rrpc->rq_pool); return BLK_QC_T_NONE; } static void rrpc_requeue(struct work_struct *work) { struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue); struct bio_list bios; struct bio *bio; bio_list_init(&bios); spin_lock(&rrpc->bio_lock); bio_list_merge(&bios, &rrpc->requeue_bios); bio_list_init(&rrpc->requeue_bios); spin_unlock(&rrpc->bio_lock); while ((bio = bio_list_pop(&bios))) rrpc_make_rq(rrpc->disk->queue, bio); } static void rrpc_gc_free(struct rrpc *rrpc) { struct rrpc_lun *rlun; int i; if (rrpc->krqd_wq) destroy_workqueue(rrpc->krqd_wq); if (rrpc->kgc_wq) destroy_workqueue(rrpc->kgc_wq); if (!rrpc->luns) return; for (i = 0; i < rrpc->nr_luns; i++) { rlun = &rrpc->luns[i]; if (!rlun->blocks) break; vfree(rlun->blocks); } } static int rrpc_gc_init(struct rrpc *rrpc) { rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND, rrpc->nr_luns); if (!rrpc->krqd_wq) return -ENOMEM; rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1); if (!rrpc->kgc_wq) return -ENOMEM; setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc); return 0; } static void rrpc_map_free(struct rrpc *rrpc) { vfree(rrpc->rev_trans_map); vfree(rrpc->trans_map); } static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private) { struct rrpc *rrpc = (struct rrpc *)private; struct nvm_dev *dev = rrpc->dev; struct rrpc_addr *addr = rrpc->trans_map + slba; struct rrpc_rev_addr *raddr = rrpc->rev_trans_map; sector_t max_pages = dev->total_pages * (dev->sec_size >> 9); u64 elba = slba + nlb; u64 i; if (unlikely(elba > dev->total_pages)) { pr_err("nvm: L2P data from device is out of bounds!\n"); return -EINVAL; } for (i = 0; i < nlb; i++) { u64 pba = le64_to_cpu(entries[i]); /* LNVM treats address-spaces as silos, LBA and PBA are * equally large and zero-indexed. */ if (unlikely(pba >= max_pages && pba != U64_MAX)) { pr_err("nvm: L2P data entry is out of bounds!\n"); return -EINVAL; } /* Address zero is a special one. The first page on a disk is * protected. As it often holds internal device boot * information. */ if (!pba) continue; addr[i].addr = pba; raddr[pba].addr = slba + i; } return 0; } static int rrpc_map_init(struct rrpc *rrpc) { struct nvm_dev *dev = rrpc->dev; sector_t i; int ret; rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages); if (!rrpc->trans_map) return -ENOMEM; rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr) * rrpc->nr_pages); if (!rrpc->rev_trans_map) return -ENOMEM; for (i = 0; i < rrpc->nr_pages; i++) { struct rrpc_addr *p = &rrpc->trans_map[i]; struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i]; p->addr = ADDR_EMPTY; r->addr = ADDR_EMPTY; } if (!dev->ops->get_l2p_tbl) return 0; /* Bring up the mapping table from device */ ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_pages, rrpc_l2p_update, rrpc); if (ret) { pr_err("nvm: rrpc: could not read L2P table.\n"); return -EINVAL; } return 0; } /* Minimum pages needed within a lun */ #define PAGE_POOL_SIZE 16 #define ADDR_POOL_SIZE 64 static int rrpc_core_init(struct rrpc *rrpc) { down_write(&rrpc_lock); if (!rrpc_gcb_cache) { rrpc_gcb_cache = kmem_cache_create("rrpc_gcb", sizeof(struct rrpc_block_gc), 0, 0, NULL); if (!rrpc_gcb_cache) { up_write(&rrpc_lock); return -ENOMEM; } rrpc_rq_cache = kmem_cache_create("rrpc_rq", sizeof(struct nvm_rq) + sizeof(struct rrpc_rq), 0, 0, NULL); if (!rrpc_rq_cache) { kmem_cache_destroy(rrpc_gcb_cache); up_write(&rrpc_lock); return -ENOMEM; } } up_write(&rrpc_lock); rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0); if (!rrpc->page_pool) return -ENOMEM; rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns, rrpc_gcb_cache); if (!rrpc->gcb_pool) return -ENOMEM; rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache); if (!rrpc->rq_pool) return -ENOMEM; spin_lock_init(&rrpc->inflights.lock); INIT_LIST_HEAD(&rrpc->inflights.reqs); return 0; } static void rrpc_core_free(struct rrpc *rrpc) { mempool_destroy(rrpc->page_pool); mempool_destroy(rrpc->gcb_pool); mempool_destroy(rrpc->rq_pool); } static void rrpc_luns_free(struct rrpc *rrpc) { kfree(rrpc->luns); } static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end) { struct nvm_dev *dev = rrpc->dev; struct rrpc_lun *rlun; int i, j; spin_lock_init(&rrpc->rev_lock); rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun), GFP_KERNEL); if (!rrpc->luns) return -ENOMEM; /* 1:1 mapping */ for (i = 0; i < rrpc->nr_luns; i++) { struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i); if (dev->pgs_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) { pr_err("rrpc: number of pages per block too high."); goto err; } rlun = &rrpc->luns[i]; rlun->rrpc = rrpc; rlun->parent = lun; INIT_LIST_HEAD(&rlun->prio_list); INIT_WORK(&rlun->ws_gc, rrpc_lun_gc); spin_lock_init(&rlun->lock); rrpc->total_blocks += dev->blks_per_lun; rrpc->nr_pages += dev->sec_per_lun; rlun->blocks = vzalloc(sizeof(struct rrpc_block) * rrpc->dev->blks_per_lun); if (!rlun->blocks) goto err; for (j = 0; j < rrpc->dev->blks_per_lun; j++) { struct rrpc_block *rblk = &rlun->blocks[j]; struct nvm_block *blk = &lun->blocks[j]; rblk->parent = blk; INIT_LIST_HEAD(&rblk->prio); spin_lock_init(&rblk->lock); } } return 0; err: return -ENOMEM; } static void rrpc_free(struct rrpc *rrpc) { rrpc_gc_free(rrpc); rrpc_map_free(rrpc); rrpc_core_free(rrpc); rrpc_luns_free(rrpc); kfree(rrpc); } static void rrpc_exit(void *private) { struct rrpc *rrpc = private; del_timer(&rrpc->gc_timer); flush_workqueue(rrpc->krqd_wq); flush_workqueue(rrpc->kgc_wq); rrpc_free(rrpc); } static sector_t rrpc_capacity(void *private) { struct rrpc *rrpc = private; struct nvm_dev *dev = rrpc->dev; sector_t reserved, provisioned; /* cur, gc, and two emergency blocks for each lun */ reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4; provisioned = rrpc->nr_pages - reserved; if (reserved > rrpc->nr_pages) { pr_err("rrpc: not enough space available to expose storage.\n"); return 0; } sector_div(provisioned, 10); return provisioned * 9 * NR_PHY_IN_LOG; } /* * Looks up the logical address from reverse trans map and check if its valid by * comparing the logical to physical address with the physical address. * Returns 0 on free, otherwise 1 if in use */ static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk) { struct nvm_dev *dev = rrpc->dev; int offset; struct rrpc_addr *laddr; u64 paddr, pladdr; for (offset = 0; offset < dev->pgs_per_blk; offset++) { paddr = block_to_addr(rrpc, rblk) + offset; pladdr = rrpc->rev_trans_map[paddr].addr; if (pladdr == ADDR_EMPTY) continue; laddr = &rrpc->trans_map[pladdr]; if (paddr == laddr->addr) { laddr->rblk = rblk; } else { set_bit(offset, rblk->invalid_pages); rblk->nr_invalid_pages++; } } } static int rrpc_blocks_init(struct rrpc *rrpc) { struct rrpc_lun *rlun; struct rrpc_block *rblk; int lun_iter, blk_iter; for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) { rlun = &rrpc->luns[lun_iter]; for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun; blk_iter++) { rblk = &rlun->blocks[blk_iter]; rrpc_block_map_update(rrpc, rblk); } } return 0; } static int rrpc_luns_configure(struct rrpc *rrpc) { struct rrpc_lun *rlun; struct rrpc_block *rblk; int i; for (i = 0; i < rrpc->nr_luns; i++) { rlun = &rrpc->luns[i]; rblk = rrpc_get_blk(rrpc, rlun, 0); if (!rblk) goto err; rrpc_set_lun_cur(rlun, rblk); /* Emergency gc block */ rblk = rrpc_get_blk(rrpc, rlun, 1); if (!rblk) goto err; rlun->gc_cur = rblk; } return 0; err: rrpc_put_blks(rrpc); return -EINVAL; } static struct nvm_tgt_type tt_rrpc; static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk, int lun_begin, int lun_end) { struct request_queue *bqueue = dev->q; struct request_queue *tqueue = tdisk->queue; struct rrpc *rrpc; int ret; if (!(dev->identity.dom & NVM_RSP_L2P)) { pr_err("nvm: rrpc: device does not support l2p (%x)\n", dev->identity.dom); return ERR_PTR(-EINVAL); } rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL); if (!rrpc) return ERR_PTR(-ENOMEM); rrpc->instance.tt = &tt_rrpc; rrpc->dev = dev; rrpc->disk = tdisk; bio_list_init(&rrpc->requeue_bios); spin_lock_init(&rrpc->bio_lock); INIT_WORK(&rrpc->ws_requeue, rrpc_requeue); rrpc->nr_luns = lun_end - lun_begin + 1; /* simple round-robin strategy */ atomic_set(&rrpc->next_lun, -1); ret = rrpc_luns_init(rrpc, lun_begin, lun_end); if (ret) { pr_err("nvm: rrpc: could not initialize luns\n"); goto err; } rrpc->poffset = dev->sec_per_lun * lun_begin; rrpc->lun_offset = lun_begin; ret = rrpc_core_init(rrpc); if (ret) { pr_err("nvm: rrpc: could not initialize core\n"); goto err; } ret = rrpc_map_init(rrpc); if (ret) { pr_err("nvm: rrpc: could not initialize maps\n"); goto err; } ret = rrpc_blocks_init(rrpc); if (ret) { pr_err("nvm: rrpc: could not initialize state for blocks\n"); goto err; } ret = rrpc_luns_configure(rrpc); if (ret) { pr_err("nvm: rrpc: not enough blocks available in LUNs.\n"); goto err; } ret = rrpc_gc_init(rrpc); if (ret) { pr_err("nvm: rrpc: could not initialize gc\n"); goto err; } /* inherit the size from the underlying device */ blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue)); blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue)); pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n", rrpc->nr_luns, (unsigned long long)rrpc->nr_pages); mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10)); return rrpc; err: rrpc_free(rrpc); return ERR_PTR(ret); } /* round robin, page-based FTL, and cost-based GC */ static struct nvm_tgt_type tt_rrpc = { .name = "rrpc", .version = {1, 0, 0}, .make_rq = rrpc_make_rq, .capacity = rrpc_capacity, .end_io = rrpc_end_io, .init = rrpc_init, .exit = rrpc_exit, }; static int __init rrpc_module_init(void) { return nvm_register_target(&tt_rrpc); } static void rrpc_module_exit(void) { nvm_unregister_target(&tt_rrpc); } module_init(rrpc_module_init); module_exit(rrpc_module_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");