/* * S390 version * Copyright IBM Corp. 1999, 2000 * Author(s): Hartmut Penner (hp@de.ibm.com) * Ulrich Weigand (weigand@de.ibm.com) * Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "include/asm-i386/pgtable.h" */ #ifndef _ASM_S390_PGTABLE_H #define _ASM_S390_PGTABLE_H /* * The Linux memory management assumes a three-level page table setup. For * s390 31 bit we "fold" the mid level into the top-level page table, so * that we physically have the same two-level page table as the s390 mmu * expects in 31 bit mode. For s390 64 bit we use three of the five levels * the hardware provides (region first and region second tables are not * used). * * The "pgd_xxx()" functions are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) * * This file contains the functions and defines necessary to modify and use * the S390 page table tree. */ #ifndef __ASSEMBLY__ #include #include #include #include #include extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); extern void paging_init(void); extern void vmem_map_init(void); /* * The S390 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ #define update_mmu_cache(vma, address, ptep) do { } while (0) #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) /* * ZERO_PAGE is a global shared page that is always zero; used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page; extern unsigned long zero_page_mask; #define ZERO_PAGE(vaddr) \ (virt_to_page((void *)(empty_zero_page + \ (((unsigned long)(vaddr)) &zero_page_mask)))) #define __HAVE_COLOR_ZERO_PAGE /* TODO: s390 cannot support io_remap_pfn_range... */ #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ remap_pfn_range(vma, vaddr, pfn, size, prot) #endif /* !__ASSEMBLY__ */ /* * PMD_SHIFT determines the size of the area a second-level page * table can map * PGDIR_SHIFT determines what a third-level page table entry can map */ #ifndef CONFIG_64BIT # define PMD_SHIFT 20 # define PUD_SHIFT 20 # define PGDIR_SHIFT 20 #else /* CONFIG_64BIT */ # define PMD_SHIFT 20 # define PUD_SHIFT 31 # define PGDIR_SHIFT 42 #endif /* CONFIG_64BIT */ #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PUD_SIZE (1UL << PUD_SHIFT) #define PUD_MASK (~(PUD_SIZE-1)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the S390 is two-level, so * we don't really have any PMD directory physically. * for S390 segment-table entries are combined to one PGD * that leads to 1024 pte per pgd */ #define PTRS_PER_PTE 256 #ifndef CONFIG_64BIT #define PTRS_PER_PMD 1 #define PTRS_PER_PUD 1 #else /* CONFIG_64BIT */ #define PTRS_PER_PMD 2048 #define PTRS_PER_PUD 2048 #endif /* CONFIG_64BIT */ #define PTRS_PER_PGD 2048 #define FIRST_USER_ADDRESS 0 #define pte_ERROR(e) \ printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) #define pud_ERROR(e) \ printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) #ifndef __ASSEMBLY__ /* * The vmalloc and module area will always be on the topmost area of the kernel * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules. * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where * modules will reside. That makes sure that inter module branches always * happen without trampolines and in addition the placement within a 2GB frame * is branch prediction unit friendly. */ extern unsigned long VMALLOC_START; extern unsigned long VMALLOC_END; extern struct page *vmemmap; #define VMEM_MAX_PHYS ((unsigned long) vmemmap) #ifdef CONFIG_64BIT extern unsigned long MODULES_VADDR; extern unsigned long MODULES_END; #define MODULES_VADDR MODULES_VADDR #define MODULES_END MODULES_END #define MODULES_LEN (1UL << 31) #endif /* * A 31 bit pagetable entry of S390 has following format: * | PFRA | | OS | * 0 0IP0 * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * I Page-Invalid Bit: Page is not available for address-translation * P Page-Protection Bit: Store access not possible for page * * A 31 bit segmenttable entry of S390 has following format: * | P-table origin | |PTL * 0 IC * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * I Segment-Invalid Bit: Segment is not available for address-translation * C Common-Segment Bit: Segment is not private (PoP 3-30) * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) * * The 31 bit segmenttable origin of S390 has following format: * * |S-table origin | | STL | * X **GPS * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * X Space-Switch event: * G Segment-Invalid Bit: * * P Private-Space Bit: Segment is not private (PoP 3-30) * S Storage-Alteration: * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) * * A 64 bit pagetable entry of S390 has following format: * | PFRA |0IPC| OS | * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Page-Invalid Bit: Page is not available for address-translation * P Page-Protection Bit: Store access not possible for page * C Change-bit override: HW is not required to set change bit * * A 64 bit segmenttable entry of S390 has following format: * | P-table origin | TT * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * C Common-Segment Bit: Segment is not private (PoP 3-30) * P Page-Protection Bit: Store access not possible for page * TT Type 00 * * A 64 bit region table entry of S390 has following format: * | S-table origin | TF TTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * TT Type 01 * TF * TL Table length * * The 64 bit regiontable origin of S390 has following format: * | region table origon | DTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * X Space-Switch event: * G Segment-Invalid Bit: * P Private-Space Bit: * S Storage-Alteration: * R Real space * TL Table-Length: * * A storage key has the following format: * | ACC |F|R|C|0| * 0 3 4 5 6 7 * ACC: access key * F : fetch protection bit * R : referenced bit * C : changed bit */ /* Hardware bits in the page table entry */ #define _PAGE_CO 0x100 /* HW Change-bit override */ #define _PAGE_RO 0x200 /* HW read-only bit */ #define _PAGE_INVALID 0x400 /* HW invalid bit */ /* Software bits in the page table entry */ #define _PAGE_SWT 0x001 /* SW pte type bit t */ #define _PAGE_SWX 0x002 /* SW pte type bit x */ #define _PAGE_SWC 0x004 /* SW pte changed bit */ #define _PAGE_SWR 0x008 /* SW pte referenced bit */ #define _PAGE_SWW 0x010 /* SW pte write bit */ #define _PAGE_SPECIAL 0x020 /* SW associated with special page */ #define __HAVE_ARCH_PTE_SPECIAL /* Set of bits not changed in pte_modify */ #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \ _PAGE_SWC | _PAGE_SWR) /* Six different types of pages. */ #define _PAGE_TYPE_EMPTY 0x400 #define _PAGE_TYPE_NONE 0x401 #define _PAGE_TYPE_SWAP 0x403 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */ #define _PAGE_TYPE_RO 0x200 #define _PAGE_TYPE_RW 0x000 /* * Only four types for huge pages, using the invalid bit and protection bit * of a segment table entry. */ #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */ #define _HPAGE_TYPE_NONE 0x220 #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */ #define _HPAGE_TYPE_RW 0x000 /* * PTE type bits are rather complicated. handle_pte_fault uses pte_present, * pte_none and pte_file to find out the pte type WITHOUT holding the page * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards. * This change is done while holding the lock, but the intermediate step * of a previously valid pte with the hw invalid bit set can be observed by * handle_pte_fault. That makes it necessary that all valid pte types with * the hw invalid bit set must be distinguishable from the four pte types * empty, none, swap and file. * * irxt ipte irxt * _PAGE_TYPE_EMPTY 1000 -> 1000 * _PAGE_TYPE_NONE 1001 -> 1001 * _PAGE_TYPE_SWAP 1011 -> 1011 * _PAGE_TYPE_FILE 11?1 -> 11?1 * _PAGE_TYPE_RO 0100 -> 1100 * _PAGE_TYPE_RW 0000 -> 1000 * * pte_none is true for bits combinations 1000, 1010, 1100, 1110 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001 * pte_file is true for bits combinations 1101, 1111 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid. */ #ifndef CONFIG_64BIT /* Bits in the segment table address-space-control-element */ #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */ #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */ #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */ /* Bits in the segment table entry */ #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */ #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */ #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */ #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */ #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL) #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) /* Page status table bits for virtualization */ #define RCP_ACC_BITS 0xf0000000UL #define RCP_FP_BIT 0x08000000UL #define RCP_PCL_BIT 0x00800000UL #define RCP_HR_BIT 0x00400000UL #define RCP_HC_BIT 0x00200000UL #define RCP_GR_BIT 0x00040000UL #define RCP_GC_BIT 0x00020000UL #define RCP_IN_BIT 0x00002000UL /* IPTE notify bit */ /* User dirty / referenced bit for KVM's migration feature */ #define KVM_UR_BIT 0x00008000UL #define KVM_UC_BIT 0x00004000UL #else /* CONFIG_64BIT */ /* Bits in the segment/region table address-space-control-element */ #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ #define _ASCE_REAL_SPACE 0x20 /* real space control */ #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ #define _ASCE_TYPE_REGION1 0x0c /* region first table type */ #define _ASCE_TYPE_REGION2 0x08 /* region second table type */ #define _ASCE_TYPE_REGION3 0x04 /* region third table type */ #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ #define _ASCE_TABLE_LENGTH 0x03 /* region table length */ /* Bits in the region table entry */ #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ #define _REGION_ENTRY_RO 0x200 /* region protection bit */ #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */ #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ #define _REGION_ENTRY_LENGTH 0x03 /* region third length */ #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV) #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV) #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV) #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */ #define _REGION3_ENTRY_RO 0x200 /* page protection bit */ #define _REGION3_ENTRY_CO 0x100 /* change-recording override */ /* Bits in the segment table entry */ #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */ #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ #define _SEGMENT_ENTRY (0) #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */ #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */ #define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */ #define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT) /* Set of bits not changed in pmd_modify */ #define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \ | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO) /* Page status table bits for virtualization */ #define RCP_ACC_BITS 0xf000000000000000UL #define RCP_FP_BIT 0x0800000000000000UL #define RCP_PCL_BIT 0x0080000000000000UL #define RCP_HR_BIT 0x0040000000000000UL #define RCP_HC_BIT 0x0020000000000000UL #define RCP_GR_BIT 0x0004000000000000UL #define RCP_GC_BIT 0x0002000000000000UL #define RCP_IN_BIT 0x0000200000000000UL /* IPTE notify bit */ /* User dirty / referenced bit for KVM's migration feature */ #define KVM_UR_BIT 0x0000800000000000UL #define KVM_UC_BIT 0x0000400000000000UL #endif /* CONFIG_64BIT */ /* * A user page table pointer has the space-switch-event bit, the * private-space-control bit and the storage-alteration-event-control * bit set. A kernel page table pointer doesn't need them. */ #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ _ASCE_ALT_EVENT) /* * Page protection definitions. */ #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE) #define PAGE_RO __pgprot(_PAGE_TYPE_RO) #define PAGE_RW __pgprot(_PAGE_TYPE_RO | _PAGE_SWW) #define PAGE_RWC __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC) #define PAGE_KERNEL PAGE_RWC #define PAGE_SHARED PAGE_KERNEL #define PAGE_COPY PAGE_RO /* * On s390 the page table entry has an invalid bit and a read-only bit. * Read permission implies execute permission and write permission * implies read permission. */ /*xwr*/ #define __P000 PAGE_NONE #define __P001 PAGE_RO #define __P010 PAGE_RO #define __P011 PAGE_RO #define __P100 PAGE_RO #define __P101 PAGE_RO #define __P110 PAGE_RO #define __P111 PAGE_RO #define __S000 PAGE_NONE #define __S001 PAGE_RO #define __S010 PAGE_RW #define __S011 PAGE_RW #define __S100 PAGE_RO #define __S101 PAGE_RO #define __S110 PAGE_RW #define __S111 PAGE_RW /* * Segment entry (large page) protection definitions. */ #define SEGMENT_NONE __pgprot(_HPAGE_TYPE_NONE) #define SEGMENT_RO __pgprot(_HPAGE_TYPE_RO) #define SEGMENT_RW __pgprot(_HPAGE_TYPE_RW) static inline int mm_exclusive(struct mm_struct *mm) { return likely(mm == current->active_mm && atomic_read(&mm->context.attach_count) <= 1); } static inline int mm_has_pgste(struct mm_struct *mm) { #ifdef CONFIG_PGSTE if (unlikely(mm->context.has_pgste)) return 1; #endif return 0; } /* * pgd/pmd/pte query functions */ #ifndef CONFIG_64BIT static inline int pgd_present(pgd_t pgd) { return 1; } static inline int pgd_none(pgd_t pgd) { return 0; } static inline int pgd_bad(pgd_t pgd) { return 0; } static inline int pud_present(pud_t pud) { return 1; } static inline int pud_none(pud_t pud) { return 0; } static inline int pud_large(pud_t pud) { return 0; } static inline int pud_bad(pud_t pud) { return 0; } #else /* CONFIG_64BIT */ static inline int pgd_present(pgd_t pgd) { if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) return 1; return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; } static inline int pgd_none(pgd_t pgd) { if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) return 0; return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL; } static inline int pgd_bad(pgd_t pgd) { /* * With dynamic page table levels the pgd can be a region table * entry or a segment table entry. Check for the bit that are * invalid for either table entry. */ unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; return (pgd_val(pgd) & mask) != 0; } static inline int pud_present(pud_t pud) { if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) return 1; return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; } static inline int pud_none(pud_t pud) { if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) return 0; return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL; } static inline int pud_large(pud_t pud) { if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) return 0; return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); } static inline int pud_bad(pud_t pud) { /* * With dynamic page table levels the pud can be a region table * entry or a segment table entry. Check for the bit that are * invalid for either table entry. */ unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; return (pud_val(pud) & mask) != 0; } #endif /* CONFIG_64BIT */ static inline int pmd_present(pmd_t pmd) { unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO; return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE || !(pmd_val(pmd) & _SEGMENT_ENTRY_INV); } static inline int pmd_none(pmd_t pmd) { return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) && !(pmd_val(pmd) & _SEGMENT_ENTRY_RO); } static inline int pmd_large(pmd_t pmd) { #ifdef CONFIG_64BIT return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE); #else return 0; #endif } static inline int pmd_bad(pmd_t pmd) { unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV; return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY; } #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH extern void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PMD_WRITE static inline int pmd_write(pmd_t pmd) { return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0; } static inline int pmd_young(pmd_t pmd) { return 0; } static inline int pte_none(pte_t pte) { return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT); } static inline int pte_present(pte_t pte) { unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX; return (pte_val(pte) & mask) == _PAGE_TYPE_NONE || (!(pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT)); } static inline int pte_file(pte_t pte) { unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT; return (pte_val(pte) & mask) == _PAGE_TYPE_FILE; } static inline int pte_special(pte_t pte) { return (pte_val(pte) & _PAGE_SPECIAL); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return pte_val(a) == pte_val(b); } static inline pgste_t pgste_get_lock(pte_t *ptep) { unsigned long new = 0; #ifdef CONFIG_PGSTE unsigned long old; preempt_disable(); asm( " lg %0,%2\n" "0: lgr %1,%0\n" " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */ " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */ " csg %0,%1,%2\n" " jl 0b\n" : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE]) : "Q" (ptep[PTRS_PER_PTE]) : "cc"); #endif return __pgste(new); } static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste) { #ifdef CONFIG_PGSTE asm( " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */ " stg %1,%0\n" : "=Q" (ptep[PTRS_PER_PTE]) : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc"); preempt_enable(); #endif } static inline void pgste_set(pte_t *ptep, pgste_t pgste) { #ifdef CONFIG_PGSTE *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste; #endif } static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste) { #ifdef CONFIG_PGSTE unsigned long address, bits; unsigned char skey; if (pte_val(*ptep) & _PAGE_INVALID) return pgste; address = pte_val(*ptep) & PAGE_MASK; skey = page_get_storage_key(address); bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED); /* Clear page changed & referenced bit in the storage key */ if (bits & _PAGE_CHANGED) page_set_storage_key(address, skey ^ bits, 0); else if (bits) page_reset_referenced(address); /* Transfer page changed & referenced bit to guest bits in pgste */ pgste_val(pgste) |= bits << 48; /* RCP_GR_BIT & RCP_GC_BIT */ /* Get host changed & referenced bits from pgste */ bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52; /* Transfer page changed & referenced bit to kvm user bits */ pgste_val(pgste) |= bits << 45; /* KVM_UR_BIT & KVM_UC_BIT */ /* Clear relevant host bits in pgste. */ pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT); pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT); /* Copy page access key and fetch protection bit to pgste */ pgste_val(pgste) |= (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56; /* Transfer referenced bit to pte */ pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1; #endif return pgste; } static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste) { #ifdef CONFIG_PGSTE int young; if (pte_val(*ptep) & _PAGE_INVALID) return pgste; /* Get referenced bit from storage key */ young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK); if (young) pgste_val(pgste) |= RCP_GR_BIT; /* Get host referenced bit from pgste */ if (pgste_val(pgste) & RCP_HR_BIT) { pgste_val(pgste) &= ~RCP_HR_BIT; young = 1; } /* Transfer referenced bit to kvm user bits and pte */ if (young) { pgste_val(pgste) |= KVM_UR_BIT; pte_val(*ptep) |= _PAGE_SWR; } #endif return pgste; } static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry) { #ifdef CONFIG_PGSTE unsigned long address; unsigned long nkey; if (pte_val(entry) & _PAGE_INVALID) return; VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID)); address = pte_val(entry) & PAGE_MASK; /* * Set page access key and fetch protection bit from pgste. * The guest C/R information is still in the PGSTE, set real * key C/R to 0. */ nkey = (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56; page_set_storage_key(address, nkey, 0); #endif } static inline void pgste_set_pte(pte_t *ptep, pte_t entry) { if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) { /* * Without enhanced suppression-on-protection force * the dirty bit on for all writable ptes. */ pte_val(entry) |= _PAGE_SWC; pte_val(entry) &= ~_PAGE_RO; } *ptep = entry; } /** * struct gmap_struct - guest address space * @mm: pointer to the parent mm_struct * @table: pointer to the page directory * @asce: address space control element for gmap page table * @crst_list: list of all crst tables used in the guest address space */ struct gmap { struct list_head list; struct mm_struct *mm; unsigned long *table; unsigned long asce; struct list_head crst_list; }; /** * struct gmap_rmap - reverse mapping for segment table entries * @gmap: pointer to the gmap_struct * @entry: pointer to a segment table entry * @vmaddr: virtual address in the guest address space */ struct gmap_rmap { struct list_head list; struct gmap *gmap; unsigned long *entry; unsigned long vmaddr; }; /** * struct gmap_pgtable - gmap information attached to a page table * @vmaddr: address of the 1MB segment in the process virtual memory * @mapper: list of segment table entries mapping a page table */ struct gmap_pgtable { unsigned long vmaddr; struct list_head mapper; }; /** * struct gmap_notifier - notify function block for page invalidation * @notifier_call: address of callback function */ struct gmap_notifier { struct list_head list; void (*notifier_call)(struct gmap *gmap, unsigned long address); }; struct gmap *gmap_alloc(struct mm_struct *mm); void gmap_free(struct gmap *gmap); void gmap_enable(struct gmap *gmap); void gmap_disable(struct gmap *gmap); int gmap_map_segment(struct gmap *gmap, unsigned long from, unsigned long to, unsigned long len); int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len); unsigned long __gmap_translate(unsigned long address, struct gmap *); unsigned long gmap_translate(unsigned long address, struct gmap *); unsigned long __gmap_fault(unsigned long address, struct gmap *); unsigned long gmap_fault(unsigned long address, struct gmap *); void gmap_discard(unsigned long from, unsigned long to, struct gmap *); void gmap_register_ipte_notifier(struct gmap_notifier *); void gmap_unregister_ipte_notifier(struct gmap_notifier *); int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len); void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *); static inline pgste_t pgste_ipte_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pgste_t pgste) { #ifdef CONFIG_PGSTE if (pgste_val(pgste) & RCP_IN_BIT) { pgste_val(pgste) &= ~RCP_IN_BIT; gmap_do_ipte_notify(mm, addr, ptep); } #endif return pgste; } /* * Certain architectures need to do special things when PTEs * within a page table are directly modified. Thus, the following * hook is made available. */ static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t entry) { pgste_t pgste; if (mm_has_pgste(mm)) { pgste = pgste_get_lock(ptep); pgste_set_key(ptep, pgste, entry); pgste_set_pte(ptep, entry); pgste_set_unlock(ptep, pgste); } else { if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1) pte_val(entry) |= _PAGE_CO; *ptep = entry; } } /* * query functions pte_write/pte_dirty/pte_young only work if * pte_present() is true. Undefined behaviour if not.. */ static inline int pte_write(pte_t pte) { return (pte_val(pte) & _PAGE_SWW) != 0; } static inline int pte_dirty(pte_t pte) { return (pte_val(pte) & _PAGE_SWC) != 0; } static inline int pte_young(pte_t pte) { #ifdef CONFIG_PGSTE if (pte_val(pte) & _PAGE_SWR) return 1; #endif return 0; } /* * pgd/pmd/pte modification functions */ static inline void pgd_clear(pgd_t *pgd) { #ifdef CONFIG_64BIT if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; #endif } static inline void pud_clear(pud_t *pud) { #ifdef CONFIG_64BIT if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) pud_val(*pud) = _REGION3_ENTRY_EMPTY; #endif } static inline void pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_val(*ptep) = _PAGE_TYPE_EMPTY; } /* * The following pte modification functions only work if * pte_present() is true. Undefined behaviour if not.. */ static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) &= _PAGE_CHG_MASK; pte_val(pte) |= pgprot_val(newprot); if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW)) pte_val(pte) &= ~_PAGE_RO; return pte; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_SWW; /* Do not clobber _PAGE_TYPE_NONE pages! */ if (!(pte_val(pte) & _PAGE_INVALID)) pte_val(pte) |= _PAGE_RO; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_SWW; if (pte_val(pte) & _PAGE_SWC) pte_val(pte) &= ~_PAGE_RO; return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_SWC; /* Do not clobber _PAGE_TYPE_NONE pages! */ if (!(pte_val(pte) & _PAGE_INVALID)) pte_val(pte) |= _PAGE_RO; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_SWC; if (pte_val(pte) & _PAGE_SWW) pte_val(pte) &= ~_PAGE_RO; return pte; } static inline pte_t pte_mkold(pte_t pte) { #ifdef CONFIG_PGSTE pte_val(pte) &= ~_PAGE_SWR; #endif return pte; } static inline pte_t pte_mkyoung(pte_t pte) { return pte; } static inline pte_t pte_mkspecial(pte_t pte) { pte_val(pte) |= _PAGE_SPECIAL; return pte; } #ifdef CONFIG_HUGETLB_PAGE static inline pte_t pte_mkhuge(pte_t pte) { pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO); return pte; } #endif /* * Get (and clear) the user dirty bit for a pte. */ static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm, pte_t *ptep) { pgste_t pgste; int dirty = 0; if (mm_has_pgste(mm)) { pgste = pgste_get_lock(ptep); pgste = pgste_update_all(ptep, pgste); dirty = !!(pgste_val(pgste) & KVM_UC_BIT); pgste_val(pgste) &= ~KVM_UC_BIT; pgste_set_unlock(ptep, pgste); return dirty; } return dirty; } /* * Get (and clear) the user referenced bit for a pte. */ static inline int ptep_test_and_clear_user_young(struct mm_struct *mm, pte_t *ptep) { pgste_t pgste; int young = 0; if (mm_has_pgste(mm)) { pgste = pgste_get_lock(ptep); pgste = pgste_update_young(ptep, pgste); young = !!(pgste_val(pgste) & KVM_UR_BIT); pgste_val(pgste) &= ~KVM_UR_BIT; pgste_set_unlock(ptep, pgste); } return young; } #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pgste_t pgste; pte_t pte; if (mm_has_pgste(vma->vm_mm)) { pgste = pgste_get_lock(ptep); pgste = pgste_update_young(ptep, pgste); pte = *ptep; *ptep = pte_mkold(pte); pgste_set_unlock(ptep, pgste); return pte_young(pte); } return 0; } #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH static inline int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { /* No need to flush TLB * On s390 reference bits are in storage key and never in TLB * With virtualization we handle the reference bit, without we * we can simply return */ return ptep_test_and_clear_young(vma, address, ptep); } static inline void __ptep_ipte(unsigned long address, pte_t *ptep) { if (!(pte_val(*ptep) & _PAGE_INVALID)) { #ifndef CONFIG_64BIT /* pto must point to the start of the segment table */ pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); #else /* ipte in zarch mode can do the math */ pte_t *pto = ptep; #endif asm volatile( " ipte %2,%3" : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address)); } } /* * This is hard to understand. ptep_get_and_clear and ptep_clear_flush * both clear the TLB for the unmapped pte. The reason is that * ptep_get_and_clear is used in common code (e.g. change_pte_range) * to modify an active pte. The sequence is * 1) ptep_get_and_clear * 2) set_pte_at * 3) flush_tlb_range * On s390 the tlb needs to get flushed with the modification of the pte * if the pte is active. The only way how this can be implemented is to * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range * is a nop. */ #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pgste_t pgste; pte_t pte; mm->context.flush_mm = 1; if (mm_has_pgste(mm)) { pgste = pgste_get_lock(ptep); pgste = pgste_ipte_notify(mm, address, ptep, pgste); } pte = *ptep; if (!mm_exclusive(mm)) __ptep_ipte(address, ptep); pte_val(*ptep) = _PAGE_TYPE_EMPTY; if (mm_has_pgste(mm)) { pgste = pgste_update_all(&pte, pgste); pgste_set_unlock(ptep, pgste); } return pte; } #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pgste_t pgste; pte_t pte; mm->context.flush_mm = 1; if (mm_has_pgste(mm)) { pgste = pgste_get_lock(ptep); pgste_ipte_notify(mm, address, ptep, pgste); } pte = *ptep; if (!mm_exclusive(mm)) __ptep_ipte(address, ptep); if (mm_has_pgste(mm)) { pgste = pgste_update_all(&pte, pgste); pgste_set(ptep, pgste); } return pte; } static inline void ptep_modify_prot_commit(struct mm_struct *mm, unsigned long address, pte_t *ptep, pte_t pte) { pgste_t pgste; if (mm_has_pgste(mm)) { pgste = *(pgste_t *)(ptep + PTRS_PER_PTE); pgste_set_key(ptep, pgste, pte); pgste_set_pte(ptep, pte); pgste_set_unlock(ptep, pgste); } else *ptep = pte; } #define __HAVE_ARCH_PTEP_CLEAR_FLUSH static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pgste_t pgste; pte_t pte; if (mm_has_pgste(vma->vm_mm)) { pgste = pgste_get_lock(ptep); pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); } pte = *ptep; __ptep_ipte(address, ptep); pte_val(*ptep) = _PAGE_TYPE_EMPTY; if (mm_has_pgste(vma->vm_mm)) { pgste = pgste_update_all(&pte, pgste); pgste_set_unlock(ptep, pgste); } return pte; } /* * The batched pte unmap code uses ptep_get_and_clear_full to clear the * ptes. Here an optimization is possible. tlb_gather_mmu flushes all * tlbs of an mm if it can guarantee that the ptes of the mm_struct * cannot be accessed while the batched unmap is running. In this case * full==1 and a simple pte_clear is enough. See tlb.h. */ #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { pgste_t pgste; pte_t pte; if (mm_has_pgste(mm)) { pgste = pgste_get_lock(ptep); if (!full) pgste = pgste_ipte_notify(mm, address, ptep, pgste); } pte = *ptep; if (!full) __ptep_ipte(address, ptep); pte_val(*ptep) = _PAGE_TYPE_EMPTY; if (mm_has_pgste(mm)) { pgste = pgste_update_all(&pte, pgste); pgste_set_unlock(ptep, pgste); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline pte_t ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pgste_t pgste; pte_t pte = *ptep; if (pte_write(pte)) { mm->context.flush_mm = 1; if (mm_has_pgste(mm)) { pgste = pgste_get_lock(ptep); pgste = pgste_ipte_notify(mm, address, ptep, pgste); } if (!mm_exclusive(mm)) __ptep_ipte(address, ptep); pte = pte_wrprotect(pte); if (mm_has_pgste(mm)) { pgste_set_pte(ptep, pte); pgste_set_unlock(ptep, pgste); } else *ptep = pte; } return pte; } #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS static inline int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty) { pgste_t pgste; if (pte_same(*ptep, entry)) return 0; if (mm_has_pgste(vma->vm_mm)) { pgste = pgste_get_lock(ptep); pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); } __ptep_ipte(address, ptep); if (mm_has_pgste(vma->vm_mm)) { pgste_set_pte(ptep, entry); pgste_set_unlock(ptep, pgste); } else *ptep = entry; return 1; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); return __pte; } static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) { unsigned long physpage = page_to_phys(page); pte_t __pte = mk_pte_phys(physpage, pgprot); if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) { pte_val(__pte) |= _PAGE_SWC; pte_val(__pte) &= ~_PAGE_RO; } return __pte; } #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) #define pgd_offset_k(address) pgd_offset(&init_mm, address) #ifndef CONFIG_64BIT #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) #define pud_deref(pmd) ({ BUG(); 0UL; }) #define pgd_deref(pmd) ({ BUG(); 0UL; }) #define pud_offset(pgd, address) ((pud_t *) pgd) #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address)) #else /* CONFIG_64BIT */ #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) { pud_t *pud = (pud_t *) pgd; if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) pud = (pud_t *) pgd_deref(*pgd); return pud + pud_index(address); } static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { pmd_t *pmd = (pmd_t *) pud; if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) pmd = (pmd_t *) pud_deref(*pud); return pmd + pmd_index(address); } #endif /* CONFIG_64BIT */ #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) /* Find an entry in the lowest level page table.. */ #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) #define pte_offset_kernel(pmd, address) pte_offset(pmd,address) #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) #define pte_unmap(pte) do { } while (0) static inline void __pmd_idte(unsigned long address, pmd_t *pmdp) { unsigned long sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t); if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) { asm volatile( " .insn rrf,0xb98e0000,%2,%3,0,0" : "=m" (*pmdp) : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK)) : "cc" ); } } #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) { /* * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx) * Convert to segment table entry format. */ if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) return pgprot_val(SEGMENT_NONE); if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) return pgprot_val(SEGMENT_RO); return pgprot_val(SEGMENT_RW); } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pmd_val(pmd) &= _SEGMENT_CHG_MASK; pmd_val(pmd) |= massage_pgprot_pmd(newprot); return pmd; } static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) { pmd_t __pmd; pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); return __pmd; } static inline pmd_t pmd_mkwrite(pmd_t pmd) { /* Do not clobber _HPAGE_TYPE_NONE pages! */ if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV)) pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO; return pmd; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define __HAVE_ARCH_PGTABLE_DEPOSIT extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable); #define __HAVE_ARCH_PGTABLE_WITHDRAW extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm); static inline int pmd_trans_splitting(pmd_t pmd) { return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT; } static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t entry) { if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1) pmd_val(entry) |= _SEGMENT_ENTRY_CO; *pmdp = entry; } static inline pmd_t pmd_mkhuge(pmd_t pmd) { pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; return pmd; } static inline pmd_t pmd_wrprotect(pmd_t pmd) { pmd_val(pmd) |= _SEGMENT_ENTRY_RO; return pmd; } static inline pmd_t pmd_mkdirty(pmd_t pmd) { /* No dirty bit in the segment table entry. */ return pmd; } static inline pmd_t pmd_mkold(pmd_t pmd) { /* No referenced bit in the segment table entry. */ return pmd; } static inline pmd_t pmd_mkyoung(pmd_t pmd) { /* No referenced bit in the segment table entry. */ return pmd; } #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK; long tmp, rc; int counter; rc = 0; if (MACHINE_HAS_RRBM) { counter = PTRS_PER_PTE >> 6; asm volatile( "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */ " ogr %1,%0\n" " la %3,0(%4,%3)\n" " brct %2,0b\n" : "=&d" (tmp), "+&d" (rc), "+d" (counter), "+a" (pmd_addr) : "a" (64 * 4096UL) : "cc"); rc = !!rc; } else { counter = PTRS_PER_PTE; asm volatile( "0: rrbe 0,%2\n" " la %2,0(%3,%2)\n" " brc 12,1f\n" " lhi %0,1\n" "1: brct %1,0b\n" : "+d" (rc), "+d" (counter), "+a" (pmd_addr) : "a" (4096UL) : "cc"); } return rc; } #define __HAVE_ARCH_PMDP_GET_AND_CLEAR static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; __pmd_idte(address, pmdp); pmd_clear(pmdp); return pmd; } #define __HAVE_ARCH_PMDP_CLEAR_FLUSH static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { return pmdp_get_and_clear(vma->vm_mm, address, pmdp); } #define __HAVE_ARCH_PMDP_INVALIDATE static inline void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { __pmd_idte(address, pmdp); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; if (pmd_write(pmd)) { __pmd_idte(address, pmdp); set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd)); } } #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) static inline int pmd_trans_huge(pmd_t pmd) { return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; } static inline int has_transparent_hugepage(void) { return MACHINE_HAS_HPAGE ? 1 : 0; } static inline unsigned long pmd_pfn(pmd_t pmd) { return pmd_val(pmd) >> PAGE_SHIFT; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * 31 bit swap entry format: * A page-table entry has some bits we have to treat in a special way. * Bits 0, 20 and bit 23 have to be zero, otherwise an specification * exception will occur instead of a page translation exception. The * specifiation exception has the bad habit not to store necessary * information in the lowcore. * Bit 21 and bit 22 are the page invalid bit and the page protection * bit. We set both to indicate a swapped page. * Bit 30 and 31 are used to distinguish the different page types. For * a swapped page these bits need to be zero. * This leaves the bits 1-19 and bits 24-29 to store type and offset. * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 * plus 24 for the offset. * 0| offset |0110|o|type |00| * 0 0000000001111111111 2222 2 22222 33 * 0 1234567890123456789 0123 4 56789 01 * * 64 bit swap entry format: * A page-table entry has some bits we have to treat in a special way. * Bits 52 and bit 55 have to be zero, otherwise an specification * exception will occur instead of a page translation exception. The * specifiation exception has the bad habit not to store necessary * information in the lowcore. * Bit 53 and bit 54 are the page invalid bit and the page protection * bit. We set both to indicate a swapped page. * Bit 62 and 63 are used to distinguish the different page types. For * a swapped page these bits need to be zero. * This leaves the bits 0-51 and bits 56-61 to store type and offset. * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 * plus 56 for the offset. * | offset |0110|o|type |00| * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 */ #ifndef CONFIG_64BIT #define __SWP_OFFSET_MASK (~0UL >> 12) #else #define __SWP_OFFSET_MASK (~0UL >> 11) #endif static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; offset &= __SWP_OFFSET_MASK; pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) | ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); return pte; } #define __swp_type(entry) (((entry).val >> 2) & 0x1f) #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #ifndef CONFIG_64BIT # define PTE_FILE_MAX_BITS 26 #else /* CONFIG_64BIT */ # define PTE_FILE_MAX_BITS 59 #endif /* CONFIG_64BIT */ #define pte_to_pgoff(__pte) \ ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) #define pgoff_to_pte(__off) \ ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ | _PAGE_TYPE_FILE }) #endif /* !__ASSEMBLY__ */ #define kern_addr_valid(addr) (1) extern int vmem_add_mapping(unsigned long start, unsigned long size); extern int vmem_remove_mapping(unsigned long start, unsigned long size); extern int s390_enable_sie(void); /* * No page table caches to initialise */ static inline void pgtable_cache_init(void) { } static inline void check_pgt_cache(void) { } #include #endif /* _S390_PAGE_H */