/* * Afatech AF9035 DVB USB driver * * Copyright (C) 2009 Antti Palosaari * Copyright (C) 2012 Antti Palosaari * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "af9035.h" /* Max transfer size done by I2C transfer functions */ #define MAX_XFER_SIZE 64 DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); static u16 af9035_checksum(const u8 *buf, size_t len) { size_t i; u16 checksum = 0; for (i = 1; i < len; i++) { if (i % 2) checksum += buf[i] << 8; else checksum += buf[i]; } checksum = ~checksum; return checksum; } static int af9035_ctrl_msg(struct dvb_usb_device *d, struct usb_req *req) { #define REQ_HDR_LEN 4 /* send header size */ #define ACK_HDR_LEN 3 /* rece header size */ #define CHECKSUM_LEN 2 #define USB_TIMEOUT 2000 struct state *state = d_to_priv(d); int ret, wlen, rlen; u16 checksum, tmp_checksum; mutex_lock(&d->usb_mutex); /* buffer overflow check */ if (req->wlen > (BUF_LEN - REQ_HDR_LEN - CHECKSUM_LEN) || req->rlen > (BUF_LEN - ACK_HDR_LEN - CHECKSUM_LEN)) { dev_err(&d->udev->dev, "%s: too much data wlen=%d rlen=%d\n", KBUILD_MODNAME, req->wlen, req->rlen); ret = -EINVAL; goto exit; } state->buf[0] = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN - 1; state->buf[1] = req->mbox; state->buf[2] = req->cmd; state->buf[3] = state->seq++; memcpy(&state->buf[REQ_HDR_LEN], req->wbuf, req->wlen); wlen = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN; rlen = ACK_HDR_LEN + req->rlen + CHECKSUM_LEN; /* calc and add checksum */ checksum = af9035_checksum(state->buf, state->buf[0] - 1); state->buf[state->buf[0] - 1] = (checksum >> 8); state->buf[state->buf[0] - 0] = (checksum & 0xff); /* no ack for these packets */ if (req->cmd == CMD_FW_DL) rlen = 0; ret = dvb_usbv2_generic_rw_locked(d, state->buf, wlen, state->buf, rlen); if (ret) goto exit; /* no ack for those packets */ if (req->cmd == CMD_FW_DL) goto exit; /* verify checksum */ checksum = af9035_checksum(state->buf, rlen - 2); tmp_checksum = (state->buf[rlen - 2] << 8) | state->buf[rlen - 1]; if (tmp_checksum != checksum) { dev_err(&d->udev->dev, "%s: command=%02x checksum mismatch (%04x != %04x)\n", KBUILD_MODNAME, req->cmd, tmp_checksum, checksum); ret = -EIO; goto exit; } /* check status */ if (state->buf[2]) { /* fw returns status 1 when IR code was not received */ if (req->cmd == CMD_IR_GET || state->buf[2] == 1) { ret = 1; goto exit; } dev_dbg(&d->udev->dev, "%s: command=%02x failed fw error=%d\n", __func__, req->cmd, state->buf[2]); ret = -EIO; goto exit; } /* read request, copy returned data to return buf */ if (req->rlen) memcpy(req->rbuf, &state->buf[ACK_HDR_LEN], req->rlen); exit: mutex_unlock(&d->usb_mutex); if (ret < 0) dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } /* write multiple registers */ static int af9035_wr_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len) { u8 wbuf[MAX_XFER_SIZE]; u8 mbox = (reg >> 16) & 0xff; struct usb_req req = { CMD_MEM_WR, mbox, 6 + len, wbuf, 0, NULL }; if (6 + len > sizeof(wbuf)) { dev_warn(&d->udev->dev, "%s: i2c wr: len=%d is too big!\n", KBUILD_MODNAME, len); return -EOPNOTSUPP; } wbuf[0] = len; wbuf[1] = 2; wbuf[2] = 0; wbuf[3] = 0; wbuf[4] = (reg >> 8) & 0xff; wbuf[5] = (reg >> 0) & 0xff; memcpy(&wbuf[6], val, len); return af9035_ctrl_msg(d, &req); } /* read multiple registers */ static int af9035_rd_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len) { u8 wbuf[] = { len, 2, 0, 0, (reg >> 8) & 0xff, reg & 0xff }; u8 mbox = (reg >> 16) & 0xff; struct usb_req req = { CMD_MEM_RD, mbox, sizeof(wbuf), wbuf, len, val }; return af9035_ctrl_msg(d, &req); } /* write single register */ static int af9035_wr_reg(struct dvb_usb_device *d, u32 reg, u8 val) { return af9035_wr_regs(d, reg, &val, 1); } /* read single register */ static int af9035_rd_reg(struct dvb_usb_device *d, u32 reg, u8 *val) { return af9035_rd_regs(d, reg, val, 1); } /* write single register with mask */ static int af9035_wr_reg_mask(struct dvb_usb_device *d, u32 reg, u8 val, u8 mask) { int ret; u8 tmp; /* no need for read if whole reg is written */ if (mask != 0xff) { ret = af9035_rd_regs(d, reg, &tmp, 1); if (ret) return ret; val &= mask; tmp &= ~mask; val |= tmp; } return af9035_wr_regs(d, reg, &val, 1); } static int af9035_add_i2c_dev(struct dvb_usb_device *d, char *type, u8 addr, void *platform_data) { int ret, num; struct state *state = d_to_priv(d); struct i2c_client *client; struct i2c_adapter *adapter = &d->i2c_adap; struct i2c_board_info board_info = { .addr = addr, .platform_data = platform_data, }; strlcpy(board_info.type, type, I2C_NAME_SIZE); /* find first free client */ for (num = 0; num < AF9035_I2C_CLIENT_MAX; num++) { if (state->i2c_client[num] == NULL) break; } dev_dbg(&d->udev->dev, "%s: num=%d\n", __func__, num); if (num == AF9035_I2C_CLIENT_MAX) { dev_err(&d->udev->dev, "%s: I2C client out of index\n", KBUILD_MODNAME); ret = -ENODEV; goto err; } request_module(board_info.type); /* register I2C device */ client = i2c_new_device(adapter, &board_info); if (client == NULL || client->dev.driver == NULL) { ret = -ENODEV; goto err; } /* increase I2C driver usage count */ if (!try_module_get(client->dev.driver->owner)) { i2c_unregister_device(client); ret = -ENODEV; goto err; } state->i2c_client[num] = client; return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static void af9035_del_i2c_dev(struct dvb_usb_device *d) { int num; struct state *state = d_to_priv(d); struct i2c_client *client; /* find last used client */ num = AF9035_I2C_CLIENT_MAX; while (num--) { if (state->i2c_client[num] != NULL) break; } dev_dbg(&d->udev->dev, "%s: num=%d\n", __func__, num); if (num == -1) { dev_err(&d->udev->dev, "%s: I2C client out of index\n", KBUILD_MODNAME); goto err; } client = state->i2c_client[num]; /* decrease I2C driver usage count */ module_put(client->dev.driver->owner); /* unregister I2C device */ i2c_unregister_device(client); state->i2c_client[num] = NULL; return; err: dev_dbg(&d->udev->dev, "%s: failed\n", __func__); } static int af9035_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); struct state *state = d_to_priv(d); int ret; if (mutex_lock_interruptible(&d->i2c_mutex) < 0) return -EAGAIN; /* * I2C sub header is 5 bytes long. Meaning of those bytes are: * 0: data len * 1: I2C addr << 1 * 2: reg addr len * byte 3 and 4 can be used as reg addr * 3: reg addr MSB * used when reg addr len is set to 2 * 4: reg addr LSB * used when reg addr len is set to 1 or 2 * * For the simplify we do not use register addr at all. * NOTE: As a firmware knows tuner type there is very small possibility * there could be some tuner I2C hacks done by firmware and this may * lead problems if firmware expects those bytes are used. */ if (num == 2 && !(msg[0].flags & I2C_M_RD) && (msg[1].flags & I2C_M_RD)) { if (msg[0].len > 40 || msg[1].len > 40) { /* TODO: correct limits > 40 */ ret = -EOPNOTSUPP; } else if ((msg[0].addr == state->af9033_config[0].i2c_addr) || (msg[0].addr == state->af9033_config[1].i2c_addr)) { /* demod access via firmware interface */ u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 | msg[0].buf[2]; if (msg[0].addr == state->af9033_config[1].i2c_addr) reg |= 0x100000; ret = af9035_rd_regs(d, reg, &msg[1].buf[0], msg[1].len); } else { /* I2C */ u8 buf[MAX_XFER_SIZE]; struct usb_req req = { CMD_I2C_RD, 0, 5 + msg[0].len, buf, msg[1].len, msg[1].buf }; if (5 + msg[0].len > sizeof(buf)) { dev_warn(&d->udev->dev, "%s: i2c xfer: len=%d is too big!\n", KBUILD_MODNAME, msg[0].len); ret = -EOPNOTSUPP; goto unlock; } req.mbox |= ((msg[0].addr & 0x80) >> 3); buf[0] = msg[1].len; buf[1] = msg[0].addr << 1; buf[2] = 0x00; /* reg addr len */ buf[3] = 0x00; /* reg addr MSB */ buf[4] = 0x00; /* reg addr LSB */ memcpy(&buf[5], msg[0].buf, msg[0].len); ret = af9035_ctrl_msg(d, &req); } } else if (num == 1 && !(msg[0].flags & I2C_M_RD)) { if (msg[0].len > 40) { /* TODO: correct limits > 40 */ ret = -EOPNOTSUPP; } else if ((msg[0].addr == state->af9033_config[0].i2c_addr) || (msg[0].addr == state->af9033_config[1].i2c_addr)) { /* demod access via firmware interface */ u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 | msg[0].buf[2]; if (msg[0].addr == state->af9033_config[1].i2c_addr) reg |= 0x100000; ret = af9035_wr_regs(d, reg, &msg[0].buf[3], msg[0].len - 3); } else { /* I2C */ u8 buf[MAX_XFER_SIZE]; struct usb_req req = { CMD_I2C_WR, 0, 5 + msg[0].len, buf, 0, NULL }; if (5 + msg[0].len > sizeof(buf)) { dev_warn(&d->udev->dev, "%s: i2c xfer: len=%d is too big!\n", KBUILD_MODNAME, msg[0].len); ret = -EOPNOTSUPP; goto unlock; } req.mbox |= ((msg[0].addr & 0x80) >> 3); buf[0] = msg[0].len; buf[1] = msg[0].addr << 1; buf[2] = 0x00; /* reg addr len */ buf[3] = 0x00; /* reg addr MSB */ buf[4] = 0x00; /* reg addr LSB */ memcpy(&buf[5], msg[0].buf, msg[0].len); ret = af9035_ctrl_msg(d, &req); } } else if (num == 1 && (msg[0].flags & I2C_M_RD)) { if (msg[0].len > 40) { /* TODO: correct limits > 40 */ ret = -EOPNOTSUPP; } else { /* I2C */ u8 buf[5]; struct usb_req req = { CMD_I2C_RD, 0, sizeof(buf), buf, msg[0].len, msg[0].buf }; req.mbox |= ((msg[0].addr & 0x80) >> 3); buf[0] = msg[0].len; buf[1] = msg[0].addr << 1; buf[2] = 0x00; /* reg addr len */ buf[3] = 0x00; /* reg addr MSB */ buf[4] = 0x00; /* reg addr LSB */ ret = af9035_ctrl_msg(d, &req); } } else { /* * We support only three kind of I2C transactions: * 1) 1 x read + 1 x write (repeated start) * 2) 1 x write * 3) 1 x read */ ret = -EOPNOTSUPP; } unlock: mutex_unlock(&d->i2c_mutex); if (ret < 0) return ret; else return num; } static u32 af9035_i2c_functionality(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static struct i2c_algorithm af9035_i2c_algo = { .master_xfer = af9035_i2c_master_xfer, .functionality = af9035_i2c_functionality, }; static int af9035_identify_state(struct dvb_usb_device *d, const char **name) { struct state *state = d_to_priv(d); int ret; u8 wbuf[1] = { 1 }; u8 rbuf[4]; struct usb_req req = { CMD_FW_QUERYINFO, 0, sizeof(wbuf), wbuf, sizeof(rbuf), rbuf }; ret = af9035_rd_regs(d, 0x1222, rbuf, 3); if (ret < 0) goto err; state->chip_version = rbuf[0]; state->chip_type = rbuf[2] << 8 | rbuf[1] << 0; ret = af9035_rd_reg(d, 0x384f, &state->prechip_version); if (ret < 0) goto err; dev_info(&d->udev->dev, "%s: prechip_version=%02x chip_version=%02x chip_type=%04x\n", KBUILD_MODNAME, state->prechip_version, state->chip_version, state->chip_type); if (state->chip_type == 0x9135) { if (state->chip_version == 0x02) *name = AF9035_FIRMWARE_IT9135_V2; else *name = AF9035_FIRMWARE_IT9135_V1; state->eeprom_addr = EEPROM_BASE_IT9135; } else { *name = AF9035_FIRMWARE_AF9035; state->eeprom_addr = EEPROM_BASE_AF9035; } ret = af9035_ctrl_msg(d, &req); if (ret < 0) goto err; dev_dbg(&d->udev->dev, "%s: reply=%*ph\n", __func__, 4, rbuf); if (rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3]) ret = WARM; else ret = COLD; return ret; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9035_download_firmware_old(struct dvb_usb_device *d, const struct firmware *fw) { int ret, i, j, len; u8 wbuf[1]; struct usb_req req = { 0, 0, 0, NULL, 0, NULL }; struct usb_req req_fw_dl = { CMD_FW_DL, 0, 0, wbuf, 0, NULL }; u8 hdr_core; u16 hdr_addr, hdr_data_len, hdr_checksum; #define MAX_DATA 58 #define HDR_SIZE 7 /* * Thanks to Daniel Glöckner about that info! * * byte 0: MCS 51 core * There are two inside the AF9035 (1=Link and 2=OFDM) with separate * address spaces * byte 1-2: Big endian destination address * byte 3-4: Big endian number of data bytes following the header * byte 5-6: Big endian header checksum, apparently ignored by the chip * Calculated as ~(h[0]*256+h[1]+h[2]*256+h[3]+h[4]*256) */ for (i = fw->size; i > HDR_SIZE;) { hdr_core = fw->data[fw->size - i + 0]; hdr_addr = fw->data[fw->size - i + 1] << 8; hdr_addr |= fw->data[fw->size - i + 2] << 0; hdr_data_len = fw->data[fw->size - i + 3] << 8; hdr_data_len |= fw->data[fw->size - i + 4] << 0; hdr_checksum = fw->data[fw->size - i + 5] << 8; hdr_checksum |= fw->data[fw->size - i + 6] << 0; dev_dbg(&d->udev->dev, "%s: core=%d addr=%04x data_len=%d checksum=%04x\n", __func__, hdr_core, hdr_addr, hdr_data_len, hdr_checksum); if (((hdr_core != 1) && (hdr_core != 2)) || (hdr_data_len > i)) { dev_dbg(&d->udev->dev, "%s: bad firmware\n", __func__); break; } /* download begin packet */ req.cmd = CMD_FW_DL_BEGIN; ret = af9035_ctrl_msg(d, &req); if (ret < 0) goto err; /* download firmware packet(s) */ for (j = HDR_SIZE + hdr_data_len; j > 0; j -= MAX_DATA) { len = j; if (len > MAX_DATA) len = MAX_DATA; req_fw_dl.wlen = len; req_fw_dl.wbuf = (u8 *) &fw->data[fw->size - i + HDR_SIZE + hdr_data_len - j]; ret = af9035_ctrl_msg(d, &req_fw_dl); if (ret < 0) goto err; } /* download end packet */ req.cmd = CMD_FW_DL_END; ret = af9035_ctrl_msg(d, &req); if (ret < 0) goto err; i -= hdr_data_len + HDR_SIZE; dev_dbg(&d->udev->dev, "%s: data uploaded=%zu\n", __func__, fw->size - i); } /* print warn if firmware is bad, continue and see what happens */ if (i) dev_warn(&d->udev->dev, "%s: bad firmware\n", KBUILD_MODNAME); return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9035_download_firmware_new(struct dvb_usb_device *d, const struct firmware *fw) { int ret, i, i_prev; struct usb_req req_fw_dl = { CMD_FW_SCATTER_WR, 0, 0, NULL, 0, NULL }; #define HDR_SIZE 7 /* * There seems to be following firmware header. Meaning of bytes 0-3 * is unknown. * * 0: 3 * 1: 0, 1 * 2: 0 * 3: 1, 2, 3 * 4: addr MSB * 5: addr LSB * 6: count of data bytes ? */ for (i = HDR_SIZE, i_prev = 0; i <= fw->size; i++) { if (i == fw->size || (fw->data[i + 0] == 0x03 && (fw->data[i + 1] == 0x00 || fw->data[i + 1] == 0x01) && fw->data[i + 2] == 0x00)) { req_fw_dl.wlen = i - i_prev; req_fw_dl.wbuf = (u8 *) &fw->data[i_prev]; i_prev = i; ret = af9035_ctrl_msg(d, &req_fw_dl); if (ret < 0) goto err; dev_dbg(&d->udev->dev, "%s: data uploaded=%d\n", __func__, i); } } return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9035_download_firmware(struct dvb_usb_device *d, const struct firmware *fw) { struct state *state = d_to_priv(d); int ret; u8 wbuf[1]; u8 rbuf[4]; u8 tmp; struct usb_req req = { 0, 0, 0, NULL, 0, NULL }; struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf }; dev_dbg(&d->udev->dev, "%s:\n", __func__); /* * In case of dual tuner configuration we need to do some extra * initialization in order to download firmware to slave demod too, * which is done by master demod. * Master feeds also clock and controls power via GPIO. */ ret = af9035_rd_reg(d, state->eeprom_addr + EEPROM_TS_MODE, &tmp); if (ret < 0) goto err; if (tmp == 1 || tmp == 3) { /* configure gpioh1, reset & power slave demod */ ret = af9035_wr_reg_mask(d, 0x00d8b0, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0x00d8b1, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0x00d8af, 0x00, 0x01); if (ret < 0) goto err; usleep_range(10000, 50000); ret = af9035_wr_reg_mask(d, 0x00d8af, 0x01, 0x01); if (ret < 0) goto err; /* tell the slave I2C address */ ret = af9035_rd_reg(d, state->eeprom_addr + EEPROM_2ND_DEMOD_ADDR, &tmp); if (ret < 0) goto err; /* use default I2C address if eeprom has no address set */ if (!tmp) tmp = 0x3a; if (state->chip_type == 0x9135) { ret = af9035_wr_reg(d, 0x004bfb, tmp); if (ret < 0) goto err; } else { ret = af9035_wr_reg(d, 0x00417f, tmp); if (ret < 0) goto err; /* enable clock out */ ret = af9035_wr_reg_mask(d, 0x00d81a, 0x01, 0x01); if (ret < 0) goto err; } } if (fw->data[0] == 0x01) ret = af9035_download_firmware_old(d, fw); else ret = af9035_download_firmware_new(d, fw); if (ret < 0) goto err; /* firmware loaded, request boot */ req.cmd = CMD_FW_BOOT; ret = af9035_ctrl_msg(d, &req); if (ret < 0) goto err; /* ensure firmware starts */ wbuf[0] = 1; ret = af9035_ctrl_msg(d, &req_fw_ver); if (ret < 0) goto err; if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) { dev_err(&d->udev->dev, "%s: firmware did not run\n", KBUILD_MODNAME); ret = -ENODEV; goto err; } dev_info(&d->udev->dev, "%s: firmware version=%d.%d.%d.%d", KBUILD_MODNAME, rbuf[0], rbuf[1], rbuf[2], rbuf[3]); return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9035_read_config(struct dvb_usb_device *d) { struct state *state = d_to_priv(d); int ret, i; u8 tmp; u16 tmp16, addr; /* demod I2C "address" */ state->af9033_config[0].i2c_addr = 0x38; state->af9033_config[1].i2c_addr = 0x3a; state->af9033_config[0].adc_multiplier = AF9033_ADC_MULTIPLIER_2X; state->af9033_config[1].adc_multiplier = AF9033_ADC_MULTIPLIER_2X; state->af9033_config[0].ts_mode = AF9033_TS_MODE_USB; state->af9033_config[1].ts_mode = AF9033_TS_MODE_SERIAL; if (state->chip_type == 0x9135) { /* feed clock for integrated RF tuner */ state->af9033_config[0].dyn0_clk = true; state->af9033_config[1].dyn0_clk = true; if (state->chip_version == 0x02) { state->af9033_config[0].tuner = AF9033_TUNER_IT9135_60; state->af9033_config[1].tuner = AF9033_TUNER_IT9135_60; tmp16 = 0x00461d; /* eeprom memory mapped location */ } else { state->af9033_config[0].tuner = AF9033_TUNER_IT9135_38; state->af9033_config[1].tuner = AF9033_TUNER_IT9135_38; tmp16 = 0x00461b; /* eeprom memory mapped location */ } /* check if eeprom exists */ ret = af9035_rd_reg(d, tmp16, &tmp); if (ret < 0) goto err; if (tmp == 0x00) { dev_dbg(&d->udev->dev, "%s: no eeprom\n", __func__); goto skip_eeprom; } } /* check if there is dual tuners */ ret = af9035_rd_reg(d, state->eeprom_addr + EEPROM_TS_MODE, &tmp); if (ret < 0) goto err; if (tmp == 1 || tmp == 3) state->dual_mode = true; dev_dbg(&d->udev->dev, "%s: ts mode=%d dual mode=%d\n", __func__, tmp, state->dual_mode); if (state->dual_mode) { /* read 2nd demodulator I2C address */ ret = af9035_rd_reg(d, state->eeprom_addr + EEPROM_2ND_DEMOD_ADDR, &tmp); if (ret < 0) goto err; if (tmp) state->af9033_config[1].i2c_addr = tmp; dev_dbg(&d->udev->dev, "%s: 2nd demod I2C addr=%02x\n", __func__, tmp); } addr = state->eeprom_addr; for (i = 0; i < state->dual_mode + 1; i++) { /* tuner */ ret = af9035_rd_reg(d, addr + EEPROM_1_TUNER_ID, &tmp); if (ret < 0) goto err; dev_dbg(&d->udev->dev, "%s: [%d]tuner=%02x\n", __func__, i, tmp); /* tuner sanity check */ if (state->chip_type == 0x9135) { if (state->chip_version == 0x02) { /* IT9135 BX (v2) */ switch (tmp) { case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: state->af9033_config[i].tuner = tmp; break; } } else { /* IT9135 AX (v1) */ switch (tmp) { case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: state->af9033_config[i].tuner = tmp; break; } } } else { /* AF9035 */ state->af9033_config[i].tuner = tmp; } if (state->af9033_config[i].tuner != tmp) { dev_info(&d->udev->dev, "%s: [%d] overriding tuner from %02x to %02x\n", KBUILD_MODNAME, i, tmp, state->af9033_config[i].tuner); } switch (state->af9033_config[i].tuner) { case AF9033_TUNER_TUA9001: case AF9033_TUNER_FC0011: case AF9033_TUNER_MXL5007T: case AF9033_TUNER_TDA18218: case AF9033_TUNER_FC2580: case AF9033_TUNER_FC0012: state->af9033_config[i].spec_inv = 1; break; case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: break; default: dev_warn(&d->udev->dev, "%s: tuner id=%02x not supported, please report!", KBUILD_MODNAME, tmp); } /* disable dual mode if driver does not support it */ if (i == 1) switch (state->af9033_config[i].tuner) { case AF9033_TUNER_FC0012: case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: case AF9033_TUNER_MXL5007T: break; default: state->dual_mode = false; dev_info(&d->udev->dev, "%s: driver does not support 2nd tuner and will disable it", KBUILD_MODNAME); } /* tuner IF frequency */ ret = af9035_rd_reg(d, addr + EEPROM_1_IF_L, &tmp); if (ret < 0) goto err; tmp16 = tmp; ret = af9035_rd_reg(d, addr + EEPROM_1_IF_H, &tmp); if (ret < 0) goto err; tmp16 |= tmp << 8; dev_dbg(&d->udev->dev, "%s: [%d]IF=%d\n", __func__, i, tmp16); addr += 0x10; /* shift for the 2nd tuner params */ } skip_eeprom: /* get demod clock */ ret = af9035_rd_reg(d, 0x00d800, &tmp); if (ret < 0) goto err; tmp = (tmp >> 0) & 0x0f; for (i = 0; i < ARRAY_SIZE(state->af9033_config); i++) { if (state->chip_type == 0x9135) state->af9033_config[i].clock = clock_lut_it9135[tmp]; else state->af9033_config[i].clock = clock_lut_af9035[tmp]; } return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9035_tua9001_tuner_callback(struct dvb_usb_device *d, int cmd, int arg) { int ret; u8 val; dev_dbg(&d->udev->dev, "%s: cmd=%d arg=%d\n", __func__, cmd, arg); /* * CEN always enabled by hardware wiring * RESETN GPIOT3 * RXEN GPIOT2 */ switch (cmd) { case TUA9001_CMD_RESETN: if (arg) val = 0x00; else val = 0x01; ret = af9035_wr_reg_mask(d, 0x00d8e7, val, 0x01); if (ret < 0) goto err; break; case TUA9001_CMD_RXEN: if (arg) val = 0x01; else val = 0x00; ret = af9035_wr_reg_mask(d, 0x00d8eb, val, 0x01); if (ret < 0) goto err; break; } return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9035_fc0011_tuner_callback(struct dvb_usb_device *d, int cmd, int arg) { int ret; switch (cmd) { case FC0011_FE_CALLBACK_POWER: /* Tuner enable */ ret = af9035_wr_reg_mask(d, 0xd8eb, 1, 1); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ec, 1, 1); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ed, 1, 1); if (ret < 0) goto err; /* LED */ ret = af9035_wr_reg_mask(d, 0xd8d0, 1, 1); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8d1, 1, 1); if (ret < 0) goto err; usleep_range(10000, 50000); break; case FC0011_FE_CALLBACK_RESET: ret = af9035_wr_reg(d, 0xd8e9, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0xd8e8, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0xd8e7, 1); if (ret < 0) goto err; usleep_range(10000, 20000); ret = af9035_wr_reg(d, 0xd8e7, 0); if (ret < 0) goto err; usleep_range(10000, 20000); break; default: ret = -EINVAL; goto err; } return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9035_tuner_callback(struct dvb_usb_device *d, int cmd, int arg) { struct state *state = d_to_priv(d); switch (state->af9033_config[0].tuner) { case AF9033_TUNER_FC0011: return af9035_fc0011_tuner_callback(d, cmd, arg); case AF9033_TUNER_TUA9001: return af9035_tua9001_tuner_callback(d, cmd, arg); default: break; } return 0; } static int af9035_frontend_callback(void *adapter_priv, int component, int cmd, int arg) { struct i2c_adapter *adap = adapter_priv; struct dvb_usb_device *d = i2c_get_adapdata(adap); dev_dbg(&d->udev->dev, "%s: component=%d cmd=%d arg=%d\n", __func__, component, cmd, arg); switch (component) { case DVB_FRONTEND_COMPONENT_TUNER: return af9035_tuner_callback(d, cmd, arg); default: break; } return 0; } static int af9035_get_adapter_count(struct dvb_usb_device *d) { struct state *state = d_to_priv(d); return state->dual_mode + 1; } static int af9035_frontend_attach(struct dvb_usb_adapter *adap) { struct state *state = adap_to_priv(adap); struct dvb_usb_device *d = adap_to_d(adap); int ret; dev_dbg(&d->udev->dev, "%s:\n", __func__); if (!state->af9033_config[adap->id].tuner) { /* unsupported tuner */ ret = -ENODEV; goto err; } /* attach demodulator */ adap->fe[0] = dvb_attach(af9033_attach, &state->af9033_config[adap->id], &d->i2c_adap, &state->ops); if (adap->fe[0] == NULL) { ret = -ENODEV; goto err; } /* disable I2C-gate */ adap->fe[0]->ops.i2c_gate_ctrl = NULL; adap->fe[0]->callback = af9035_frontend_callback; return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static struct tua9001_config af9035_tua9001_config = { .i2c_addr = 0x60, }; static const struct fc0011_config af9035_fc0011_config = { .i2c_address = 0x60, }; static struct mxl5007t_config af9035_mxl5007t_config[] = { { .xtal_freq_hz = MxL_XTAL_24_MHZ, .if_freq_hz = MxL_IF_4_57_MHZ, .invert_if = 0, .loop_thru_enable = 0, .clk_out_enable = 0, .clk_out_amp = MxL_CLKOUT_AMP_0_94V, }, { .xtal_freq_hz = MxL_XTAL_24_MHZ, .if_freq_hz = MxL_IF_4_57_MHZ, .invert_if = 0, .loop_thru_enable = 1, .clk_out_enable = 1, .clk_out_amp = MxL_CLKOUT_AMP_0_94V, } }; static struct tda18218_config af9035_tda18218_config = { .i2c_address = 0x60, .i2c_wr_max = 21, }; static const struct fc2580_config af9035_fc2580_config = { .i2c_addr = 0x56, .clock = 16384000, }; static const struct fc0012_config af9035_fc0012_config[] = { { .i2c_address = 0x63, .xtal_freq = FC_XTAL_36_MHZ, .dual_master = true, .loop_through = true, .clock_out = true, }, { .i2c_address = 0x63 | 0x80, /* I2C bus select hack */ .xtal_freq = FC_XTAL_36_MHZ, .dual_master = true, } }; static int af9035_tuner_attach(struct dvb_usb_adapter *adap) { struct state *state = adap_to_priv(adap); struct dvb_usb_device *d = adap_to_d(adap); int ret; struct dvb_frontend *fe; struct i2c_msg msg[1]; u8 tuner_addr; dev_dbg(&d->udev->dev, "%s:\n", __func__); /* * XXX: Hack used in that function: we abuse unused I2C address bit [7] * to carry info about used I2C bus for dual tuner configuration. */ switch (state->af9033_config[adap->id].tuner) { case AF9033_TUNER_TUA9001: /* AF9035 gpiot3 = TUA9001 RESETN AF9035 gpiot2 = TUA9001 RXEN */ /* configure gpiot2 and gpiot2 as output */ ret = af9035_wr_reg_mask(d, 0x00d8ec, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0x00d8ed, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0x00d8e8, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0x00d8e9, 0x01, 0x01); if (ret < 0) goto err; /* attach tuner */ fe = dvb_attach(tua9001_attach, adap->fe[0], &d->i2c_adap, &af9035_tua9001_config); break; case AF9033_TUNER_FC0011: fe = dvb_attach(fc0011_attach, adap->fe[0], &d->i2c_adap, &af9035_fc0011_config); break; case AF9033_TUNER_MXL5007T: if (adap->id == 0) { ret = af9035_wr_reg(d, 0x00d8e0, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8e1, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8df, 0); if (ret < 0) goto err; msleep(30); ret = af9035_wr_reg(d, 0x00d8df, 1); if (ret < 0) goto err; msleep(300); ret = af9035_wr_reg(d, 0x00d8c0, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8c1, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8bf, 0); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8b4, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8b5, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8b3, 1); if (ret < 0) goto err; tuner_addr = 0x60; } else { tuner_addr = 0x60 | 0x80; /* I2C bus hack */ } /* attach tuner */ fe = dvb_attach(mxl5007t_attach, adap->fe[0], &d->i2c_adap, tuner_addr, &af9035_mxl5007t_config[adap->id]); break; case AF9033_TUNER_TDA18218: /* attach tuner */ fe = dvb_attach(tda18218_attach, adap->fe[0], &d->i2c_adap, &af9035_tda18218_config); break; case AF9033_TUNER_FC2580: /* Tuner enable using gpiot2_o, gpiot2_en and gpiot2_on */ ret = af9035_wr_reg_mask(d, 0xd8eb, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ec, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ed, 0x01, 0x01); if (ret < 0) goto err; usleep_range(10000, 50000); /* attach tuner */ fe = dvb_attach(fc2580_attach, adap->fe[0], &d->i2c_adap, &af9035_fc2580_config); break; case AF9033_TUNER_FC0012: /* * AF9035 gpiot2 = FC0012 enable * XXX: there seems to be something on gpioh8 too, but on my * my test I didn't find any difference. */ if (adap->id == 0) { /* configure gpiot2 as output and high */ ret = af9035_wr_reg_mask(d, 0xd8eb, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ec, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ed, 0x01, 0x01); if (ret < 0) goto err; } else { /* * FIXME: That belongs for the FC0012 driver. * Write 02 to FC0012 master tuner register 0d directly * in order to make slave tuner working. */ msg[0].addr = 0x63; msg[0].flags = 0; msg[0].len = 2; msg[0].buf = "\x0d\x02"; ret = i2c_transfer(&d->i2c_adap, msg, 1); if (ret < 0) goto err; } usleep_range(10000, 50000); fe = dvb_attach(fc0012_attach, adap->fe[0], &d->i2c_adap, &af9035_fc0012_config[adap->id]); break; case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: { struct it913x_config it913x_config = { .fe = adap->fe[0], .chip_ver = 1, }; ret = af9035_add_i2c_dev(d, "it913x", state->af9033_config[adap->id].i2c_addr, &it913x_config); if (ret) goto err; fe = adap->fe[0]; break; } case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: { struct it913x_config it913x_config = { .fe = adap->fe[0], .chip_ver = 2, }; ret = af9035_add_i2c_dev(d, "it913x", state->af9033_config[adap->id].i2c_addr, &it913x_config); if (ret) goto err; fe = adap->fe[0]; break; } default: fe = NULL; } if (fe == NULL) { ret = -ENODEV; goto err; } return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9035_init(struct dvb_usb_device *d) { struct state *state = d_to_priv(d); int ret, i; u16 frame_size = (d->udev->speed == USB_SPEED_FULL ? 5 : 87) * 188 / 4; u8 packet_size = (d->udev->speed == USB_SPEED_FULL ? 64 : 512) / 4; struct reg_val_mask tab[] = { { 0x80f99d, 0x01, 0x01 }, { 0x80f9a4, 0x01, 0x01 }, { 0x00dd11, 0x00, 0x20 }, { 0x00dd11, 0x00, 0x40 }, { 0x00dd13, 0x00, 0x20 }, { 0x00dd13, 0x00, 0x40 }, { 0x00dd11, 0x20, 0x20 }, { 0x00dd88, (frame_size >> 0) & 0xff, 0xff}, { 0x00dd89, (frame_size >> 8) & 0xff, 0xff}, { 0x00dd0c, packet_size, 0xff}, { 0x00dd11, state->dual_mode << 6, 0x40 }, { 0x00dd8a, (frame_size >> 0) & 0xff, 0xff}, { 0x00dd8b, (frame_size >> 8) & 0xff, 0xff}, { 0x00dd0d, packet_size, 0xff }, { 0x80f9a3, state->dual_mode, 0x01 }, { 0x80f9cd, state->dual_mode, 0x01 }, { 0x80f99d, 0x00, 0x01 }, { 0x80f9a4, 0x00, 0x01 }, }; dev_dbg(&d->udev->dev, "%s: USB speed=%d frame_size=%04x packet_size=%02x\n", __func__, d->udev->speed, frame_size, packet_size); /* init endpoints */ for (i = 0; i < ARRAY_SIZE(tab); i++) { ret = af9035_wr_reg_mask(d, tab[i].reg, tab[i].val, tab[i].mask); if (ret < 0) goto err; } return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static void af9035_exit(struct dvb_usb_device *d) { struct state *state = d_to_priv(d); dev_dbg(&d->udev->dev, "%s:\n", __func__); if (state->i2c_client[1]) af9035_del_i2c_dev(d); if (state->i2c_client[0]) af9035_del_i2c_dev(d); } #if IS_ENABLED(CONFIG_RC_CORE) static int af9035_rc_query(struct dvb_usb_device *d) { int ret; u32 key; u8 buf[4]; struct usb_req req = { CMD_IR_GET, 0, 0, NULL, 4, buf }; ret = af9035_ctrl_msg(d, &req); if (ret == 1) return 0; else if (ret < 0) goto err; if ((buf[2] + buf[3]) == 0xff) { if ((buf[0] + buf[1]) == 0xff) { /* NEC standard 16bit */ key = RC_SCANCODE_NEC(buf[0], buf[2]); } else { /* NEC extended 24bit */ key = RC_SCANCODE_NECX(buf[0] << 8 | buf[1], buf[2]); } } else { /* NEC full code 32bit */ key = RC_SCANCODE_NEC32(buf[0] << 24 | buf[1] << 16 | buf[2] << 8 | buf[3]); } dev_dbg(&d->udev->dev, "%s: %*ph\n", __func__, 4, buf); rc_keydown(d->rc_dev, RC_TYPE_NEC, key, 0); return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9035_get_rc_config(struct dvb_usb_device *d, struct dvb_usb_rc *rc) { struct state *state = d_to_priv(d); int ret; u8 tmp; ret = af9035_rd_reg(d, state->eeprom_addr + EEPROM_IR_MODE, &tmp); if (ret < 0) goto err; dev_dbg(&d->udev->dev, "%s: ir_mode=%02x\n", __func__, tmp); /* don't activate rc if in HID mode or if not available */ if (tmp == 5) { ret = af9035_rd_reg(d, state->eeprom_addr + EEPROM_IR_TYPE, &tmp); if (ret < 0) goto err; dev_dbg(&d->udev->dev, "%s: ir_type=%02x\n", __func__, tmp); switch (tmp) { case 0: /* NEC */ default: rc->allowed_protos = RC_BIT_NEC; break; case 1: /* RC6 */ rc->allowed_protos = RC_BIT_RC6_MCE; break; } rc->query = af9035_rc_query; rc->interval = 500; /* load empty to enable rc */ if (!rc->map_name) rc->map_name = RC_MAP_EMPTY; } return 0; err: dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, ret); return ret; } #else #define af9035_get_rc_config NULL #endif static int af9035_get_stream_config(struct dvb_frontend *fe, u8 *ts_type, struct usb_data_stream_properties *stream) { struct dvb_usb_device *d = fe_to_d(fe); dev_dbg(&d->udev->dev, "%s: adap=%d\n", __func__, fe_to_adap(fe)->id); if (d->udev->speed == USB_SPEED_FULL) stream->u.bulk.buffersize = 5 * 188; return 0; } static int af9035_pid_filter_ctrl(struct dvb_usb_adapter *adap, int onoff) { struct state *state = adap_to_priv(adap); return state->ops.pid_filter_ctrl(adap->fe[0], onoff); } static int af9035_pid_filter(struct dvb_usb_adapter *adap, int index, u16 pid, int onoff) { struct state *state = adap_to_priv(adap); return state->ops.pid_filter(adap->fe[0], index, pid, onoff); } static int af9035_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); char manufacturer[sizeof("Afatech")]; memset(manufacturer, 0, sizeof(manufacturer)); usb_string(udev, udev->descriptor.iManufacturer, manufacturer, sizeof(manufacturer)); /* * There is two devices having same ID but different chipset. One uses * AF9015 and the other IT9135 chipset. Only difference seen on lsusb * is iManufacturer string. * * idVendor 0x0ccd TerraTec Electronic GmbH * idProduct 0x0099 * bcdDevice 2.00 * iManufacturer 1 Afatech * iProduct 2 DVB-T 2 * * idVendor 0x0ccd TerraTec Electronic GmbH * idProduct 0x0099 * bcdDevice 2.00 * iManufacturer 1 ITE Technologies, Inc. * iProduct 2 DVB-T TV Stick */ if ((le16_to_cpu(udev->descriptor.idVendor) == USB_VID_TERRATEC) && (le16_to_cpu(udev->descriptor.idProduct) == 0x0099)) { if (!strcmp("Afatech", manufacturer)) { dev_dbg(&udev->dev, "%s: rejecting device\n", __func__); return -ENODEV; } } return dvb_usbv2_probe(intf, id); } /* interface 0 is used by DVB-T receiver and interface 1 is for remote controller (HID) */ static const struct dvb_usb_device_properties af9035_props = { .driver_name = KBUILD_MODNAME, .owner = THIS_MODULE, .adapter_nr = adapter_nr, .size_of_priv = sizeof(struct state), .generic_bulk_ctrl_endpoint = 0x02, .generic_bulk_ctrl_endpoint_response = 0x81, .identify_state = af9035_identify_state, .download_firmware = af9035_download_firmware, .i2c_algo = &af9035_i2c_algo, .read_config = af9035_read_config, .frontend_attach = af9035_frontend_attach, .tuner_attach = af9035_tuner_attach, .init = af9035_init, .get_rc_config = af9035_get_rc_config, .get_stream_config = af9035_get_stream_config, .exit = af9035_exit, .get_adapter_count = af9035_get_adapter_count, .adapter = { { .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 32, .pid_filter_ctrl = af9035_pid_filter_ctrl, .pid_filter = af9035_pid_filter, .stream = DVB_USB_STREAM_BULK(0x84, 6, 87 * 188), }, { .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 32, .pid_filter_ctrl = af9035_pid_filter_ctrl, .pid_filter = af9035_pid_filter, .stream = DVB_USB_STREAM_BULK(0x85, 6, 87 * 188), }, }, }; static const struct usb_device_id af9035_id_table[] = { /* AF9035 devices */ { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_9035, &af9035_props, "Afatech AF9035 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1000, &af9035_props, "Afatech AF9035 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1001, &af9035_props, "Afatech AF9035 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1002, &af9035_props, "Afatech AF9035 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1003, &af9035_props, "Afatech AF9035 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK, &af9035_props, "TerraTec Cinergy T Stick", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835, &af9035_props, "AVerMedia AVerTV Volar HD/PRO (A835)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_B835, &af9035_props, "AVerMedia AVerTV Volar HD/PRO (A835)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_1867, &af9035_props, "AVerMedia HD Volar (A867)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A867, &af9035_props, "AVerMedia HD Volar (A867)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TWINSTAR, &af9035_props, "AVerMedia Twinstar (A825)", NULL) }, { DVB_USB_DEVICE(USB_VID_ASUS, USB_PID_ASUS_U3100MINI_PLUS, &af9035_props, "Asus U3100Mini Plus", NULL) }, { DVB_USB_DEVICE(USB_VID_TERRATEC, 0x00aa, &af9035_props, "TerraTec Cinergy T Stick (rev. 2)", NULL) }, /* IT9135 devices */ { DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135, &af9035_props, "ITE 9135 Generic", RC_MAP_IT913X_V1) }, { DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135_9005, &af9035_props, "ITE 9135(9005) Generic", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135_9006, &af9035_props, "ITE 9135(9006) Generic", RC_MAP_IT913X_V1) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_1835, &af9035_props, "Avermedia A835B(1835)", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_2835, &af9035_props, "Avermedia A835B(2835)", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_3835, &af9035_props, "Avermedia A835B(3835)", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_4835, &af9035_props, "Avermedia A835B(4835)", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_H335, &af9035_props, "Avermedia H335", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_UB499_2T_T09, &af9035_props, "Kworld UB499-2T T09", RC_MAP_IT913X_V1) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_SVEON_STV22_IT9137, &af9035_props, "Sveon STV22 Dual DVB-T HDTV", RC_MAP_IT913X_V1) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_CTVDIGDUAL_V2, &af9035_props, "Digital Dual TV Receiver CTVDIGDUAL_V2", RC_MAP_IT913X_V1) }, /* XXX: that same ID [0ccd:0099] is used by af9015 driver too */ { DVB_USB_DEVICE(USB_VID_TERRATEC, 0x0099, &af9035_props, "TerraTec Cinergy T Stick Dual RC (rev. 2)", NULL) }, { DVB_USB_DEVICE(USB_VID_LEADTEK, 0x6a05, &af9035_props, "Leadtek WinFast DTV Dongle Dual", NULL) }, { DVB_USB_DEVICE(USB_VID_HAUPPAUGE, 0xf900, &af9035_props, "Hauppauge WinTV-MiniStick 2", NULL) }, { DVB_USB_DEVICE(USB_VID_PCTV, USB_PID_PCTV_78E, &af9035_props, "PCTV 78e", RC_MAP_IT913X_V1) }, { DVB_USB_DEVICE(USB_VID_PCTV, USB_PID_PCTV_79E, &af9035_props, "PCTV 79e", RC_MAP_IT913X_V2) }, { } }; MODULE_DEVICE_TABLE(usb, af9035_id_table); static struct usb_driver af9035_usb_driver = { .name = KBUILD_MODNAME, .id_table = af9035_id_table, .probe = af9035_probe, .disconnect = dvb_usbv2_disconnect, .suspend = dvb_usbv2_suspend, .resume = dvb_usbv2_resume, .reset_resume = dvb_usbv2_reset_resume, .no_dynamic_id = 1, .soft_unbind = 1, }; module_usb_driver(af9035_usb_driver); MODULE_AUTHOR("Antti Palosaari "); MODULE_DESCRIPTION("Afatech AF9035 driver"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(AF9035_FIRMWARE_AF9035); MODULE_FIRMWARE(AF9035_FIRMWARE_IT9135_V1); MODULE_FIRMWARE(AF9035_FIRMWARE_IT9135_V2);