/* drbd_nl.c This file is part of DRBD by Philipp Reisner and Lars Ellenberg. Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. Copyright (C) 1999-2008, Philipp Reisner . Copyright (C) 2002-2008, Lars Ellenberg . drbd is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. drbd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with drbd; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include "drbd_int.h" #include "drbd_protocol.h" #include "drbd_req.h" #include "drbd_wrappers.h" #include #include #include #include /* .doit */ // int drbd_adm_create_resource(struct sk_buff *skb, struct genl_info *info); // int drbd_adm_delete_resource(struct sk_buff *skb, struct genl_info *info); int drbd_adm_new_minor(struct sk_buff *skb, struct genl_info *info); int drbd_adm_del_minor(struct sk_buff *skb, struct genl_info *info); int drbd_adm_new_resource(struct sk_buff *skb, struct genl_info *info); int drbd_adm_del_resource(struct sk_buff *skb, struct genl_info *info); int drbd_adm_down(struct sk_buff *skb, struct genl_info *info); int drbd_adm_set_role(struct sk_buff *skb, struct genl_info *info); int drbd_adm_attach(struct sk_buff *skb, struct genl_info *info); int drbd_adm_disk_opts(struct sk_buff *skb, struct genl_info *info); int drbd_adm_detach(struct sk_buff *skb, struct genl_info *info); int drbd_adm_connect(struct sk_buff *skb, struct genl_info *info); int drbd_adm_net_opts(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resize(struct sk_buff *skb, struct genl_info *info); int drbd_adm_start_ov(struct sk_buff *skb, struct genl_info *info); int drbd_adm_new_c_uuid(struct sk_buff *skb, struct genl_info *info); int drbd_adm_disconnect(struct sk_buff *skb, struct genl_info *info); int drbd_adm_invalidate(struct sk_buff *skb, struct genl_info *info); int drbd_adm_invalidate_peer(struct sk_buff *skb, struct genl_info *info); int drbd_adm_pause_sync(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resume_sync(struct sk_buff *skb, struct genl_info *info); int drbd_adm_suspend_io(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resume_io(struct sk_buff *skb, struct genl_info *info); int drbd_adm_outdate(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resource_opts(struct sk_buff *skb, struct genl_info *info); int drbd_adm_get_status(struct sk_buff *skb, struct genl_info *info); int drbd_adm_get_timeout_type(struct sk_buff *skb, struct genl_info *info); /* .dumpit */ int drbd_adm_get_status_all(struct sk_buff *skb, struct netlink_callback *cb); #include #include "drbd_nla.h" #include /* used blkdev_get_by_path, to claim our meta data device(s) */ static char *drbd_m_holder = "Hands off! this is DRBD's meta data device."; /* Configuration is strictly serialized, because generic netlink message * processing is strictly serialized by the genl_lock(). * Which means we can use one static global drbd_config_context struct. */ static struct drbd_config_context { /* assigned from drbd_genlmsghdr */ unsigned int minor; /* assigned from request attributes, if present */ unsigned int volume; #define VOLUME_UNSPECIFIED (-1U) /* pointer into the request skb, * limited lifetime! */ char *resource_name; struct nlattr *my_addr; struct nlattr *peer_addr; /* reply buffer */ struct sk_buff *reply_skb; /* pointer into reply buffer */ struct drbd_genlmsghdr *reply_dh; /* resolved from attributes, if possible */ struct drbd_device *device; struct drbd_resource *resource; struct drbd_connection *connection; } adm_ctx; static void drbd_adm_send_reply(struct sk_buff *skb, struct genl_info *info) { genlmsg_end(skb, genlmsg_data(nlmsg_data(nlmsg_hdr(skb)))); if (genlmsg_reply(skb, info)) printk(KERN_ERR "drbd: error sending genl reply\n"); } /* Used on a fresh "drbd_adm_prepare"d reply_skb, this cannot fail: The only * reason it could fail was no space in skb, and there are 4k available. */ int drbd_msg_put_info(const char *info) { struct sk_buff *skb = adm_ctx.reply_skb; struct nlattr *nla; int err = -EMSGSIZE; if (!info || !info[0]) return 0; nla = nla_nest_start(skb, DRBD_NLA_CFG_REPLY); if (!nla) return err; err = nla_put_string(skb, T_info_text, info); if (err) { nla_nest_cancel(skb, nla); return err; } else nla_nest_end(skb, nla); return 0; } /* This would be a good candidate for a "pre_doit" hook, * and per-family private info->pointers. * But we need to stay compatible with older kernels. * If it returns successfully, adm_ctx members are valid. */ #define DRBD_ADM_NEED_MINOR 1 #define DRBD_ADM_NEED_RESOURCE 2 #define DRBD_ADM_NEED_CONNECTION 4 static int drbd_adm_prepare(struct sk_buff *skb, struct genl_info *info, unsigned flags) { struct drbd_genlmsghdr *d_in = info->userhdr; const u8 cmd = info->genlhdr->cmd; int err; memset(&adm_ctx, 0, sizeof(adm_ctx)); /* genl_rcv_msg only checks for CAP_NET_ADMIN on "GENL_ADMIN_PERM" :( */ if (cmd != DRBD_ADM_GET_STATUS && !capable(CAP_NET_ADMIN)) return -EPERM; adm_ctx.reply_skb = genlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (!adm_ctx.reply_skb) { err = -ENOMEM; goto fail; } adm_ctx.reply_dh = genlmsg_put_reply(adm_ctx.reply_skb, info, &drbd_genl_family, 0, cmd); /* put of a few bytes into a fresh skb of >= 4k will always succeed. * but anyways */ if (!adm_ctx.reply_dh) { err = -ENOMEM; goto fail; } adm_ctx.reply_dh->minor = d_in->minor; adm_ctx.reply_dh->ret_code = NO_ERROR; adm_ctx.volume = VOLUME_UNSPECIFIED; if (info->attrs[DRBD_NLA_CFG_CONTEXT]) { struct nlattr *nla; /* parse and validate only */ err = drbd_cfg_context_from_attrs(NULL, info); if (err) goto fail; /* It was present, and valid, * copy it over to the reply skb. */ err = nla_put_nohdr(adm_ctx.reply_skb, info->attrs[DRBD_NLA_CFG_CONTEXT]->nla_len, info->attrs[DRBD_NLA_CFG_CONTEXT]); if (err) goto fail; /* and assign stuff to the global adm_ctx */ nla = nested_attr_tb[__nla_type(T_ctx_volume)]; if (nla) adm_ctx.volume = nla_get_u32(nla); nla = nested_attr_tb[__nla_type(T_ctx_resource_name)]; if (nla) adm_ctx.resource_name = nla_data(nla); adm_ctx.my_addr = nested_attr_tb[__nla_type(T_ctx_my_addr)]; adm_ctx.peer_addr = nested_attr_tb[__nla_type(T_ctx_peer_addr)]; if ((adm_ctx.my_addr && nla_len(adm_ctx.my_addr) > sizeof(adm_ctx.connection->my_addr)) || (adm_ctx.peer_addr && nla_len(adm_ctx.peer_addr) > sizeof(adm_ctx.connection->peer_addr))) { err = -EINVAL; goto fail; } } adm_ctx.minor = d_in->minor; adm_ctx.device = minor_to_device(d_in->minor); if (adm_ctx.resource_name) { adm_ctx.resource = drbd_find_resource(adm_ctx.resource_name); if (adm_ctx.resource) { adm_ctx.connection = first_connection(adm_ctx.resource); kref_get(&adm_ctx.connection->kref); } } if (!adm_ctx.device && (flags & DRBD_ADM_NEED_MINOR)) { drbd_msg_put_info("unknown minor"); return ERR_MINOR_INVALID; } if (!adm_ctx.resource && (flags & DRBD_ADM_NEED_RESOURCE)) { drbd_msg_put_info("unknown resource"); if (adm_ctx.resource_name) return ERR_RES_NOT_KNOWN; return ERR_INVALID_REQUEST; } if (flags & DRBD_ADM_NEED_CONNECTION) { if (adm_ctx.connection && !(flags & DRBD_ADM_NEED_RESOURCE)) { drbd_msg_put_info("no resource name expected"); return ERR_INVALID_REQUEST; } if (adm_ctx.device) { drbd_msg_put_info("no minor number expected"); return ERR_INVALID_REQUEST; } if (adm_ctx.my_addr && adm_ctx.peer_addr) adm_ctx.connection = conn_get_by_addrs(nla_data(adm_ctx.my_addr), nla_len(adm_ctx.my_addr), nla_data(adm_ctx.peer_addr), nla_len(adm_ctx.peer_addr)); if (!adm_ctx.connection) { drbd_msg_put_info("unknown connection"); return ERR_INVALID_REQUEST; } } /* some more paranoia, if the request was over-determined */ if (adm_ctx.device && adm_ctx.resource && adm_ctx.device->resource != adm_ctx.resource) { pr_warning("request: minor=%u, resource=%s; but that minor belongs to resource %s\n", adm_ctx.minor, adm_ctx.resource->name, adm_ctx.device->resource->name); drbd_msg_put_info("minor exists in different resource"); return ERR_INVALID_REQUEST; } if (adm_ctx.device && adm_ctx.volume != VOLUME_UNSPECIFIED && adm_ctx.volume != adm_ctx.device->vnr) { pr_warning("request: minor=%u, volume=%u; but that minor is volume %u in %s\n", adm_ctx.minor, adm_ctx.volume, adm_ctx.device->vnr, adm_ctx.device->resource->name); drbd_msg_put_info("minor exists as different volume"); return ERR_INVALID_REQUEST; } return NO_ERROR; fail: nlmsg_free(adm_ctx.reply_skb); adm_ctx.reply_skb = NULL; return err; } static int drbd_adm_finish(struct genl_info *info, int retcode) { if (adm_ctx.connection) { kref_put(&adm_ctx.connection->kref, drbd_destroy_connection); adm_ctx.connection = NULL; } if (adm_ctx.resource) { kref_put(&adm_ctx.resource->kref, drbd_destroy_resource); adm_ctx.resource = NULL; } if (!adm_ctx.reply_skb) return -ENOMEM; adm_ctx.reply_dh->ret_code = retcode; drbd_adm_send_reply(adm_ctx.reply_skb, info); return 0; } static void setup_khelper_env(struct drbd_connection *connection, char **envp) { char *afs; /* FIXME: A future version will not allow this case. */ if (connection->my_addr_len == 0 || connection->peer_addr_len == 0) return; switch (((struct sockaddr *)&connection->peer_addr)->sa_family) { case AF_INET6: afs = "ipv6"; snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI6", &((struct sockaddr_in6 *)&connection->peer_addr)->sin6_addr); break; case AF_INET: afs = "ipv4"; snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI4", &((struct sockaddr_in *)&connection->peer_addr)->sin_addr); break; default: afs = "ssocks"; snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI4", &((struct sockaddr_in *)&connection->peer_addr)->sin_addr); } snprintf(envp[3], 20, "DRBD_PEER_AF=%s", afs); } int drbd_khelper(struct drbd_device *device, char *cmd) { char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", (char[20]) { }, /* address family */ (char[60]) { }, /* address */ NULL }; char mb[12]; char *argv[] = {usermode_helper, cmd, mb, NULL }; struct drbd_connection *connection = first_peer_device(device)->connection; struct sib_info sib; int ret; if (current == connection->worker.task) set_bit(CALLBACK_PENDING, &connection->flags); snprintf(mb, 12, "minor-%d", device_to_minor(device)); setup_khelper_env(connection, envp); /* The helper may take some time. * write out any unsynced meta data changes now */ drbd_md_sync(device); drbd_info(device, "helper command: %s %s %s\n", usermode_helper, cmd, mb); sib.sib_reason = SIB_HELPER_PRE; sib.helper_name = cmd; drbd_bcast_event(device, &sib); ret = call_usermodehelper(usermode_helper, argv, envp, UMH_WAIT_PROC); if (ret) drbd_warn(device, "helper command: %s %s %s exit code %u (0x%x)\n", usermode_helper, cmd, mb, (ret >> 8) & 0xff, ret); else drbd_info(device, "helper command: %s %s %s exit code %u (0x%x)\n", usermode_helper, cmd, mb, (ret >> 8) & 0xff, ret); sib.sib_reason = SIB_HELPER_POST; sib.helper_exit_code = ret; drbd_bcast_event(device, &sib); if (current == connection->worker.task) clear_bit(CALLBACK_PENDING, &connection->flags); if (ret < 0) /* Ignore any ERRNOs we got. */ ret = 0; return ret; } static int conn_khelper(struct drbd_connection *connection, char *cmd) { char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", (char[20]) { }, /* address family */ (char[60]) { }, /* address */ NULL }; char *resource_name = connection->resource->name; char *argv[] = {usermode_helper, cmd, resource_name, NULL }; int ret; setup_khelper_env(connection, envp); conn_md_sync(connection); conn_info(connection, "helper command: %s %s %s\n", usermode_helper, cmd, resource_name); /* TODO: conn_bcast_event() ?? */ ret = call_usermodehelper(usermode_helper, argv, envp, UMH_WAIT_PROC); if (ret) conn_warn(connection, "helper command: %s %s %s exit code %u (0x%x)\n", usermode_helper, cmd, resource_name, (ret >> 8) & 0xff, ret); else conn_info(connection, "helper command: %s %s %s exit code %u (0x%x)\n", usermode_helper, cmd, resource_name, (ret >> 8) & 0xff, ret); /* TODO: conn_bcast_event() ?? */ if (ret < 0) /* Ignore any ERRNOs we got. */ ret = 0; return ret; } static enum drbd_fencing_p highest_fencing_policy(struct drbd_connection *connection) { enum drbd_fencing_p fp = FP_NOT_AVAIL; struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; if (get_ldev_if_state(device, D_CONSISTENT)) { struct disk_conf *disk_conf = rcu_dereference(peer_device->device->ldev->disk_conf); fp = max_t(enum drbd_fencing_p, fp, disk_conf->fencing); put_ldev(device); } } rcu_read_unlock(); return fp; } bool conn_try_outdate_peer(struct drbd_connection *connection) { unsigned int connect_cnt; union drbd_state mask = { }; union drbd_state val = { }; enum drbd_fencing_p fp; char *ex_to_string; int r; if (connection->cstate >= C_WF_REPORT_PARAMS) { conn_err(connection, "Expected cstate < C_WF_REPORT_PARAMS\n"); return false; } spin_lock_irq(&connection->req_lock); connect_cnt = connection->connect_cnt; spin_unlock_irq(&connection->req_lock); fp = highest_fencing_policy(connection); switch (fp) { case FP_NOT_AVAIL: conn_warn(connection, "Not fencing peer, I'm not even Consistent myself.\n"); goto out; case FP_DONT_CARE: return true; default: ; } r = conn_khelper(connection, "fence-peer"); switch ((r>>8) & 0xff) { case 3: /* peer is inconsistent */ ex_to_string = "peer is inconsistent or worse"; mask.pdsk = D_MASK; val.pdsk = D_INCONSISTENT; break; case 4: /* peer got outdated, or was already outdated */ ex_to_string = "peer was fenced"; mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; break; case 5: /* peer was down */ if (conn_highest_disk(connection) == D_UP_TO_DATE) { /* we will(have) create(d) a new UUID anyways... */ ex_to_string = "peer is unreachable, assumed to be dead"; mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; } else { ex_to_string = "peer unreachable, doing nothing since disk != UpToDate"; } break; case 6: /* Peer is primary, voluntarily outdate myself. * This is useful when an unconnected R_SECONDARY is asked to * become R_PRIMARY, but finds the other peer being active. */ ex_to_string = "peer is active"; conn_warn(connection, "Peer is primary, outdating myself.\n"); mask.disk = D_MASK; val.disk = D_OUTDATED; break; case 7: if (fp != FP_STONITH) conn_err(connection, "fence-peer() = 7 && fencing != Stonith !!!\n"); ex_to_string = "peer was stonithed"; mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; break; default: /* The script is broken ... */ conn_err(connection, "fence-peer helper broken, returned %d\n", (r>>8)&0xff); return false; /* Eventually leave IO frozen */ } conn_info(connection, "fence-peer helper returned %d (%s)\n", (r>>8) & 0xff, ex_to_string); out: /* Not using conn_request_state(connection, mask, val, CS_VERBOSE); here, because we might were able to re-establish the connection in the meantime. */ spin_lock_irq(&connection->req_lock); if (connection->cstate < C_WF_REPORT_PARAMS && !test_bit(STATE_SENT, &connection->flags)) { if (connection->connect_cnt != connect_cnt) /* In case the connection was established and droped while the fence-peer handler was running, ignore it */ conn_info(connection, "Ignoring fence-peer exit code\n"); else _conn_request_state(connection, mask, val, CS_VERBOSE); } spin_unlock_irq(&connection->req_lock); return conn_highest_pdsk(connection) <= D_OUTDATED; } static int _try_outdate_peer_async(void *data) { struct drbd_connection *connection = (struct drbd_connection *)data; conn_try_outdate_peer(connection); kref_put(&connection->kref, drbd_destroy_connection); return 0; } void conn_try_outdate_peer_async(struct drbd_connection *connection) { struct task_struct *opa; kref_get(&connection->kref); opa = kthread_run(_try_outdate_peer_async, connection, "drbd_async_h"); if (IS_ERR(opa)) { conn_err(connection, "out of mem, failed to invoke fence-peer helper\n"); kref_put(&connection->kref, drbd_destroy_connection); } } enum drbd_state_rv drbd_set_role(struct drbd_device *device, enum drbd_role new_role, int force) { const int max_tries = 4; enum drbd_state_rv rv = SS_UNKNOWN_ERROR; struct net_conf *nc; int try = 0; int forced = 0; union drbd_state mask, val; if (new_role == R_PRIMARY) request_ping(first_peer_device(device)->connection); /* Detect a dead peer ASAP */ mutex_lock(device->state_mutex); mask.i = 0; mask.role = R_MASK; val.i = 0; val.role = new_role; while (try++ < max_tries) { rv = _drbd_request_state(device, mask, val, CS_WAIT_COMPLETE); /* in case we first succeeded to outdate, * but now suddenly could establish a connection */ if (rv == SS_CW_FAILED_BY_PEER && mask.pdsk != 0) { val.pdsk = 0; mask.pdsk = 0; continue; } if (rv == SS_NO_UP_TO_DATE_DISK && force && (device->state.disk < D_UP_TO_DATE && device->state.disk >= D_INCONSISTENT)) { mask.disk = D_MASK; val.disk = D_UP_TO_DATE; forced = 1; continue; } if (rv == SS_NO_UP_TO_DATE_DISK && device->state.disk == D_CONSISTENT && mask.pdsk == 0) { D_ASSERT(device->state.pdsk == D_UNKNOWN); if (conn_try_outdate_peer(first_peer_device(device)->connection)) { val.disk = D_UP_TO_DATE; mask.disk = D_MASK; } continue; } if (rv == SS_NOTHING_TO_DO) goto out; if (rv == SS_PRIMARY_NOP && mask.pdsk == 0) { if (!conn_try_outdate_peer(first_peer_device(device)->connection) && force) { drbd_warn(device, "Forced into split brain situation!\n"); mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; } continue; } if (rv == SS_TWO_PRIMARIES) { /* Maybe the peer is detected as dead very soon... retry at most once more in this case. */ int timeo; rcu_read_lock(); nc = rcu_dereference(first_peer_device(device)->connection->net_conf); timeo = nc ? (nc->ping_timeo + 1) * HZ / 10 : 1; rcu_read_unlock(); schedule_timeout_interruptible(timeo); if (try < max_tries) try = max_tries - 1; continue; } if (rv < SS_SUCCESS) { rv = _drbd_request_state(device, mask, val, CS_VERBOSE + CS_WAIT_COMPLETE); if (rv < SS_SUCCESS) goto out; } break; } if (rv < SS_SUCCESS) goto out; if (forced) drbd_warn(device, "Forced to consider local data as UpToDate!\n"); /* Wait until nothing is on the fly :) */ wait_event(device->misc_wait, atomic_read(&device->ap_pending_cnt) == 0); /* FIXME also wait for all pending P_BARRIER_ACK? */ if (new_role == R_SECONDARY) { set_disk_ro(device->vdisk, true); if (get_ldev(device)) { device->ldev->md.uuid[UI_CURRENT] &= ~(u64)1; put_ldev(device); } } else { mutex_lock(&first_peer_device(device)->connection->conf_update); nc = first_peer_device(device)->connection->net_conf; if (nc) nc->discard_my_data = 0; /* without copy; single bit op is atomic */ mutex_unlock(&first_peer_device(device)->connection->conf_update); set_disk_ro(device->vdisk, false); if (get_ldev(device)) { if (((device->state.conn < C_CONNECTED || device->state.pdsk <= D_FAILED) && device->ldev->md.uuid[UI_BITMAP] == 0) || forced) drbd_uuid_new_current(device); device->ldev->md.uuid[UI_CURRENT] |= (u64)1; put_ldev(device); } } /* writeout of activity log covered areas of the bitmap * to stable storage done in after state change already */ if (device->state.conn >= C_WF_REPORT_PARAMS) { /* if this was forced, we should consider sync */ if (forced) drbd_send_uuids(device); drbd_send_current_state(device); } drbd_md_sync(device); kobject_uevent(&disk_to_dev(device->vdisk)->kobj, KOBJ_CHANGE); out: mutex_unlock(device->state_mutex); return rv; } static const char *from_attrs_err_to_txt(int err) { return err == -ENOMSG ? "required attribute missing" : err == -EOPNOTSUPP ? "unknown mandatory attribute" : err == -EEXIST ? "can not change invariant setting" : "invalid attribute value"; } int drbd_adm_set_role(struct sk_buff *skb, struct genl_info *info) { struct set_role_parms parms; int err; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; memset(&parms, 0, sizeof(parms)); if (info->attrs[DRBD_NLA_SET_ROLE_PARMS]) { err = set_role_parms_from_attrs(&parms, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto out; } } if (info->genlhdr->cmd == DRBD_ADM_PRIMARY) retcode = drbd_set_role(adm_ctx.device, R_PRIMARY, parms.assume_uptodate); else retcode = drbd_set_role(adm_ctx.device, R_SECONDARY, 0); out: drbd_adm_finish(info, retcode); return 0; } /* Initializes the md.*_offset members, so we are able to find * the on disk meta data. * * We currently have two possible layouts: * external: * |----------- md_size_sect ------------------| * [ 4k superblock ][ activity log ][ Bitmap ] * | al_offset == 8 | * | bm_offset = al_offset + X | * ==> bitmap sectors = md_size_sect - bm_offset * * internal: * |----------- md_size_sect ------------------| * [data.....][ Bitmap ][ activity log ][ 4k superblock ] * | al_offset < 0 | * | bm_offset = al_offset - Y | * ==> bitmap sectors = Y = al_offset - bm_offset * * Activity log size used to be fixed 32kB, * but is about to become configurable. */ static void drbd_md_set_sector_offsets(struct drbd_device *device, struct drbd_backing_dev *bdev) { sector_t md_size_sect = 0; unsigned int al_size_sect = bdev->md.al_size_4k * 8; bdev->md.md_offset = drbd_md_ss(bdev); switch (bdev->md.meta_dev_idx) { default: /* v07 style fixed size indexed meta data */ bdev->md.md_size_sect = MD_128MB_SECT; bdev->md.al_offset = MD_4kB_SECT; bdev->md.bm_offset = MD_4kB_SECT + al_size_sect; break; case DRBD_MD_INDEX_FLEX_EXT: /* just occupy the full device; unit: sectors */ bdev->md.md_size_sect = drbd_get_capacity(bdev->md_bdev); bdev->md.al_offset = MD_4kB_SECT; bdev->md.bm_offset = MD_4kB_SECT + al_size_sect; break; case DRBD_MD_INDEX_INTERNAL: case DRBD_MD_INDEX_FLEX_INT: /* al size is still fixed */ bdev->md.al_offset = -al_size_sect; /* we need (slightly less than) ~ this much bitmap sectors: */ md_size_sect = drbd_get_capacity(bdev->backing_bdev); md_size_sect = ALIGN(md_size_sect, BM_SECT_PER_EXT); md_size_sect = BM_SECT_TO_EXT(md_size_sect); md_size_sect = ALIGN(md_size_sect, 8); /* plus the "drbd meta data super block", * and the activity log; */ md_size_sect += MD_4kB_SECT + al_size_sect; bdev->md.md_size_sect = md_size_sect; /* bitmap offset is adjusted by 'super' block size */ bdev->md.bm_offset = -md_size_sect + MD_4kB_SECT; break; } } /* input size is expected to be in KB */ char *ppsize(char *buf, unsigned long long size) { /* Needs 9 bytes at max including trailing NUL: * -1ULL ==> "16384 EB" */ static char units[] = { 'K', 'M', 'G', 'T', 'P', 'E' }; int base = 0; while (size >= 10000 && base < sizeof(units)-1) { /* shift + round */ size = (size >> 10) + !!(size & (1<<9)); base++; } sprintf(buf, "%u %cB", (unsigned)size, units[base]); return buf; } /* there is still a theoretical deadlock when called from receiver * on an D_INCONSISTENT R_PRIMARY: * remote READ does inc_ap_bio, receiver would need to receive answer * packet from remote to dec_ap_bio again. * receiver receive_sizes(), comes here, * waits for ap_bio_cnt == 0. -> deadlock. * but this cannot happen, actually, because: * R_PRIMARY D_INCONSISTENT, and peer's disk is unreachable * (not connected, or bad/no disk on peer): * see drbd_fail_request_early, ap_bio_cnt is zero. * R_PRIMARY D_INCONSISTENT, and C_SYNC_TARGET: * peer may not initiate a resize. */ /* Note these are not to be confused with * drbd_adm_suspend_io/drbd_adm_resume_io, * which are (sub) state changes triggered by admin (drbdsetup), * and can be long lived. * This changes an device->flag, is triggered by drbd internals, * and should be short-lived. */ void drbd_suspend_io(struct drbd_device *device) { set_bit(SUSPEND_IO, &device->flags); if (drbd_suspended(device)) return; wait_event(device->misc_wait, !atomic_read(&device->ap_bio_cnt)); } void drbd_resume_io(struct drbd_device *device) { clear_bit(SUSPEND_IO, &device->flags); wake_up(&device->misc_wait); } /** * drbd_determine_dev_size() - Sets the right device size obeying all constraints * @device: DRBD device. * * Returns 0 on success, negative return values indicate errors. * You should call drbd_md_sync() after calling this function. */ enum determine_dev_size drbd_determine_dev_size(struct drbd_device *device, enum dds_flags flags, struct resize_parms *rs) __must_hold(local) { sector_t prev_first_sect, prev_size; /* previous meta location */ sector_t la_size_sect, u_size; struct drbd_md *md = &device->ldev->md; u32 prev_al_stripe_size_4k; u32 prev_al_stripes; sector_t size; char ppb[10]; void *buffer; int md_moved, la_size_changed; enum determine_dev_size rv = DS_UNCHANGED; /* race: * application request passes inc_ap_bio, * but then cannot get an AL-reference. * this function later may wait on ap_bio_cnt == 0. -> deadlock. * * to avoid that: * Suspend IO right here. * still lock the act_log to not trigger ASSERTs there. */ drbd_suspend_io(device); buffer = drbd_md_get_buffer(device); /* Lock meta-data IO */ if (!buffer) { drbd_resume_io(device); return DS_ERROR; } /* no wait necessary anymore, actually we could assert that */ wait_event(device->al_wait, lc_try_lock(device->act_log)); prev_first_sect = drbd_md_first_sector(device->ldev); prev_size = device->ldev->md.md_size_sect; la_size_sect = device->ldev->md.la_size_sect; if (rs) { /* rs is non NULL if we should change the AL layout only */ prev_al_stripes = md->al_stripes; prev_al_stripe_size_4k = md->al_stripe_size_4k; md->al_stripes = rs->al_stripes; md->al_stripe_size_4k = rs->al_stripe_size / 4; md->al_size_4k = (u64)rs->al_stripes * rs->al_stripe_size / 4; } drbd_md_set_sector_offsets(device, device->ldev); rcu_read_lock(); u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; rcu_read_unlock(); size = drbd_new_dev_size(device, device->ldev, u_size, flags & DDSF_FORCED); if (size < la_size_sect) { if (rs && u_size == 0) { /* Remove "rs &&" later. This check should always be active, but right now the receiver expects the permissive behavior */ drbd_warn(device, "Implicit shrink not allowed. " "Use --size=%llus for explicit shrink.\n", (unsigned long long)size); rv = DS_ERROR_SHRINK; } if (u_size > size) rv = DS_ERROR_SPACE_MD; if (rv != DS_UNCHANGED) goto err_out; } if (drbd_get_capacity(device->this_bdev) != size || drbd_bm_capacity(device) != size) { int err; err = drbd_bm_resize(device, size, !(flags & DDSF_NO_RESYNC)); if (unlikely(err)) { /* currently there is only one error: ENOMEM! */ size = drbd_bm_capacity(device)>>1; if (size == 0) { drbd_err(device, "OUT OF MEMORY! " "Could not allocate bitmap!\n"); } else { drbd_err(device, "BM resizing failed. " "Leaving size unchanged at size = %lu KB\n", (unsigned long)size); } rv = DS_ERROR; } /* racy, see comments above. */ drbd_set_my_capacity(device, size); device->ldev->md.la_size_sect = size; drbd_info(device, "size = %s (%llu KB)\n", ppsize(ppb, size>>1), (unsigned long long)size>>1); } if (rv <= DS_ERROR) goto err_out; la_size_changed = (la_size_sect != device->ldev->md.la_size_sect); md_moved = prev_first_sect != drbd_md_first_sector(device->ldev) || prev_size != device->ldev->md.md_size_sect; if (la_size_changed || md_moved || rs) { u32 prev_flags; drbd_al_shrink(device); /* All extents inactive. */ prev_flags = md->flags; md->flags &= ~MDF_PRIMARY_IND; drbd_md_write(device, buffer); drbd_info(device, "Writing the whole bitmap, %s\n", la_size_changed && md_moved ? "size changed and md moved" : la_size_changed ? "size changed" : "md moved"); /* next line implicitly does drbd_suspend_io()+drbd_resume_io() */ drbd_bitmap_io(device, md_moved ? &drbd_bm_write_all : &drbd_bm_write, "size changed", BM_LOCKED_MASK); drbd_initialize_al(device, buffer); md->flags = prev_flags; drbd_md_write(device, buffer); if (rs) drbd_info(device, "Changed AL layout to al-stripes = %d, al-stripe-size-kB = %d\n", md->al_stripes, md->al_stripe_size_4k * 4); } if (size > la_size_sect) rv = la_size_sect ? DS_GREW : DS_GREW_FROM_ZERO; if (size < la_size_sect) rv = DS_SHRUNK; if (0) { err_out: if (rs) { md->al_stripes = prev_al_stripes; md->al_stripe_size_4k = prev_al_stripe_size_4k; md->al_size_4k = (u64)prev_al_stripes * prev_al_stripe_size_4k; drbd_md_set_sector_offsets(device, device->ldev); } } lc_unlock(device->act_log); wake_up(&device->al_wait); drbd_md_put_buffer(device); drbd_resume_io(device); return rv; } sector_t drbd_new_dev_size(struct drbd_device *device, struct drbd_backing_dev *bdev, sector_t u_size, int assume_peer_has_space) { sector_t p_size = device->p_size; /* partner's disk size. */ sector_t la_size_sect = bdev->md.la_size_sect; /* last agreed size. */ sector_t m_size; /* my size */ sector_t size = 0; m_size = drbd_get_max_capacity(bdev); if (device->state.conn < C_CONNECTED && assume_peer_has_space) { drbd_warn(device, "Resize while not connected was forced by the user!\n"); p_size = m_size; } if (p_size && m_size) { size = min_t(sector_t, p_size, m_size); } else { if (la_size_sect) { size = la_size_sect; if (m_size && m_size < size) size = m_size; if (p_size && p_size < size) size = p_size; } else { if (m_size) size = m_size; if (p_size) size = p_size; } } if (size == 0) drbd_err(device, "Both nodes diskless!\n"); if (u_size) { if (u_size > size) drbd_err(device, "Requested disk size is too big (%lu > %lu)\n", (unsigned long)u_size>>1, (unsigned long)size>>1); else size = u_size; } return size; } /** * drbd_check_al_size() - Ensures that the AL is of the right size * @device: DRBD device. * * Returns -EBUSY if current al lru is still used, -ENOMEM when allocation * failed, and 0 on success. You should call drbd_md_sync() after you called * this function. */ static int drbd_check_al_size(struct drbd_device *device, struct disk_conf *dc) { struct lru_cache *n, *t; struct lc_element *e; unsigned int in_use; int i; if (device->act_log && device->act_log->nr_elements == dc->al_extents) return 0; in_use = 0; t = device->act_log; n = lc_create("act_log", drbd_al_ext_cache, AL_UPDATES_PER_TRANSACTION, dc->al_extents, sizeof(struct lc_element), 0); if (n == NULL) { drbd_err(device, "Cannot allocate act_log lru!\n"); return -ENOMEM; } spin_lock_irq(&device->al_lock); if (t) { for (i = 0; i < t->nr_elements; i++) { e = lc_element_by_index(t, i); if (e->refcnt) drbd_err(device, "refcnt(%d)==%d\n", e->lc_number, e->refcnt); in_use += e->refcnt; } } if (!in_use) device->act_log = n; spin_unlock_irq(&device->al_lock); if (in_use) { drbd_err(device, "Activity log still in use!\n"); lc_destroy(n); return -EBUSY; } else { if (t) lc_destroy(t); } drbd_md_mark_dirty(device); /* we changed device->act_log->nr_elemens */ return 0; } static void drbd_setup_queue_param(struct drbd_device *device, unsigned int max_bio_size) { struct request_queue * const q = device->rq_queue; unsigned int max_hw_sectors = max_bio_size >> 9; unsigned int max_segments = 0; if (get_ldev_if_state(device, D_ATTACHING)) { struct request_queue * const b = device->ldev->backing_bdev->bd_disk->queue; max_hw_sectors = min(queue_max_hw_sectors(b), max_bio_size >> 9); rcu_read_lock(); max_segments = rcu_dereference(device->ldev->disk_conf)->max_bio_bvecs; rcu_read_unlock(); put_ldev(device); } blk_queue_logical_block_size(q, 512); blk_queue_max_hw_sectors(q, max_hw_sectors); /* This is the workaround for "bio would need to, but cannot, be split" */ blk_queue_max_segments(q, max_segments ? max_segments : BLK_MAX_SEGMENTS); blk_queue_segment_boundary(q, PAGE_CACHE_SIZE-1); if (get_ldev_if_state(device, D_ATTACHING)) { struct request_queue * const b = device->ldev->backing_bdev->bd_disk->queue; blk_queue_stack_limits(q, b); if (q->backing_dev_info.ra_pages != b->backing_dev_info.ra_pages) { drbd_info(device, "Adjusting my ra_pages to backing device's (%lu -> %lu)\n", q->backing_dev_info.ra_pages, b->backing_dev_info.ra_pages); q->backing_dev_info.ra_pages = b->backing_dev_info.ra_pages; } put_ldev(device); } } void drbd_reconsider_max_bio_size(struct drbd_device *device) { unsigned int now, new, local, peer; now = queue_max_hw_sectors(device->rq_queue) << 9; local = device->local_max_bio_size; /* Eventually last known value, from volatile memory */ peer = device->peer_max_bio_size; /* Eventually last known value, from meta data */ if (get_ldev_if_state(device, D_ATTACHING)) { local = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9; device->local_max_bio_size = local; put_ldev(device); } local = min(local, DRBD_MAX_BIO_SIZE); /* We may ignore peer limits if the peer is modern enough. Because new from 8.3.8 onwards the peer can use multiple BIOs for a single peer_request */ if (device->state.conn >= C_WF_REPORT_PARAMS) { if (first_peer_device(device)->connection->agreed_pro_version < 94) peer = min(device->peer_max_bio_size, DRBD_MAX_SIZE_H80_PACKET); /* Correct old drbd (up to 8.3.7) if it believes it can do more than 32KiB */ else if (first_peer_device(device)->connection->agreed_pro_version == 94) peer = DRBD_MAX_SIZE_H80_PACKET; else if (first_peer_device(device)->connection->agreed_pro_version < 100) peer = DRBD_MAX_BIO_SIZE_P95; /* drbd 8.3.8 onwards, before 8.4.0 */ else peer = DRBD_MAX_BIO_SIZE; } new = min(local, peer); if (device->state.role == R_PRIMARY && new < now) drbd_err(device, "ASSERT FAILED new < now; (%u < %u)\n", new, now); if (new != now) drbd_info(device, "max BIO size = %u\n", new); drbd_setup_queue_param(device, new); } /* Starts the worker thread */ static void conn_reconfig_start(struct drbd_connection *connection) { drbd_thread_start(&connection->worker); conn_flush_workqueue(connection); } /* if still unconfigured, stops worker again. */ static void conn_reconfig_done(struct drbd_connection *connection) { bool stop_threads; spin_lock_irq(&connection->req_lock); stop_threads = conn_all_vols_unconf(connection) && connection->cstate == C_STANDALONE; spin_unlock_irq(&connection->req_lock); if (stop_threads) { /* asender is implicitly stopped by receiver * in conn_disconnect() */ drbd_thread_stop(&connection->receiver); drbd_thread_stop(&connection->worker); } } /* Make sure IO is suspended before calling this function(). */ static void drbd_suspend_al(struct drbd_device *device) { int s = 0; if (!lc_try_lock(device->act_log)) { drbd_warn(device, "Failed to lock al in drbd_suspend_al()\n"); return; } drbd_al_shrink(device); spin_lock_irq(&first_peer_device(device)->connection->req_lock); if (device->state.conn < C_CONNECTED) s = !test_and_set_bit(AL_SUSPENDED, &device->flags); spin_unlock_irq(&first_peer_device(device)->connection->req_lock); lc_unlock(device->act_log); if (s) drbd_info(device, "Suspended AL updates\n"); } static bool should_set_defaults(struct genl_info *info) { unsigned flags = ((struct drbd_genlmsghdr*)info->userhdr)->flags; return 0 != (flags & DRBD_GENL_F_SET_DEFAULTS); } static unsigned int drbd_al_extents_max(struct drbd_backing_dev *bdev) { /* This is limited by 16 bit "slot" numbers, * and by available on-disk context storage. * * Also (u16)~0 is special (denotes a "free" extent). * * One transaction occupies one 4kB on-disk block, * we have n such blocks in the on disk ring buffer, * the "current" transaction may fail (n-1), * and there is 919 slot numbers context information per transaction. * * 72 transaction blocks amounts to more than 2**16 context slots, * so cap there first. */ const unsigned int max_al_nr = DRBD_AL_EXTENTS_MAX; const unsigned int sufficient_on_disk = (max_al_nr + AL_CONTEXT_PER_TRANSACTION -1) /AL_CONTEXT_PER_TRANSACTION; unsigned int al_size_4k = bdev->md.al_size_4k; if (al_size_4k > sufficient_on_disk) return max_al_nr; return (al_size_4k - 1) * AL_CONTEXT_PER_TRANSACTION; } int drbd_adm_disk_opts(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; struct drbd_device *device; struct disk_conf *new_disk_conf, *old_disk_conf; struct fifo_buffer *old_plan = NULL, *new_plan = NULL; int err, fifo_size; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; device = adm_ctx.device; /* we also need a disk * to change the options on */ if (!get_ldev(device)) { retcode = ERR_NO_DISK; goto out; } new_disk_conf = kmalloc(sizeof(struct disk_conf), GFP_KERNEL); if (!new_disk_conf) { retcode = ERR_NOMEM; goto fail; } mutex_lock(&first_peer_device(device)->connection->conf_update); old_disk_conf = device->ldev->disk_conf; *new_disk_conf = *old_disk_conf; if (should_set_defaults(info)) set_disk_conf_defaults(new_disk_conf); err = disk_conf_from_attrs_for_change(new_disk_conf, info); if (err && err != -ENOMSG) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail_unlock; } if (!expect(new_disk_conf->resync_rate >= 1)) new_disk_conf->resync_rate = 1; if (new_disk_conf->al_extents < DRBD_AL_EXTENTS_MIN) new_disk_conf->al_extents = DRBD_AL_EXTENTS_MIN; if (new_disk_conf->al_extents > drbd_al_extents_max(device->ldev)) new_disk_conf->al_extents = drbd_al_extents_max(device->ldev); if (new_disk_conf->c_plan_ahead > DRBD_C_PLAN_AHEAD_MAX) new_disk_conf->c_plan_ahead = DRBD_C_PLAN_AHEAD_MAX; fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; if (fifo_size != device->rs_plan_s->size) { new_plan = fifo_alloc(fifo_size); if (!new_plan) { drbd_err(device, "kmalloc of fifo_buffer failed"); retcode = ERR_NOMEM; goto fail_unlock; } } drbd_suspend_io(device); wait_event(device->al_wait, lc_try_lock(device->act_log)); drbd_al_shrink(device); err = drbd_check_al_size(device, new_disk_conf); lc_unlock(device->act_log); wake_up(&device->al_wait); drbd_resume_io(device); if (err) { retcode = ERR_NOMEM; goto fail_unlock; } write_lock_irq(&global_state_lock); retcode = drbd_resync_after_valid(device, new_disk_conf->resync_after); if (retcode == NO_ERROR) { rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); drbd_resync_after_changed(device); } write_unlock_irq(&global_state_lock); if (retcode != NO_ERROR) goto fail_unlock; if (new_plan) { old_plan = device->rs_plan_s; rcu_assign_pointer(device->rs_plan_s, new_plan); } mutex_unlock(&first_peer_device(device)->connection->conf_update); if (new_disk_conf->al_updates) device->ldev->md.flags &= ~MDF_AL_DISABLED; else device->ldev->md.flags |= MDF_AL_DISABLED; if (new_disk_conf->md_flushes) clear_bit(MD_NO_FUA, &device->flags); else set_bit(MD_NO_FUA, &device->flags); drbd_bump_write_ordering(first_peer_device(device)->connection, WO_bdev_flush); drbd_md_sync(device); if (device->state.conn >= C_CONNECTED) drbd_send_sync_param(device); synchronize_rcu(); kfree(old_disk_conf); kfree(old_plan); mod_timer(&device->request_timer, jiffies + HZ); goto success; fail_unlock: mutex_unlock(&first_peer_device(device)->connection->conf_update); fail: kfree(new_disk_conf); kfree(new_plan); success: put_ldev(device); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_attach(struct sk_buff *skb, struct genl_info *info) { struct drbd_device *device; int err; enum drbd_ret_code retcode; enum determine_dev_size dd; sector_t max_possible_sectors; sector_t min_md_device_sectors; struct drbd_backing_dev *nbc = NULL; /* new_backing_conf */ struct disk_conf *new_disk_conf = NULL; struct block_device *bdev; struct lru_cache *resync_lru = NULL; struct fifo_buffer *new_plan = NULL; union drbd_state ns, os; enum drbd_state_rv rv; struct net_conf *nc; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto finish; device = adm_ctx.device; conn_reconfig_start(first_peer_device(device)->connection); /* if you want to reconfigure, please tear down first */ if (device->state.disk > D_DISKLESS) { retcode = ERR_DISK_CONFIGURED; goto fail; } /* It may just now have detached because of IO error. Make sure * drbd_ldev_destroy is done already, we may end up here very fast, * e.g. if someone calls attach from the on-io-error handler, * to realize a "hot spare" feature (not that I'd recommend that) */ wait_event(device->misc_wait, !atomic_read(&device->local_cnt)); /* make sure there is no leftover from previous force-detach attempts */ clear_bit(FORCE_DETACH, &device->flags); clear_bit(WAS_IO_ERROR, &device->flags); clear_bit(WAS_READ_ERROR, &device->flags); /* and no leftover from previously aborted resync or verify, either */ device->rs_total = 0; device->rs_failed = 0; atomic_set(&device->rs_pending_cnt, 0); /* allocation not in the IO path, drbdsetup context */ nbc = kzalloc(sizeof(struct drbd_backing_dev), GFP_KERNEL); if (!nbc) { retcode = ERR_NOMEM; goto fail; } spin_lock_init(&nbc->md.uuid_lock); new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); if (!new_disk_conf) { retcode = ERR_NOMEM; goto fail; } nbc->disk_conf = new_disk_conf; set_disk_conf_defaults(new_disk_conf); err = disk_conf_from_attrs(new_disk_conf, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail; } if (new_disk_conf->c_plan_ahead > DRBD_C_PLAN_AHEAD_MAX) new_disk_conf->c_plan_ahead = DRBD_C_PLAN_AHEAD_MAX; new_plan = fifo_alloc((new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ); if (!new_plan) { retcode = ERR_NOMEM; goto fail; } if (new_disk_conf->meta_dev_idx < DRBD_MD_INDEX_FLEX_INT) { retcode = ERR_MD_IDX_INVALID; goto fail; } write_lock_irq(&global_state_lock); retcode = drbd_resync_after_valid(device, new_disk_conf->resync_after); write_unlock_irq(&global_state_lock); if (retcode != NO_ERROR) goto fail; rcu_read_lock(); nc = rcu_dereference(first_peer_device(device)->connection->net_conf); if (nc) { if (new_disk_conf->fencing == FP_STONITH && nc->wire_protocol == DRBD_PROT_A) { rcu_read_unlock(); retcode = ERR_STONITH_AND_PROT_A; goto fail; } } rcu_read_unlock(); bdev = blkdev_get_by_path(new_disk_conf->backing_dev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, device); if (IS_ERR(bdev)) { drbd_err(device, "open(\"%s\") failed with %ld\n", new_disk_conf->backing_dev, PTR_ERR(bdev)); retcode = ERR_OPEN_DISK; goto fail; } nbc->backing_bdev = bdev; /* * meta_dev_idx >= 0: external fixed size, possibly multiple * drbd sharing one meta device. TODO in that case, paranoia * check that [md_bdev, meta_dev_idx] is not yet used by some * other drbd minor! (if you use drbd.conf + drbdadm, that * should check it for you already; but if you don't, or * someone fooled it, we need to double check here) */ bdev = blkdev_get_by_path(new_disk_conf->meta_dev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, (new_disk_conf->meta_dev_idx < 0) ? (void *)device : (void *)drbd_m_holder); if (IS_ERR(bdev)) { drbd_err(device, "open(\"%s\") failed with %ld\n", new_disk_conf->meta_dev, PTR_ERR(bdev)); retcode = ERR_OPEN_MD_DISK; goto fail; } nbc->md_bdev = bdev; if ((nbc->backing_bdev == nbc->md_bdev) != (new_disk_conf->meta_dev_idx == DRBD_MD_INDEX_INTERNAL || new_disk_conf->meta_dev_idx == DRBD_MD_INDEX_FLEX_INT)) { retcode = ERR_MD_IDX_INVALID; goto fail; } resync_lru = lc_create("resync", drbd_bm_ext_cache, 1, 61, sizeof(struct bm_extent), offsetof(struct bm_extent, lce)); if (!resync_lru) { retcode = ERR_NOMEM; goto fail; } /* Read our meta data super block early. * This also sets other on-disk offsets. */ retcode = drbd_md_read(device, nbc); if (retcode != NO_ERROR) goto fail; if (new_disk_conf->al_extents < DRBD_AL_EXTENTS_MIN) new_disk_conf->al_extents = DRBD_AL_EXTENTS_MIN; if (new_disk_conf->al_extents > drbd_al_extents_max(nbc)) new_disk_conf->al_extents = drbd_al_extents_max(nbc); if (drbd_get_max_capacity(nbc) < new_disk_conf->disk_size) { drbd_err(device, "max capacity %llu smaller than disk size %llu\n", (unsigned long long) drbd_get_max_capacity(nbc), (unsigned long long) new_disk_conf->disk_size); retcode = ERR_DISK_TOO_SMALL; goto fail; } if (new_disk_conf->meta_dev_idx < 0) { max_possible_sectors = DRBD_MAX_SECTORS_FLEX; /* at least one MB, otherwise it does not make sense */ min_md_device_sectors = (2<<10); } else { max_possible_sectors = DRBD_MAX_SECTORS; min_md_device_sectors = MD_128MB_SECT * (new_disk_conf->meta_dev_idx + 1); } if (drbd_get_capacity(nbc->md_bdev) < min_md_device_sectors) { retcode = ERR_MD_DISK_TOO_SMALL; drbd_warn(device, "refusing attach: md-device too small, " "at least %llu sectors needed for this meta-disk type\n", (unsigned long long) min_md_device_sectors); goto fail; } /* Make sure the new disk is big enough * (we may currently be R_PRIMARY with no local disk...) */ if (drbd_get_max_capacity(nbc) < drbd_get_capacity(device->this_bdev)) { retcode = ERR_DISK_TOO_SMALL; goto fail; } nbc->known_size = drbd_get_capacity(nbc->backing_bdev); if (nbc->known_size > max_possible_sectors) { drbd_warn(device, "==> truncating very big lower level device " "to currently maximum possible %llu sectors <==\n", (unsigned long long) max_possible_sectors); if (new_disk_conf->meta_dev_idx >= 0) drbd_warn(device, "==>> using internal or flexible " "meta data may help <<==\n"); } drbd_suspend_io(device); /* also wait for the last barrier ack. */ /* FIXME see also https://daiquiri.linbit/cgi-bin/bugzilla/show_bug.cgi?id=171 * We need a way to either ignore barrier acks for barriers sent before a device * was attached, or a way to wait for all pending barrier acks to come in. * As barriers are counted per resource, * we'd need to suspend io on all devices of a resource. */ wait_event(device->misc_wait, !atomic_read(&device->ap_pending_cnt) || drbd_suspended(device)); /* and for any other previously queued work */ drbd_flush_workqueue(device); rv = _drbd_request_state(device, NS(disk, D_ATTACHING), CS_VERBOSE); retcode = rv; /* FIXME: Type mismatch. */ drbd_resume_io(device); if (rv < SS_SUCCESS) goto fail; if (!get_ldev_if_state(device, D_ATTACHING)) goto force_diskless; if (!device->bitmap) { if (drbd_bm_init(device)) { retcode = ERR_NOMEM; goto force_diskless_dec; } } if (device->state.conn < C_CONNECTED && device->state.role == R_PRIMARY && (device->ed_uuid & ~((u64)1)) != (nbc->md.uuid[UI_CURRENT] & ~((u64)1))) { drbd_err(device, "Can only attach to data with current UUID=%016llX\n", (unsigned long long)device->ed_uuid); retcode = ERR_DATA_NOT_CURRENT; goto force_diskless_dec; } /* Since we are diskless, fix the activity log first... */ if (drbd_check_al_size(device, new_disk_conf)) { retcode = ERR_NOMEM; goto force_diskless_dec; } /* Prevent shrinking of consistent devices ! */ if (drbd_md_test_flag(nbc, MDF_CONSISTENT) && drbd_new_dev_size(device, nbc, nbc->disk_conf->disk_size, 0) < nbc->md.la_size_sect) { drbd_warn(device, "refusing to truncate a consistent device\n"); retcode = ERR_DISK_TOO_SMALL; goto force_diskless_dec; } /* Reset the "barriers don't work" bits here, then force meta data to * be written, to ensure we determine if barriers are supported. */ if (new_disk_conf->md_flushes) clear_bit(MD_NO_FUA, &device->flags); else set_bit(MD_NO_FUA, &device->flags); /* Point of no return reached. * Devices and memory are no longer released by error cleanup below. * now device takes over responsibility, and the state engine should * clean it up somewhere. */ D_ASSERT(device->ldev == NULL); device->ldev = nbc; device->resync = resync_lru; device->rs_plan_s = new_plan; nbc = NULL; resync_lru = NULL; new_disk_conf = NULL; new_plan = NULL; drbd_bump_write_ordering(first_peer_device(device)->connection, WO_bdev_flush); if (drbd_md_test_flag(device->ldev, MDF_CRASHED_PRIMARY)) set_bit(CRASHED_PRIMARY, &device->flags); else clear_bit(CRASHED_PRIMARY, &device->flags); if (drbd_md_test_flag(device->ldev, MDF_PRIMARY_IND) && !(device->state.role == R_PRIMARY && first_peer_device(device)->connection->susp_nod)) set_bit(CRASHED_PRIMARY, &device->flags); device->send_cnt = 0; device->recv_cnt = 0; device->read_cnt = 0; device->writ_cnt = 0; drbd_reconsider_max_bio_size(device); /* If I am currently not R_PRIMARY, * but meta data primary indicator is set, * I just now recover from a hard crash, * and have been R_PRIMARY before that crash. * * Now, if I had no connection before that crash * (have been degraded R_PRIMARY), chances are that * I won't find my peer now either. * * In that case, and _only_ in that case, * we use the degr-wfc-timeout instead of the default, * so we can automatically recover from a crash of a * degraded but active "cluster" after a certain timeout. */ clear_bit(USE_DEGR_WFC_T, &device->flags); if (device->state.role != R_PRIMARY && drbd_md_test_flag(device->ldev, MDF_PRIMARY_IND) && !drbd_md_test_flag(device->ldev, MDF_CONNECTED_IND)) set_bit(USE_DEGR_WFC_T, &device->flags); dd = drbd_determine_dev_size(device, 0, NULL); if (dd <= DS_ERROR) { retcode = ERR_NOMEM_BITMAP; goto force_diskless_dec; } else if (dd == DS_GREW) set_bit(RESYNC_AFTER_NEG, &device->flags); if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC) || (test_bit(CRASHED_PRIMARY, &device->flags) && drbd_md_test_flag(device->ldev, MDF_AL_DISABLED))) { drbd_info(device, "Assuming that all blocks are out of sync " "(aka FullSync)\n"); if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from attaching", BM_LOCKED_MASK)) { retcode = ERR_IO_MD_DISK; goto force_diskless_dec; } } else { if (drbd_bitmap_io(device, &drbd_bm_read, "read from attaching", BM_LOCKED_MASK)) { retcode = ERR_IO_MD_DISK; goto force_diskless_dec; } } if (_drbd_bm_total_weight(device) == drbd_bm_bits(device)) drbd_suspend_al(device); /* IO is still suspended here... */ spin_lock_irq(&first_peer_device(device)->connection->req_lock); os = drbd_read_state(device); ns = os; /* If MDF_CONSISTENT is not set go into inconsistent state, otherwise investigate MDF_WasUpToDate... If MDF_WAS_UP_TO_DATE is not set go into D_OUTDATED disk state, otherwise into D_CONSISTENT state. */ if (drbd_md_test_flag(device->ldev, MDF_CONSISTENT)) { if (drbd_md_test_flag(device->ldev, MDF_WAS_UP_TO_DATE)) ns.disk = D_CONSISTENT; else ns.disk = D_OUTDATED; } else { ns.disk = D_INCONSISTENT; } if (drbd_md_test_flag(device->ldev, MDF_PEER_OUT_DATED)) ns.pdsk = D_OUTDATED; rcu_read_lock(); if (ns.disk == D_CONSISTENT && (ns.pdsk == D_OUTDATED || rcu_dereference(device->ldev->disk_conf)->fencing == FP_DONT_CARE)) ns.disk = D_UP_TO_DATE; /* All tests on MDF_PRIMARY_IND, MDF_CONNECTED_IND, MDF_CONSISTENT and MDF_WAS_UP_TO_DATE must happen before this point, because drbd_request_state() modifies these flags. */ if (rcu_dereference(device->ldev->disk_conf)->al_updates) device->ldev->md.flags &= ~MDF_AL_DISABLED; else device->ldev->md.flags |= MDF_AL_DISABLED; rcu_read_unlock(); /* In case we are C_CONNECTED postpone any decision on the new disk state after the negotiation phase. */ if (device->state.conn == C_CONNECTED) { device->new_state_tmp.i = ns.i; ns.i = os.i; ns.disk = D_NEGOTIATING; /* We expect to receive up-to-date UUIDs soon. To avoid a race in receive_state, free p_uuid while holding req_lock. I.e. atomic with the state change */ kfree(device->p_uuid); device->p_uuid = NULL; } rv = _drbd_set_state(device, ns, CS_VERBOSE, NULL); spin_unlock_irq(&first_peer_device(device)->connection->req_lock); if (rv < SS_SUCCESS) goto force_diskless_dec; mod_timer(&device->request_timer, jiffies + HZ); if (device->state.role == R_PRIMARY) device->ldev->md.uuid[UI_CURRENT] |= (u64)1; else device->ldev->md.uuid[UI_CURRENT] &= ~(u64)1; drbd_md_mark_dirty(device); drbd_md_sync(device); kobject_uevent(&disk_to_dev(device->vdisk)->kobj, KOBJ_CHANGE); put_ldev(device); conn_reconfig_done(first_peer_device(device)->connection); drbd_adm_finish(info, retcode); return 0; force_diskless_dec: put_ldev(device); force_diskless: drbd_force_state(device, NS(disk, D_DISKLESS)); drbd_md_sync(device); fail: conn_reconfig_done(first_peer_device(device)->connection); if (nbc) { if (nbc->backing_bdev) blkdev_put(nbc->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); if (nbc->md_bdev) blkdev_put(nbc->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); kfree(nbc); } kfree(new_disk_conf); lc_destroy(resync_lru); kfree(new_plan); finish: drbd_adm_finish(info, retcode); return 0; } static int adm_detach(struct drbd_device *device, int force) { enum drbd_state_rv retcode; int ret; if (force) { set_bit(FORCE_DETACH, &device->flags); drbd_force_state(device, NS(disk, D_FAILED)); retcode = SS_SUCCESS; goto out; } drbd_suspend_io(device); /* so no-one is stuck in drbd_al_begin_io */ drbd_md_get_buffer(device); /* make sure there is no in-flight meta-data IO */ retcode = drbd_request_state(device, NS(disk, D_FAILED)); drbd_md_put_buffer(device); /* D_FAILED will transition to DISKLESS. */ ret = wait_event_interruptible(device->misc_wait, device->state.disk != D_FAILED); drbd_resume_io(device); if ((int)retcode == (int)SS_IS_DISKLESS) retcode = SS_NOTHING_TO_DO; if (ret) retcode = ERR_INTR; out: return retcode; } /* Detaching the disk is a process in multiple stages. First we need to lock * out application IO, in-flight IO, IO stuck in drbd_al_begin_io. * Then we transition to D_DISKLESS, and wait for put_ldev() to return all * internal references as well. * Only then we have finally detached. */ int drbd_adm_detach(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; struct detach_parms parms = { }; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; if (info->attrs[DRBD_NLA_DETACH_PARMS]) { err = detach_parms_from_attrs(&parms, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto out; } } retcode = adm_detach(adm_ctx.device, parms.force_detach); out: drbd_adm_finish(info, retcode); return 0; } static bool conn_resync_running(struct drbd_connection *connection) { struct drbd_peer_device *peer_device; bool rv = false; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; if (device->state.conn == C_SYNC_SOURCE || device->state.conn == C_SYNC_TARGET || device->state.conn == C_PAUSED_SYNC_S || device->state.conn == C_PAUSED_SYNC_T) { rv = true; break; } } rcu_read_unlock(); return rv; } static bool conn_ov_running(struct drbd_connection *connection) { struct drbd_peer_device *peer_device; bool rv = false; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) { rv = true; break; } } rcu_read_unlock(); return rv; } static enum drbd_ret_code _check_net_options(struct drbd_connection *connection, struct net_conf *old_conf, struct net_conf *new_conf) { struct drbd_peer_device *peer_device; int i; if (old_conf && connection->cstate == C_WF_REPORT_PARAMS && connection->agreed_pro_version < 100) { if (new_conf->wire_protocol != old_conf->wire_protocol) return ERR_NEED_APV_100; if (new_conf->two_primaries != old_conf->two_primaries) return ERR_NEED_APV_100; if (strcmp(new_conf->integrity_alg, old_conf->integrity_alg)) return ERR_NEED_APV_100; } if (!new_conf->two_primaries && conn_highest_role(connection) == R_PRIMARY && conn_highest_peer(connection) == R_PRIMARY) return ERR_NEED_ALLOW_TWO_PRI; if (new_conf->two_primaries && (new_conf->wire_protocol != DRBD_PROT_C)) return ERR_NOT_PROTO_C; idr_for_each_entry(&connection->peer_devices, peer_device, i) { struct drbd_device *device = peer_device->device; if (get_ldev(device)) { enum drbd_fencing_p fp = rcu_dereference(device->ldev->disk_conf)->fencing; put_ldev(device); if (new_conf->wire_protocol == DRBD_PROT_A && fp == FP_STONITH) return ERR_STONITH_AND_PROT_A; } if (device->state.role == R_PRIMARY && new_conf->discard_my_data) return ERR_DISCARD_IMPOSSIBLE; } if (new_conf->on_congestion != OC_BLOCK && new_conf->wire_protocol != DRBD_PROT_A) return ERR_CONG_NOT_PROTO_A; return NO_ERROR; } static enum drbd_ret_code check_net_options(struct drbd_connection *connection, struct net_conf *new_conf) { static enum drbd_ret_code rv; struct drbd_peer_device *peer_device; int i; rcu_read_lock(); rv = _check_net_options(connection, rcu_dereference(connection->net_conf), new_conf); rcu_read_unlock(); /* connection->volumes protected by genl_lock() here */ idr_for_each_entry(&connection->peer_devices, peer_device, i) { struct drbd_device *device = peer_device->device; if (!device->bitmap) { if (drbd_bm_init(device)) return ERR_NOMEM; } } return rv; } struct crypto { struct crypto_hash *verify_tfm; struct crypto_hash *csums_tfm; struct crypto_hash *cram_hmac_tfm; struct crypto_hash *integrity_tfm; }; static int alloc_hash(struct crypto_hash **tfm, char *tfm_name, int err_alg) { if (!tfm_name[0]) return NO_ERROR; *tfm = crypto_alloc_hash(tfm_name, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(*tfm)) { *tfm = NULL; return err_alg; } return NO_ERROR; } static enum drbd_ret_code alloc_crypto(struct crypto *crypto, struct net_conf *new_conf) { char hmac_name[CRYPTO_MAX_ALG_NAME]; enum drbd_ret_code rv; rv = alloc_hash(&crypto->csums_tfm, new_conf->csums_alg, ERR_CSUMS_ALG); if (rv != NO_ERROR) return rv; rv = alloc_hash(&crypto->verify_tfm, new_conf->verify_alg, ERR_VERIFY_ALG); if (rv != NO_ERROR) return rv; rv = alloc_hash(&crypto->integrity_tfm, new_conf->integrity_alg, ERR_INTEGRITY_ALG); if (rv != NO_ERROR) return rv; if (new_conf->cram_hmac_alg[0] != 0) { snprintf(hmac_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", new_conf->cram_hmac_alg); rv = alloc_hash(&crypto->cram_hmac_tfm, hmac_name, ERR_AUTH_ALG); } return rv; } static void free_crypto(struct crypto *crypto) { crypto_free_hash(crypto->cram_hmac_tfm); crypto_free_hash(crypto->integrity_tfm); crypto_free_hash(crypto->csums_tfm); crypto_free_hash(crypto->verify_tfm); } int drbd_adm_net_opts(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; struct drbd_connection *connection; struct net_conf *old_conf, *new_conf = NULL; int err; int ovr; /* online verify running */ int rsr; /* re-sync running */ struct crypto crypto = { }; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_CONNECTION); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; connection = adm_ctx.connection; new_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); if (!new_conf) { retcode = ERR_NOMEM; goto out; } conn_reconfig_start(connection); mutex_lock(&connection->data.mutex); mutex_lock(&connection->conf_update); old_conf = connection->net_conf; if (!old_conf) { drbd_msg_put_info("net conf missing, try connect"); retcode = ERR_INVALID_REQUEST; goto fail; } *new_conf = *old_conf; if (should_set_defaults(info)) set_net_conf_defaults(new_conf); err = net_conf_from_attrs_for_change(new_conf, info); if (err && err != -ENOMSG) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail; } retcode = check_net_options(connection, new_conf); if (retcode != NO_ERROR) goto fail; /* re-sync running */ rsr = conn_resync_running(connection); if (rsr && strcmp(new_conf->csums_alg, old_conf->csums_alg)) { retcode = ERR_CSUMS_RESYNC_RUNNING; goto fail; } /* online verify running */ ovr = conn_ov_running(connection); if (ovr && strcmp(new_conf->verify_alg, old_conf->verify_alg)) { retcode = ERR_VERIFY_RUNNING; goto fail; } retcode = alloc_crypto(&crypto, new_conf); if (retcode != NO_ERROR) goto fail; rcu_assign_pointer(connection->net_conf, new_conf); if (!rsr) { crypto_free_hash(connection->csums_tfm); connection->csums_tfm = crypto.csums_tfm; crypto.csums_tfm = NULL; } if (!ovr) { crypto_free_hash(connection->verify_tfm); connection->verify_tfm = crypto.verify_tfm; crypto.verify_tfm = NULL; } crypto_free_hash(connection->integrity_tfm); connection->integrity_tfm = crypto.integrity_tfm; if (connection->cstate >= C_WF_REPORT_PARAMS && connection->agreed_pro_version >= 100) /* Do this without trying to take connection->data.mutex again. */ __drbd_send_protocol(connection, P_PROTOCOL_UPDATE); crypto_free_hash(connection->cram_hmac_tfm); connection->cram_hmac_tfm = crypto.cram_hmac_tfm; mutex_unlock(&connection->conf_update); mutex_unlock(&connection->data.mutex); synchronize_rcu(); kfree(old_conf); if (connection->cstate >= C_WF_REPORT_PARAMS) drbd_send_sync_param(minor_to_device(conn_lowest_minor(connection))); goto done; fail: mutex_unlock(&connection->conf_update); mutex_unlock(&connection->data.mutex); free_crypto(&crypto); kfree(new_conf); done: conn_reconfig_done(connection); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_connect(struct sk_buff *skb, struct genl_info *info) { struct drbd_peer_device *peer_device; struct net_conf *old_conf, *new_conf = NULL; struct crypto crypto = { }; struct drbd_resource *resource; struct drbd_connection *connection; enum drbd_ret_code retcode; int i; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_RESOURCE); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; if (!(adm_ctx.my_addr && adm_ctx.peer_addr)) { drbd_msg_put_info("connection endpoint(s) missing"); retcode = ERR_INVALID_REQUEST; goto out; } /* No need for _rcu here. All reconfiguration is * strictly serialized on genl_lock(). We are protected against * concurrent reconfiguration/addition/deletion */ for_each_resource(resource, &drbd_resources) { for_each_connection(connection, resource) { if (nla_len(adm_ctx.my_addr) == connection->my_addr_len && !memcmp(nla_data(adm_ctx.my_addr), &connection->my_addr, connection->my_addr_len)) { retcode = ERR_LOCAL_ADDR; goto out; } if (nla_len(adm_ctx.peer_addr) == connection->peer_addr_len && !memcmp(nla_data(adm_ctx.peer_addr), &connection->peer_addr, connection->peer_addr_len)) { retcode = ERR_PEER_ADDR; goto out; } } } connection = adm_ctx.connection; conn_reconfig_start(connection); if (connection->cstate > C_STANDALONE) { retcode = ERR_NET_CONFIGURED; goto fail; } /* allocation not in the IO path, drbdsetup / netlink process context */ new_conf = kzalloc(sizeof(*new_conf), GFP_KERNEL); if (!new_conf) { retcode = ERR_NOMEM; goto fail; } set_net_conf_defaults(new_conf); err = net_conf_from_attrs(new_conf, info); if (err && err != -ENOMSG) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail; } retcode = check_net_options(connection, new_conf); if (retcode != NO_ERROR) goto fail; retcode = alloc_crypto(&crypto, new_conf); if (retcode != NO_ERROR) goto fail; ((char *)new_conf->shared_secret)[SHARED_SECRET_MAX-1] = 0; conn_flush_workqueue(connection); mutex_lock(&connection->conf_update); old_conf = connection->net_conf; if (old_conf) { retcode = ERR_NET_CONFIGURED; mutex_unlock(&connection->conf_update); goto fail; } rcu_assign_pointer(connection->net_conf, new_conf); conn_free_crypto(connection); connection->cram_hmac_tfm = crypto.cram_hmac_tfm; connection->integrity_tfm = crypto.integrity_tfm; connection->csums_tfm = crypto.csums_tfm; connection->verify_tfm = crypto.verify_tfm; connection->my_addr_len = nla_len(adm_ctx.my_addr); memcpy(&connection->my_addr, nla_data(adm_ctx.my_addr), connection->my_addr_len); connection->peer_addr_len = nla_len(adm_ctx.peer_addr); memcpy(&connection->peer_addr, nla_data(adm_ctx.peer_addr), connection->peer_addr_len); mutex_unlock(&connection->conf_update); rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, i) { struct drbd_device *device = peer_device->device; device->send_cnt = 0; device->recv_cnt = 0; } rcu_read_unlock(); retcode = conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); conn_reconfig_done(connection); drbd_adm_finish(info, retcode); return 0; fail: free_crypto(&crypto); kfree(new_conf); conn_reconfig_done(connection); out: drbd_adm_finish(info, retcode); return 0; } static enum drbd_state_rv conn_try_disconnect(struct drbd_connection *connection, bool force) { enum drbd_state_rv rv; rv = conn_request_state(connection, NS(conn, C_DISCONNECTING), force ? CS_HARD : 0); switch (rv) { case SS_NOTHING_TO_DO: break; case SS_ALREADY_STANDALONE: return SS_SUCCESS; case SS_PRIMARY_NOP: /* Our state checking code wants to see the peer outdated. */ rv = conn_request_state(connection, NS2(conn, C_DISCONNECTING, pdsk, D_OUTDATED), 0); if (rv == SS_OUTDATE_WO_CONN) /* lost connection before graceful disconnect succeeded */ rv = conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_VERBOSE); break; case SS_CW_FAILED_BY_PEER: /* The peer probably wants to see us outdated. */ rv = conn_request_state(connection, NS2(conn, C_DISCONNECTING, disk, D_OUTDATED), 0); if (rv == SS_IS_DISKLESS || rv == SS_LOWER_THAN_OUTDATED) { rv = conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); } break; default:; /* no special handling necessary */ } if (rv >= SS_SUCCESS) { enum drbd_state_rv rv2; /* No one else can reconfigure the network while I am here. * The state handling only uses drbd_thread_stop_nowait(), * we want to really wait here until the receiver is no more. */ drbd_thread_stop(&connection->receiver); /* Race breaker. This additional state change request may be * necessary, if this was a forced disconnect during a receiver * restart. We may have "killed" the receiver thread just * after drbdd_init() returned. Typically, we should be * C_STANDALONE already, now, and this becomes a no-op. */ rv2 = conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); if (rv2 < SS_SUCCESS) conn_err(connection, "unexpected rv2=%d in conn_try_disconnect()\n", rv2); } return rv; } int drbd_adm_disconnect(struct sk_buff *skb, struct genl_info *info) { struct disconnect_parms parms; struct drbd_connection *connection; enum drbd_state_rv rv; enum drbd_ret_code retcode; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_CONNECTION); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto fail; connection = adm_ctx.connection; memset(&parms, 0, sizeof(parms)); if (info->attrs[DRBD_NLA_DISCONNECT_PARMS]) { err = disconnect_parms_from_attrs(&parms, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail; } } rv = conn_try_disconnect(connection, parms.force_disconnect); if (rv < SS_SUCCESS) retcode = rv; /* FIXME: Type mismatch. */ else retcode = NO_ERROR; fail: drbd_adm_finish(info, retcode); return 0; } void resync_after_online_grow(struct drbd_device *device) { int iass; /* I am sync source */ drbd_info(device, "Resync of new storage after online grow\n"); if (device->state.role != device->state.peer) iass = (device->state.role == R_PRIMARY); else iass = test_bit(RESOLVE_CONFLICTS, &first_peer_device(device)->connection->flags); if (iass) drbd_start_resync(device, C_SYNC_SOURCE); else _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE + CS_SERIALIZE); } int drbd_adm_resize(struct sk_buff *skb, struct genl_info *info) { struct disk_conf *old_disk_conf, *new_disk_conf = NULL; struct resize_parms rs; struct drbd_device *device; enum drbd_ret_code retcode; enum determine_dev_size dd; bool change_al_layout = false; enum dds_flags ddsf; sector_t u_size; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto fail; device = adm_ctx.device; if (!get_ldev(device)) { retcode = ERR_NO_DISK; goto fail; } memset(&rs, 0, sizeof(struct resize_parms)); rs.al_stripes = device->ldev->md.al_stripes; rs.al_stripe_size = device->ldev->md.al_stripe_size_4k * 4; if (info->attrs[DRBD_NLA_RESIZE_PARMS]) { err = resize_parms_from_attrs(&rs, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail_ldev; } } if (device->state.conn > C_CONNECTED) { retcode = ERR_RESIZE_RESYNC; goto fail_ldev; } if (device->state.role == R_SECONDARY && device->state.peer == R_SECONDARY) { retcode = ERR_NO_PRIMARY; goto fail_ldev; } if (rs.no_resync && first_peer_device(device)->connection->agreed_pro_version < 93) { retcode = ERR_NEED_APV_93; goto fail_ldev; } rcu_read_lock(); u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; rcu_read_unlock(); if (u_size != (sector_t)rs.resize_size) { new_disk_conf = kmalloc(sizeof(struct disk_conf), GFP_KERNEL); if (!new_disk_conf) { retcode = ERR_NOMEM; goto fail_ldev; } } if (device->ldev->md.al_stripes != rs.al_stripes || device->ldev->md.al_stripe_size_4k != rs.al_stripe_size / 4) { u32 al_size_k = rs.al_stripes * rs.al_stripe_size; if (al_size_k > (16 * 1024 * 1024)) { retcode = ERR_MD_LAYOUT_TOO_BIG; goto fail_ldev; } if (al_size_k < MD_32kB_SECT/2) { retcode = ERR_MD_LAYOUT_TOO_SMALL; goto fail_ldev; } if (device->state.conn != C_CONNECTED) { retcode = ERR_MD_LAYOUT_CONNECTED; goto fail_ldev; } change_al_layout = true; } if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); if (new_disk_conf) { mutex_lock(&first_peer_device(device)->connection->conf_update); old_disk_conf = device->ldev->disk_conf; *new_disk_conf = *old_disk_conf; new_disk_conf->disk_size = (sector_t)rs.resize_size; rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); mutex_unlock(&first_peer_device(device)->connection->conf_update); synchronize_rcu(); kfree(old_disk_conf); } ddsf = (rs.resize_force ? DDSF_FORCED : 0) | (rs.no_resync ? DDSF_NO_RESYNC : 0); dd = drbd_determine_dev_size(device, ddsf, change_al_layout ? &rs : NULL); drbd_md_sync(device); put_ldev(device); if (dd == DS_ERROR) { retcode = ERR_NOMEM_BITMAP; goto fail; } else if (dd == DS_ERROR_SPACE_MD) { retcode = ERR_MD_LAYOUT_NO_FIT; goto fail; } else if (dd == DS_ERROR_SHRINK) { retcode = ERR_IMPLICIT_SHRINK; goto fail; } if (device->state.conn == C_CONNECTED) { if (dd == DS_GREW) set_bit(RESIZE_PENDING, &device->flags); drbd_send_uuids(device); drbd_send_sizes(device, 1, ddsf); } fail: drbd_adm_finish(info, retcode); return 0; fail_ldev: put_ldev(device); goto fail; } int drbd_adm_resource_opts(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; struct res_opts res_opts; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_RESOURCE); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto fail; res_opts = adm_ctx.resource->res_opts; if (should_set_defaults(info)) set_res_opts_defaults(&res_opts); err = res_opts_from_attrs(&res_opts, info); if (err && err != -ENOMSG) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail; } err = set_resource_options(adm_ctx.resource, &res_opts); if (err) { retcode = ERR_INVALID_REQUEST; if (err == -ENOMEM) retcode = ERR_NOMEM; } fail: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_invalidate(struct sk_buff *skb, struct genl_info *info) { struct drbd_device *device; int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */ retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; device = adm_ctx.device; /* If there is still bitmap IO pending, probably because of a previous * resync just being finished, wait for it before requesting a new resync. * Also wait for it's after_state_ch(). */ drbd_suspend_io(device); wait_event(device->misc_wait, !test_bit(BITMAP_IO, &device->flags)); drbd_flush_workqueue(device); /* If we happen to be C_STANDALONE R_SECONDARY, just change to * D_INCONSISTENT, and set all bits in the bitmap. Otherwise, * try to start a resync handshake as sync target for full sync. */ if (device->state.conn == C_STANDALONE && device->state.role == R_SECONDARY) { retcode = drbd_request_state(device, NS(disk, D_INCONSISTENT)); if (retcode >= SS_SUCCESS) { if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from invalidate", BM_LOCKED_MASK)) retcode = ERR_IO_MD_DISK; } } else retcode = drbd_request_state(device, NS(conn, C_STARTING_SYNC_T)); drbd_resume_io(device); out: drbd_adm_finish(info, retcode); return 0; } static int drbd_adm_simple_request_state(struct sk_buff *skb, struct genl_info *info, union drbd_state mask, union drbd_state val) { enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; retcode = drbd_request_state(adm_ctx.device, mask, val); out: drbd_adm_finish(info, retcode); return 0; } static int drbd_bmio_set_susp_al(struct drbd_device *device) { int rv; rv = drbd_bmio_set_n_write(device); drbd_suspend_al(device); return rv; } int drbd_adm_invalidate_peer(struct sk_buff *skb, struct genl_info *info) { int retcode; /* drbd_ret_code, drbd_state_rv */ struct drbd_device *device; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; device = adm_ctx.device; /* If there is still bitmap IO pending, probably because of a previous * resync just being finished, wait for it before requesting a new resync. * Also wait for it's after_state_ch(). */ drbd_suspend_io(device); wait_event(device->misc_wait, !test_bit(BITMAP_IO, &device->flags)); drbd_flush_workqueue(device); /* If we happen to be C_STANDALONE R_PRIMARY, just set all bits * in the bitmap. Otherwise, try to start a resync handshake * as sync source for full sync. */ if (device->state.conn == C_STANDALONE && device->state.role == R_PRIMARY) { /* The peer will get a resync upon connect anyways. Just make that into a full resync. */ retcode = drbd_request_state(device, NS(pdsk, D_INCONSISTENT)); if (retcode >= SS_SUCCESS) { if (drbd_bitmap_io(device, &drbd_bmio_set_susp_al, "set_n_write from invalidate_peer", BM_LOCKED_SET_ALLOWED)) retcode = ERR_IO_MD_DISK; } } else retcode = drbd_request_state(device, NS(conn, C_STARTING_SYNC_S)); drbd_resume_io(device); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_pause_sync(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; if (drbd_request_state(adm_ctx.device, NS(user_isp, 1)) == SS_NOTHING_TO_DO) retcode = ERR_PAUSE_IS_SET; out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_resume_sync(struct sk_buff *skb, struct genl_info *info) { union drbd_dev_state s; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; if (drbd_request_state(adm_ctx.device, NS(user_isp, 0)) == SS_NOTHING_TO_DO) { s = adm_ctx.device->state; if (s.conn == C_PAUSED_SYNC_S || s.conn == C_PAUSED_SYNC_T) { retcode = s.aftr_isp ? ERR_PIC_AFTER_DEP : s.peer_isp ? ERR_PIC_PEER_DEP : ERR_PAUSE_IS_CLEAR; } else { retcode = ERR_PAUSE_IS_CLEAR; } } out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_suspend_io(struct sk_buff *skb, struct genl_info *info) { return drbd_adm_simple_request_state(skb, info, NS(susp, 1)); } int drbd_adm_resume_io(struct sk_buff *skb, struct genl_info *info) { struct drbd_device *device; int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */ retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; device = adm_ctx.device; if (test_bit(NEW_CUR_UUID, &device->flags)) { drbd_uuid_new_current(device); clear_bit(NEW_CUR_UUID, &device->flags); } drbd_suspend_io(device); retcode = drbd_request_state(device, NS3(susp, 0, susp_nod, 0, susp_fen, 0)); if (retcode == SS_SUCCESS) { if (device->state.conn < C_CONNECTED) tl_clear(first_peer_device(device)->connection); if (device->state.disk == D_DISKLESS || device->state.disk == D_FAILED) tl_restart(first_peer_device(device)->connection, FAIL_FROZEN_DISK_IO); } drbd_resume_io(device); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_outdate(struct sk_buff *skb, struct genl_info *info) { return drbd_adm_simple_request_state(skb, info, NS(disk, D_OUTDATED)); } static int nla_put_drbd_cfg_context(struct sk_buff *skb, struct drbd_connection *connection, unsigned vnr) { struct nlattr *nla; nla = nla_nest_start(skb, DRBD_NLA_CFG_CONTEXT); if (!nla) goto nla_put_failure; if (vnr != VOLUME_UNSPECIFIED && nla_put_u32(skb, T_ctx_volume, vnr)) goto nla_put_failure; if (nla_put_string(skb, T_ctx_resource_name, connection->resource->name)) goto nla_put_failure; if (connection->my_addr_len && nla_put(skb, T_ctx_my_addr, connection->my_addr_len, &connection->my_addr)) goto nla_put_failure; if (connection->peer_addr_len && nla_put(skb, T_ctx_peer_addr, connection->peer_addr_len, &connection->peer_addr)) goto nla_put_failure; nla_nest_end(skb, nla); return 0; nla_put_failure: if (nla) nla_nest_cancel(skb, nla); return -EMSGSIZE; } static int nla_put_status_info(struct sk_buff *skb, struct drbd_device *device, const struct sib_info *sib) { struct state_info *si = NULL; /* for sizeof(si->member); */ struct nlattr *nla; int got_ldev; int err = 0; int exclude_sensitive; /* If sib != NULL, this is drbd_bcast_event, which anyone can listen * to. So we better exclude_sensitive information. * * If sib == NULL, this is drbd_adm_get_status, executed synchronously * in the context of the requesting user process. Exclude sensitive * information, unless current has superuser. * * NOTE: for drbd_adm_get_status_all(), this is a netlink dump, and * relies on the current implementation of netlink_dump(), which * executes the dump callback successively from netlink_recvmsg(), * always in the context of the receiving process */ exclude_sensitive = sib || !capable(CAP_SYS_ADMIN); got_ldev = get_ldev(device); /* We need to add connection name and volume number information still. * Minor number is in drbd_genlmsghdr. */ if (nla_put_drbd_cfg_context(skb, first_peer_device(device)->connection, device->vnr)) goto nla_put_failure; if (res_opts_to_skb(skb, &device->resource->res_opts, exclude_sensitive)) goto nla_put_failure; rcu_read_lock(); if (got_ldev) { struct disk_conf *disk_conf; disk_conf = rcu_dereference(device->ldev->disk_conf); err = disk_conf_to_skb(skb, disk_conf, exclude_sensitive); } if (!err) { struct net_conf *nc; nc = rcu_dereference(first_peer_device(device)->connection->net_conf); if (nc) err = net_conf_to_skb(skb, nc, exclude_sensitive); } rcu_read_unlock(); if (err) goto nla_put_failure; nla = nla_nest_start(skb, DRBD_NLA_STATE_INFO); if (!nla) goto nla_put_failure; if (nla_put_u32(skb, T_sib_reason, sib ? sib->sib_reason : SIB_GET_STATUS_REPLY) || nla_put_u32(skb, T_current_state, device->state.i) || nla_put_u64(skb, T_ed_uuid, device->ed_uuid) || nla_put_u64(skb, T_capacity, drbd_get_capacity(device->this_bdev)) || nla_put_u64(skb, T_send_cnt, device->send_cnt) || nla_put_u64(skb, T_recv_cnt, device->recv_cnt) || nla_put_u64(skb, T_read_cnt, device->read_cnt) || nla_put_u64(skb, T_writ_cnt, device->writ_cnt) || nla_put_u64(skb, T_al_writ_cnt, device->al_writ_cnt) || nla_put_u64(skb, T_bm_writ_cnt, device->bm_writ_cnt) || nla_put_u32(skb, T_ap_bio_cnt, atomic_read(&device->ap_bio_cnt)) || nla_put_u32(skb, T_ap_pending_cnt, atomic_read(&device->ap_pending_cnt)) || nla_put_u32(skb, T_rs_pending_cnt, atomic_read(&device->rs_pending_cnt))) goto nla_put_failure; if (got_ldev) { int err; spin_lock_irq(&device->ldev->md.uuid_lock); err = nla_put(skb, T_uuids, sizeof(si->uuids), device->ldev->md.uuid); spin_unlock_irq(&device->ldev->md.uuid_lock); if (err) goto nla_put_failure; if (nla_put_u32(skb, T_disk_flags, device->ldev->md.flags) || nla_put_u64(skb, T_bits_total, drbd_bm_bits(device)) || nla_put_u64(skb, T_bits_oos, drbd_bm_total_weight(device))) goto nla_put_failure; if (C_SYNC_SOURCE <= device->state.conn && C_PAUSED_SYNC_T >= device->state.conn) { if (nla_put_u64(skb, T_bits_rs_total, device->rs_total) || nla_put_u64(skb, T_bits_rs_failed, device->rs_failed)) goto nla_put_failure; } } if (sib) { switch(sib->sib_reason) { case SIB_SYNC_PROGRESS: case SIB_GET_STATUS_REPLY: break; case SIB_STATE_CHANGE: if (nla_put_u32(skb, T_prev_state, sib->os.i) || nla_put_u32(skb, T_new_state, sib->ns.i)) goto nla_put_failure; break; case SIB_HELPER_POST: if (nla_put_u32(skb, T_helper_exit_code, sib->helper_exit_code)) goto nla_put_failure; /* fall through */ case SIB_HELPER_PRE: if (nla_put_string(skb, T_helper, sib->helper_name)) goto nla_put_failure; break; } } nla_nest_end(skb, nla); if (0) nla_put_failure: err = -EMSGSIZE; if (got_ldev) put_ldev(device); return err; } int drbd_adm_get_status(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; err = nla_put_status_info(adm_ctx.reply_skb, adm_ctx.device, NULL); if (err) { nlmsg_free(adm_ctx.reply_skb); return err; } out: drbd_adm_finish(info, retcode); return 0; } static int get_one_status(struct sk_buff *skb, struct netlink_callback *cb) { struct drbd_peer_device *peer_device; struct drbd_device *device; struct drbd_genlmsghdr *dh; struct drbd_resource *pos = (struct drbd_resource *)cb->args[0]; struct drbd_resource *resource = NULL; struct drbd_connection *connection; struct drbd_resource *tmp; unsigned volume = cb->args[1]; /* Open coded, deferred, iteration: * for_each_resource_safe(resource, tmp, &drbd_resources) { * connection = "first connection of resource"; * idr_for_each_entry(&connection->peer_devices, peer_device, i) { * ... * } * } * where resource is cb->args[0]; * and i is cb->args[1]; * * cb->args[2] indicates if we shall loop over all resources, * or just dump all volumes of a single resource. * * This may miss entries inserted after this dump started, * or entries deleted before they are reached. * * We need to make sure the device won't disappear while * we are looking at it, and revalidate our iterators * on each iteration. */ /* synchronize with conn_create()/drbd_destroy_connection() */ rcu_read_lock(); /* revalidate iterator position */ for_each_resource_rcu(tmp, &drbd_resources) { if (pos == NULL) { /* first iteration */ pos = tmp; resource = pos; break; } if (tmp == pos) { resource = pos; break; } } if (resource) { next_resource: connection = first_connection(resource); peer_device = idr_get_next(&connection->peer_devices, &volume); if (!peer_device) { /* No more volumes to dump on this resource. * Advance resource iterator. */ pos = list_entry_rcu(resource->resources.next, struct drbd_resource, resources); /* Did we dump any volume of this resource yet? */ if (volume != 0) { /* If we reached the end of the list, * or only a single resource dump was requested, * we are done. */ if (&pos->resources == &drbd_resources || cb->args[2]) goto out; volume = 0; resource = pos; goto next_resource; } } dh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &drbd_genl_family, NLM_F_MULTI, DRBD_ADM_GET_STATUS); if (!dh) goto out; if (!peer_device) { /* This is a connection without a single volume. * Suprisingly enough, it may have a network * configuration. */ struct net_conf *nc; dh->minor = -1U; dh->ret_code = NO_ERROR; if (nla_put_drbd_cfg_context(skb, connection, VOLUME_UNSPECIFIED)) goto cancel; nc = rcu_dereference(connection->net_conf); if (nc && net_conf_to_skb(skb, nc, 1) != 0) goto cancel; goto done; } device = peer_device->device; D_ASSERT(device->vnr == volume); D_ASSERT(first_peer_device(device)->connection == connection); dh->minor = device_to_minor(device); dh->ret_code = NO_ERROR; if (nla_put_status_info(skb, device, NULL)) { cancel: genlmsg_cancel(skb, dh); goto out; } done: genlmsg_end(skb, dh); } out: rcu_read_unlock(); /* where to start the next iteration */ cb->args[0] = (long)pos; cb->args[1] = (pos == resource) ? volume + 1 : 0; /* No more resources/volumes/minors found results in an empty skb. * Which will terminate the dump. */ return skb->len; } /* * Request status of all resources, or of all volumes within a single resource. * * This is a dump, as the answer may not fit in a single reply skb otherwise. * Which means we cannot use the family->attrbuf or other such members, because * dump is NOT protected by the genl_lock(). During dump, we only have access * to the incoming skb, and need to opencode "parsing" of the nlattr payload. * * Once things are setup properly, we call into get_one_status(). */ int drbd_adm_get_status_all(struct sk_buff *skb, struct netlink_callback *cb) { const unsigned hdrlen = GENL_HDRLEN + GENL_MAGIC_FAMILY_HDRSZ; struct nlattr *nla; const char *resource_name; struct drbd_resource *resource; int maxtype; /* Is this a followup call? */ if (cb->args[0]) { /* ... of a single resource dump, * and the resource iterator has been advanced already? */ if (cb->args[2] && cb->args[2] != cb->args[0]) return 0; /* DONE. */ goto dump; } /* First call (from netlink_dump_start). We need to figure out * which resource(s) the user wants us to dump. */ nla = nla_find(nlmsg_attrdata(cb->nlh, hdrlen), nlmsg_attrlen(cb->nlh, hdrlen), DRBD_NLA_CFG_CONTEXT); /* No explicit context given. Dump all. */ if (!nla) goto dump; maxtype = ARRAY_SIZE(drbd_cfg_context_nl_policy) - 1; nla = drbd_nla_find_nested(maxtype, nla, __nla_type(T_ctx_resource_name)); if (IS_ERR(nla)) return PTR_ERR(nla); /* context given, but no name present? */ if (!nla) return -EINVAL; resource_name = nla_data(nla); if (!*resource_name) return -ENODEV; resource = drbd_find_resource(resource_name); if (!resource) return -ENODEV; kref_put(&resource->kref, drbd_destroy_resource); /* get_one_status() revalidates the resource */ /* prime iterators, and set "filter" mode mark: * only dump this connection. */ cb->args[0] = (long)resource; /* cb->args[1] = 0; passed in this way. */ cb->args[2] = (long)resource; dump: return get_one_status(skb, cb); } int drbd_adm_get_timeout_type(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; struct timeout_parms tp; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; tp.timeout_type = adm_ctx.device->state.pdsk == D_OUTDATED ? UT_PEER_OUTDATED : test_bit(USE_DEGR_WFC_T, &adm_ctx.device->flags) ? UT_DEGRADED : UT_DEFAULT; err = timeout_parms_to_priv_skb(adm_ctx.reply_skb, &tp); if (err) { nlmsg_free(adm_ctx.reply_skb); return err; } out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_start_ov(struct sk_buff *skb, struct genl_info *info) { struct drbd_device *device; enum drbd_ret_code retcode; struct start_ov_parms parms; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; device = adm_ctx.device; /* resume from last known position, if possible */ parms.ov_start_sector = device->ov_start_sector; parms.ov_stop_sector = ULLONG_MAX; if (info->attrs[DRBD_NLA_START_OV_PARMS]) { int err = start_ov_parms_from_attrs(&parms, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto out; } } /* w_make_ov_request expects position to be aligned */ device->ov_start_sector = parms.ov_start_sector & ~(BM_SECT_PER_BIT-1); device->ov_stop_sector = parms.ov_stop_sector; /* If there is still bitmap IO pending, e.g. previous resync or verify * just being finished, wait for it before requesting a new resync. */ drbd_suspend_io(device); wait_event(device->misc_wait, !test_bit(BITMAP_IO, &device->flags)); retcode = drbd_request_state(device, NS(conn, C_VERIFY_S)); drbd_resume_io(device); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_new_c_uuid(struct sk_buff *skb, struct genl_info *info) { struct drbd_device *device; enum drbd_ret_code retcode; int skip_initial_sync = 0; int err; struct new_c_uuid_parms args; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out_nolock; device = adm_ctx.device; memset(&args, 0, sizeof(args)); if (info->attrs[DRBD_NLA_NEW_C_UUID_PARMS]) { err = new_c_uuid_parms_from_attrs(&args, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto out_nolock; } } mutex_lock(device->state_mutex); /* Protects us against serialized state changes. */ if (!get_ldev(device)) { retcode = ERR_NO_DISK; goto out; } /* this is "skip initial sync", assume to be clean */ if (device->state.conn == C_CONNECTED && first_peer_device(device)->connection->agreed_pro_version >= 90 && device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && args.clear_bm) { drbd_info(device, "Preparing to skip initial sync\n"); skip_initial_sync = 1; } else if (device->state.conn != C_STANDALONE) { retcode = ERR_CONNECTED; goto out_dec; } drbd_uuid_set(device, UI_BITMAP, 0); /* Rotate UI_BITMAP to History 1, etc... */ drbd_uuid_new_current(device); /* New current, previous to UI_BITMAP */ if (args.clear_bm) { err = drbd_bitmap_io(device, &drbd_bmio_clear_n_write, "clear_n_write from new_c_uuid", BM_LOCKED_MASK); if (err) { drbd_err(device, "Writing bitmap failed with %d\n", err); retcode = ERR_IO_MD_DISK; } if (skip_initial_sync) { drbd_send_uuids_skip_initial_sync(device); _drbd_uuid_set(device, UI_BITMAP, 0); drbd_print_uuids(device, "cleared bitmap UUID"); spin_lock_irq(&first_peer_device(device)->connection->req_lock); _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), CS_VERBOSE, NULL); spin_unlock_irq(&first_peer_device(device)->connection->req_lock); } } drbd_md_sync(device); out_dec: put_ldev(device); out: mutex_unlock(device->state_mutex); out_nolock: drbd_adm_finish(info, retcode); return 0; } static enum drbd_ret_code drbd_check_resource_name(const char *name) { if (!name || !name[0]) { drbd_msg_put_info("resource name missing"); return ERR_MANDATORY_TAG; } /* if we want to use these in sysfs/configfs/debugfs some day, * we must not allow slashes */ if (strchr(name, '/')) { drbd_msg_put_info("invalid resource name"); return ERR_INVALID_REQUEST; } return NO_ERROR; } int drbd_adm_new_resource(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; struct res_opts res_opts; int err; retcode = drbd_adm_prepare(skb, info, 0); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; set_res_opts_defaults(&res_opts); err = res_opts_from_attrs(&res_opts, info); if (err && err != -ENOMSG) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto out; } retcode = drbd_check_resource_name(adm_ctx.resource_name); if (retcode != NO_ERROR) goto out; if (adm_ctx.connection) { if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) { retcode = ERR_INVALID_REQUEST; drbd_msg_put_info("resource exists"); } /* else: still NO_ERROR */ goto out; } if (!conn_create(adm_ctx.resource_name, &res_opts)) retcode = ERR_NOMEM; out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_new_minor(struct sk_buff *skb, struct genl_info *info) { struct drbd_genlmsghdr *dh = info->userhdr; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_RESOURCE); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; if (dh->minor > MINORMASK) { drbd_msg_put_info("requested minor out of range"); retcode = ERR_INVALID_REQUEST; goto out; } if (adm_ctx.volume > DRBD_VOLUME_MAX) { drbd_msg_put_info("requested volume id out of range"); retcode = ERR_INVALID_REQUEST; goto out; } /* drbd_adm_prepare made sure already * that first_peer_device(device)->connection and device->vnr match the request. */ if (adm_ctx.device) { if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) retcode = ERR_MINOR_EXISTS; /* else: still NO_ERROR */ goto out; } retcode = drbd_create_minor(adm_ctx.connection, dh->minor, adm_ctx.volume); out: drbd_adm_finish(info, retcode); return 0; } static enum drbd_ret_code adm_del_minor(struct drbd_device *device) { if (device->state.disk == D_DISKLESS && /* no need to be device->state.conn == C_STANDALONE && * we may want to delete a minor from a live replication group. */ device->state.role == R_SECONDARY) { _drbd_request_state(device, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE + CS_WAIT_COMPLETE); drbd_delete_minor(device); return NO_ERROR; } else return ERR_MINOR_CONFIGURED; } int drbd_adm_del_minor(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; retcode = adm_del_minor(adm_ctx.device); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_down(struct sk_buff *skb, struct genl_info *info) { int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */ struct drbd_peer_device *peer_device; unsigned i; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_RESOURCE); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; /* demote */ idr_for_each_entry(&adm_ctx.connection->peer_devices, peer_device, i) { retcode = drbd_set_role(peer_device->device, R_SECONDARY, 0); if (retcode < SS_SUCCESS) { drbd_msg_put_info("failed to demote"); goto out; } } retcode = conn_try_disconnect(adm_ctx.connection, 0); if (retcode < SS_SUCCESS) { drbd_msg_put_info("failed to disconnect"); goto out; } /* detach */ idr_for_each_entry(&adm_ctx.connection->peer_devices, peer_device, i) { retcode = adm_detach(peer_device->device, 0); if (retcode < SS_SUCCESS || retcode > NO_ERROR) { drbd_msg_put_info("failed to detach"); goto out; } } /* If we reach this, all volumes (of this connection) are Secondary, * Disconnected, Diskless, aka Unconfigured. Make sure all threads have * actually stopped, state handling only does drbd_thread_stop_nowait(). */ drbd_thread_stop(&adm_ctx.connection->worker); /* Now, nothing can fail anymore */ /* delete volumes */ idr_for_each_entry(&adm_ctx.connection->peer_devices, peer_device, i) { retcode = adm_del_minor(peer_device->device); if (retcode != NO_ERROR) { /* "can not happen" */ drbd_msg_put_info("failed to delete volume"); goto out; } } /* delete connection */ if (conn_lowest_minor(adm_ctx.connection) < 0) { struct drbd_resource *resource = adm_ctx.connection->resource; list_del_rcu(&resource->resources); synchronize_rcu(); drbd_free_resource(resource); retcode = NO_ERROR; } else { /* "can not happen" */ retcode = ERR_RES_IN_USE; drbd_msg_put_info("failed to delete connection"); } goto out; out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_del_resource(struct sk_buff *skb, struct genl_info *info) { struct drbd_resource *resource; struct drbd_connection *connection; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_RESOURCE); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; resource = adm_ctx.resource; for_each_connection(connection, resource) { if (connection->cstate > C_STANDALONE) { retcode = ERR_NET_CONFIGURED; goto out; } } if (!idr_is_empty(&resource->devices)) { retcode = ERR_RES_IN_USE; goto out; } list_del_rcu(&resource->resources); for_each_connection(connection, resource) drbd_thread_stop(&connection->worker); synchronize_rcu(); drbd_free_resource(resource); retcode = NO_ERROR; out: drbd_adm_finish(info, retcode); return 0; } void drbd_bcast_event(struct drbd_device *device, const struct sib_info *sib) { static atomic_t drbd_genl_seq = ATOMIC_INIT(2); /* two. */ struct sk_buff *msg; struct drbd_genlmsghdr *d_out; unsigned seq; int err = -ENOMEM; if (sib->sib_reason == SIB_SYNC_PROGRESS) { if (time_after(jiffies, device->rs_last_bcast + HZ)) device->rs_last_bcast = jiffies; else return; } seq = atomic_inc_return(&drbd_genl_seq); msg = genlmsg_new(NLMSG_GOODSIZE, GFP_NOIO); if (!msg) goto failed; err = -EMSGSIZE; d_out = genlmsg_put(msg, 0, seq, &drbd_genl_family, 0, DRBD_EVENT); if (!d_out) /* cannot happen, but anyways. */ goto nla_put_failure; d_out->minor = device_to_minor(device); d_out->ret_code = NO_ERROR; if (nla_put_status_info(msg, device, sib)) goto nla_put_failure; genlmsg_end(msg, d_out); err = drbd_genl_multicast_events(msg, 0); /* msg has been consumed or freed in netlink_broadcast() */ if (err && err != -ESRCH) goto failed; return; nla_put_failure: nlmsg_free(msg); failed: drbd_err(device, "Error %d while broadcasting event. " "Event seq:%u sib_reason:%u\n", err, seq, sib->sib_reason); }