/* * OMAP3 Power Management Routines * * Copyright (C) 2006-2008 Nokia Corporation * Tony Lindgren * Jouni Hogander * * Copyright (C) 2007 Texas Instruments, Inc. * Rajendra Nayak * * Copyright (C) 2005 Texas Instruments, Inc. * Richard Woodruff * * Based on pm.c for omap1 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cm.h" #include "cm-regbits-34xx.h" #include "prm-regbits-34xx.h" #include "prm.h" #include "pm.h" #include "sdrc.h" #define SDRC_POWER_AUTOCOUNT_SHIFT 8 #define SDRC_POWER_AUTOCOUNT_MASK (0xffff << SDRC_POWER_AUTOCOUNT_SHIFT) #define SDRC_POWER_CLKCTRL_SHIFT 4 #define SDRC_POWER_CLKCTRL_MASK (0x3 << SDRC_POWER_CLKCTRL_SHIFT) #define SDRC_SELF_REFRESH_ON_AUTOCOUNT (0x2 << SDRC_POWER_CLKCTRL_SHIFT) /* Scratchpad offsets */ #define OMAP343X_TABLE_ADDRESS_OFFSET 0x31 #define OMAP343X_TABLE_VALUE_OFFSET 0x30 #define OMAP343X_CONTROL_REG_VALUE_OFFSET 0x32 u32 enable_off_mode; u32 sleep_while_idle; u32 wakeup_timer_seconds; struct power_state { struct powerdomain *pwrdm; u32 next_state; #ifdef CONFIG_SUSPEND u32 saved_state; #endif struct list_head node; }; static LIST_HEAD(pwrst_list); static void (*_omap_sram_idle)(u32 *addr, int save_state); static int (*_omap_save_secure_sram)(u32 *addr); static struct powerdomain *mpu_pwrdm, *neon_pwrdm; static struct powerdomain *core_pwrdm, *per_pwrdm; static struct powerdomain *cam_pwrdm; static int set_pwrdm_state(struct powerdomain *pwrdm, u32 state); static inline void omap3_per_save_context(void) { omap_gpio_save_context(); } static inline void omap3_per_restore_context(void) { omap_gpio_restore_context(); } static void omap3_enable_io_chain(void) { int timeout = 0; if (omap_rev() >= OMAP3430_REV_ES3_1) { prm_set_mod_reg_bits(OMAP3430_EN_IO_CHAIN, WKUP_MOD, PM_WKEN); /* Do a readback to assure write has been done */ prm_read_mod_reg(WKUP_MOD, PM_WKEN); while (!(prm_read_mod_reg(WKUP_MOD, PM_WKST) & OMAP3430_ST_IO_CHAIN)) { timeout++; if (timeout > 1000) { printk(KERN_ERR "Wake up daisy chain " "activation failed.\n"); return; } prm_set_mod_reg_bits(OMAP3430_ST_IO_CHAIN, WKUP_MOD, PM_WKST); } } } static void omap3_disable_io_chain(void) { if (omap_rev() >= OMAP3430_REV_ES3_1) prm_clear_mod_reg_bits(OMAP3430_EN_IO_CHAIN, WKUP_MOD, PM_WKEN); } static void omap3_core_save_context(void) { u32 control_padconf_off; /* Save the padconf registers */ control_padconf_off = omap_ctrl_readl(OMAP343X_CONTROL_PADCONF_OFF); control_padconf_off |= START_PADCONF_SAVE; omap_ctrl_writel(control_padconf_off, OMAP343X_CONTROL_PADCONF_OFF); /* wait for the save to complete */ while (!omap_ctrl_readl(OMAP343X_CONTROL_GENERAL_PURPOSE_STATUS) & PADCONF_SAVE_DONE) ; /* Save the Interrupt controller context */ omap_intc_save_context(); /* Save the GPMC context */ omap3_gpmc_save_context(); /* Save the system control module context, padconf already save above*/ omap3_control_save_context(); omap_dma_global_context_save(); } static void omap3_core_restore_context(void) { /* Restore the control module context, padconf restored by h/w */ omap3_control_restore_context(); /* Restore the GPMC context */ omap3_gpmc_restore_context(); /* Restore the interrupt controller context */ omap_intc_restore_context(); omap_dma_global_context_restore(); } /* * FIXME: This function should be called before entering off-mode after * OMAP3 secure services have been accessed. Currently it is only called * once during boot sequence, but this works as we are not using secure * services. */ static void omap3_save_secure_ram_context(u32 target_mpu_state) { u32 ret; if (omap_type() != OMAP2_DEVICE_TYPE_GP) { /* * MPU next state must be set to POWER_ON temporarily, * otherwise the WFI executed inside the ROM code * will hang the system. */ pwrdm_set_next_pwrst(mpu_pwrdm, PWRDM_POWER_ON); ret = _omap_save_secure_sram((u32 *) __pa(omap3_secure_ram_storage)); pwrdm_set_next_pwrst(mpu_pwrdm, target_mpu_state); /* Following is for error tracking, it should not happen */ if (ret) { printk(KERN_ERR "save_secure_sram() returns %08x\n", ret); while (1) ; } } } /* * PRCM Interrupt Handler Helper Function * * The purpose of this function is to clear any wake-up events latched * in the PRCM PM_WKST_x registers. It is possible that a wake-up event * may occur whilst attempting to clear a PM_WKST_x register and thus * set another bit in this register. A while loop is used to ensure * that any peripheral wake-up events occurring while attempting to * clear the PM_WKST_x are detected and cleared. */ static int prcm_clear_mod_irqs(s16 module, u8 regs) { u32 wkst, fclk, iclk, clken; u16 wkst_off = (regs == 3) ? OMAP3430ES2_PM_WKST3 : PM_WKST1; u16 fclk_off = (regs == 3) ? OMAP3430ES2_CM_FCLKEN3 : CM_FCLKEN1; u16 iclk_off = (regs == 3) ? CM_ICLKEN3 : CM_ICLKEN1; u16 grpsel_off = (regs == 3) ? OMAP3430ES2_PM_MPUGRPSEL3 : OMAP3430_PM_MPUGRPSEL; int c = 0; wkst = prm_read_mod_reg(module, wkst_off); wkst &= prm_read_mod_reg(module, grpsel_off); if (wkst) { iclk = cm_read_mod_reg(module, iclk_off); fclk = cm_read_mod_reg(module, fclk_off); while (wkst) { clken = wkst; cm_set_mod_reg_bits(clken, module, iclk_off); /* * For USBHOST, we don't know whether HOST1 or * HOST2 woke us up, so enable both f-clocks */ if (module == OMAP3430ES2_USBHOST_MOD) clken |= 1 << OMAP3430ES2_EN_USBHOST2_SHIFT; cm_set_mod_reg_bits(clken, module, fclk_off); prm_write_mod_reg(wkst, module, wkst_off); wkst = prm_read_mod_reg(module, wkst_off); c++; } cm_write_mod_reg(iclk, module, iclk_off); cm_write_mod_reg(fclk, module, fclk_off); } return c; } static int _prcm_int_handle_wakeup(void) { int c; c = prcm_clear_mod_irqs(WKUP_MOD, 1); c += prcm_clear_mod_irqs(CORE_MOD, 1); c += prcm_clear_mod_irqs(OMAP3430_PER_MOD, 1); if (omap_rev() > OMAP3430_REV_ES1_0) { c += prcm_clear_mod_irqs(CORE_MOD, 3); c += prcm_clear_mod_irqs(OMAP3430ES2_USBHOST_MOD, 1); } return c; } /* * PRCM Interrupt Handler * * The PRM_IRQSTATUS_MPU register indicates if there are any pending * interrupts from the PRCM for the MPU. These bits must be cleared in * order to clear the PRCM interrupt. The PRCM interrupt handler is * implemented to simply clear the PRM_IRQSTATUS_MPU in order to clear * the PRCM interrupt. Please note that bit 0 of the PRM_IRQSTATUS_MPU * register indicates that a wake-up event is pending for the MPU and * this bit can only be cleared if the all the wake-up events latched * in the various PM_WKST_x registers have been cleared. The interrupt * handler is implemented using a do-while loop so that if a wake-up * event occurred during the processing of the prcm interrupt handler * (setting a bit in the corresponding PM_WKST_x register and thus * preventing us from clearing bit 0 of the PRM_IRQSTATUS_MPU register) * this would be handled. */ static irqreturn_t prcm_interrupt_handler (int irq, void *dev_id) { u32 irqstatus_mpu; int c = 0; do { irqstatus_mpu = prm_read_mod_reg(OCP_MOD, OMAP3_PRM_IRQSTATUS_MPU_OFFSET); if (irqstatus_mpu & (OMAP3430_WKUP_ST | OMAP3430_IO_ST)) { c = _prcm_int_handle_wakeup(); /* * Is the MPU PRCM interrupt handler racing with the * IVA2 PRCM interrupt handler ? */ WARN(c == 0, "prcm: WARNING: PRCM indicated MPU wakeup " "but no wakeup sources are marked\n"); } else { /* XXX we need to expand our PRCM interrupt handler */ WARN(1, "prcm: WARNING: PRCM interrupt received, but " "no code to handle it (%08x)\n", irqstatus_mpu); } prm_write_mod_reg(irqstatus_mpu, OCP_MOD, OMAP3_PRM_IRQSTATUS_MPU_OFFSET); } while (prm_read_mod_reg(OCP_MOD, OMAP3_PRM_IRQSTATUS_MPU_OFFSET)); return IRQ_HANDLED; } static void restore_control_register(u32 val) { __asm__ __volatile__ ("mcr p15, 0, %0, c1, c0, 0" : : "r" (val)); } /* Function to restore the table entry that was modified for enabling MMU */ static void restore_table_entry(void) { u32 *scratchpad_address; u32 previous_value, control_reg_value; u32 *address; scratchpad_address = OMAP2_L4_IO_ADDRESS(OMAP343X_SCRATCHPAD); /* Get address of entry that was modified */ address = (u32 *)__raw_readl(scratchpad_address + OMAP343X_TABLE_ADDRESS_OFFSET); /* Get the previous value which needs to be restored */ previous_value = __raw_readl(scratchpad_address + OMAP343X_TABLE_VALUE_OFFSET); address = __va(address); *address = previous_value; flush_tlb_all(); control_reg_value = __raw_readl(scratchpad_address + OMAP343X_CONTROL_REG_VALUE_OFFSET); /* This will enable caches and prediction */ restore_control_register(control_reg_value); } static void omap_sram_idle(void) { /* Variable to tell what needs to be saved and restored * in omap_sram_idle*/ /* save_state = 0 => Nothing to save and restored */ /* save_state = 1 => Only L1 and logic lost */ /* save_state = 2 => Only L2 lost */ /* save_state = 3 => L1, L2 and logic lost */ int save_state = 0; int mpu_next_state = PWRDM_POWER_ON; int per_next_state = PWRDM_POWER_ON; int core_next_state = PWRDM_POWER_ON; int core_prev_state, per_prev_state; u32 sdrc_pwr = 0; int per_state_modified = 0; if (!_omap_sram_idle) return; pwrdm_clear_all_prev_pwrst(mpu_pwrdm); pwrdm_clear_all_prev_pwrst(neon_pwrdm); pwrdm_clear_all_prev_pwrst(core_pwrdm); pwrdm_clear_all_prev_pwrst(per_pwrdm); mpu_next_state = pwrdm_read_next_pwrst(mpu_pwrdm); switch (mpu_next_state) { case PWRDM_POWER_ON: case PWRDM_POWER_RET: /* No need to save context */ save_state = 0; break; case PWRDM_POWER_OFF: save_state = 3; break; default: /* Invalid state */ printk(KERN_ERR "Invalid mpu state in sram_idle\n"); return; } pwrdm_pre_transition(); /* NEON control */ if (pwrdm_read_pwrst(neon_pwrdm) == PWRDM_POWER_ON) set_pwrdm_state(neon_pwrdm, mpu_next_state); /* PER */ per_next_state = pwrdm_read_next_pwrst(per_pwrdm); core_next_state = pwrdm_read_next_pwrst(core_pwrdm); if (per_next_state < PWRDM_POWER_ON) { omap_uart_prepare_idle(2); omap2_gpio_prepare_for_retention(); if (per_next_state == PWRDM_POWER_OFF) { if (core_next_state == PWRDM_POWER_ON) { per_next_state = PWRDM_POWER_RET; pwrdm_set_next_pwrst(per_pwrdm, per_next_state); per_state_modified = 1; } else omap3_per_save_context(); } } if (pwrdm_read_pwrst(cam_pwrdm) == PWRDM_POWER_ON) omap2_clkdm_deny_idle(mpu_pwrdm->pwrdm_clkdms[0]); /* CORE */ if (core_next_state < PWRDM_POWER_ON) { omap_uart_prepare_idle(0); omap_uart_prepare_idle(1); if (core_next_state == PWRDM_POWER_OFF) { omap3_core_save_context(); omap3_prcm_save_context(); } /* Enable IO-PAD and IO-CHAIN wakeups */ prm_set_mod_reg_bits(OMAP3430_EN_IO, WKUP_MOD, PM_WKEN); omap3_enable_io_chain(); } /* * Force SDRAM controller to self-refresh mode after timeout on * autocount. This is needed on ES3.0 to avoid SDRAM controller * hang-ups. */ if (omap_rev() >= OMAP3430_REV_ES3_0 && omap_type() != OMAP2_DEVICE_TYPE_GP && core_next_state == PWRDM_POWER_OFF) { sdrc_pwr = sdrc_read_reg(SDRC_POWER); sdrc_write_reg((sdrc_pwr & ~(SDRC_POWER_AUTOCOUNT_MASK|SDRC_POWER_CLKCTRL_MASK)) | (1 << SDRC_POWER_AUTOCOUNT_SHIFT) | SDRC_SELF_REFRESH_ON_AUTOCOUNT, SDRC_POWER); } /* * omap3_arm_context is the location where ARM registers * get saved. The restore path then reads from this * location and restores them back. */ _omap_sram_idle(omap3_arm_context, save_state); cpu_init(); /* Restore normal SDRAM settings */ if (omap_rev() >= OMAP3430_REV_ES3_0 && omap_type() != OMAP2_DEVICE_TYPE_GP && core_next_state == PWRDM_POWER_OFF) sdrc_write_reg(sdrc_pwr, SDRC_POWER); /* Restore table entry modified during MMU restoration */ if (pwrdm_read_prev_pwrst(mpu_pwrdm) == PWRDM_POWER_OFF) restore_table_entry(); /* CORE */ if (core_next_state < PWRDM_POWER_ON) { core_prev_state = pwrdm_read_prev_pwrst(core_pwrdm); if (core_prev_state == PWRDM_POWER_OFF) { omap3_core_restore_context(); omap3_prcm_restore_context(); omap3_sram_restore_context(); omap2_sms_restore_context(); } omap_uart_resume_idle(0); omap_uart_resume_idle(1); if (core_next_state == PWRDM_POWER_OFF) prm_clear_mod_reg_bits(OMAP3430_AUTO_OFF, OMAP3430_GR_MOD, OMAP3_PRM_VOLTCTRL_OFFSET); } /* PER */ if (per_next_state < PWRDM_POWER_ON) { per_prev_state = pwrdm_read_prev_pwrst(per_pwrdm); if (per_prev_state == PWRDM_POWER_OFF) omap3_per_restore_context(); omap2_gpio_resume_after_retention(); omap_uart_resume_idle(2); if (per_state_modified) pwrdm_set_next_pwrst(per_pwrdm, PWRDM_POWER_OFF); } /* Disable IO-PAD and IO-CHAIN wakeup */ if (core_next_state < PWRDM_POWER_ON) { prm_clear_mod_reg_bits(OMAP3430_EN_IO, WKUP_MOD, PM_WKEN); omap3_disable_io_chain(); } pwrdm_post_transition(); omap2_clkdm_allow_idle(mpu_pwrdm->pwrdm_clkdms[0]); } /* * Check if functional clocks are enabled before entering * sleep. This function could be behind CONFIG_PM_DEBUG * when all drivers are configuring their sysconfig registers * properly and using their clocks properly. */ static int omap3_fclks_active(void) { u32 fck_core1 = 0, fck_core3 = 0, fck_sgx = 0, fck_dss = 0, fck_cam = 0, fck_per = 0, fck_usbhost = 0; fck_core1 = cm_read_mod_reg(CORE_MOD, CM_FCLKEN1); if (omap_rev() > OMAP3430_REV_ES1_0) { fck_core3 = cm_read_mod_reg(CORE_MOD, OMAP3430ES2_CM_FCLKEN3); fck_sgx = cm_read_mod_reg(OMAP3430ES2_SGX_MOD, CM_FCLKEN); fck_usbhost = cm_read_mod_reg(OMAP3430ES2_USBHOST_MOD, CM_FCLKEN); } else fck_sgx = cm_read_mod_reg(GFX_MOD, OMAP3430ES2_CM_FCLKEN3); fck_dss = cm_read_mod_reg(OMAP3430_DSS_MOD, CM_FCLKEN); fck_cam = cm_read_mod_reg(OMAP3430_CAM_MOD, CM_FCLKEN); fck_per = cm_read_mod_reg(OMAP3430_PER_MOD, CM_FCLKEN); /* Ignore UART clocks. These are handled by UART core (serial.c) */ fck_core1 &= ~(OMAP3430_EN_UART1 | OMAP3430_EN_UART2); fck_per &= ~OMAP3430_EN_UART3; if (fck_core1 | fck_core3 | fck_sgx | fck_dss | fck_cam | fck_per | fck_usbhost) return 1; return 0; } static int omap3_can_sleep(void) { if (!sleep_while_idle) return 0; if (!omap_uart_can_sleep()) return 0; if (omap3_fclks_active()) return 0; return 1; } /* This sets pwrdm state (other than mpu & core. Currently only ON & * RET are supported. Function is assuming that clkdm doesn't have * hw_sup mode enabled. */ static int set_pwrdm_state(struct powerdomain *pwrdm, u32 state) { u32 cur_state; int sleep_switch = 0; int ret = 0; if (pwrdm == NULL || IS_ERR(pwrdm)) return -EINVAL; while (!(pwrdm->pwrsts & (1 << state))) { if (state == PWRDM_POWER_OFF) return ret; state--; } cur_state = pwrdm_read_next_pwrst(pwrdm); if (cur_state == state) return ret; if (pwrdm_read_pwrst(pwrdm) < PWRDM_POWER_ON) { omap2_clkdm_wakeup(pwrdm->pwrdm_clkdms[0]); sleep_switch = 1; pwrdm_wait_transition(pwrdm); } ret = pwrdm_set_next_pwrst(pwrdm, state); if (ret) { printk(KERN_ERR "Unable to set state of powerdomain: %s\n", pwrdm->name); goto err; } if (sleep_switch) { omap2_clkdm_allow_idle(pwrdm->pwrdm_clkdms[0]); pwrdm_wait_transition(pwrdm); pwrdm_state_switch(pwrdm); } err: return ret; } static void omap3_pm_idle(void) { local_irq_disable(); local_fiq_disable(); if (!omap3_can_sleep()) goto out; if (omap_irq_pending()) goto out; omap_sram_idle(); out: local_fiq_enable(); local_irq_enable(); } #ifdef CONFIG_SUSPEND static suspend_state_t suspend_state; static void omap2_pm_wakeup_on_timer(u32 seconds) { u32 tick_rate, cycles; if (!seconds) return; tick_rate = clk_get_rate(omap_dm_timer_get_fclk(gptimer_wakeup)); cycles = tick_rate * seconds; omap_dm_timer_stop(gptimer_wakeup); omap_dm_timer_set_load_start(gptimer_wakeup, 0, 0xffffffff - cycles); pr_info("PM: Resume timer in %d secs (%d ticks at %d ticks/sec.)\n", seconds, cycles, tick_rate); } static int omap3_pm_prepare(void) { disable_hlt(); return 0; } static int omap3_pm_suspend(void) { struct power_state *pwrst; int state, ret = 0; if (wakeup_timer_seconds) omap2_pm_wakeup_on_timer(wakeup_timer_seconds); /* Read current next_pwrsts */ list_for_each_entry(pwrst, &pwrst_list, node) pwrst->saved_state = pwrdm_read_next_pwrst(pwrst->pwrdm); /* Set ones wanted by suspend */ list_for_each_entry(pwrst, &pwrst_list, node) { if (set_pwrdm_state(pwrst->pwrdm, pwrst->next_state)) goto restore; if (pwrdm_clear_all_prev_pwrst(pwrst->pwrdm)) goto restore; } omap_uart_prepare_suspend(); omap_sram_idle(); restore: /* Restore next_pwrsts */ list_for_each_entry(pwrst, &pwrst_list, node) { state = pwrdm_read_prev_pwrst(pwrst->pwrdm); if (state > pwrst->next_state) { printk(KERN_INFO "Powerdomain (%s) didn't enter " "target state %d\n", pwrst->pwrdm->name, pwrst->next_state); ret = -1; } set_pwrdm_state(pwrst->pwrdm, pwrst->saved_state); } if (ret) printk(KERN_ERR "Could not enter target state in pm_suspend\n"); else printk(KERN_INFO "Successfully put all powerdomains " "to target state\n"); return ret; } static int omap3_pm_enter(suspend_state_t unused) { int ret = 0; switch (suspend_state) { case PM_SUSPEND_STANDBY: case PM_SUSPEND_MEM: ret = omap3_pm_suspend(); break; default: ret = -EINVAL; } return ret; } static void omap3_pm_finish(void) { enable_hlt(); } /* Hooks to enable / disable UART interrupts during suspend */ static int omap3_pm_begin(suspend_state_t state) { suspend_state = state; omap_uart_enable_irqs(0); return 0; } static void omap3_pm_end(void) { suspend_state = PM_SUSPEND_ON; omap_uart_enable_irqs(1); return; } static struct platform_suspend_ops omap_pm_ops = { .begin = omap3_pm_begin, .end = omap3_pm_end, .prepare = omap3_pm_prepare, .enter = omap3_pm_enter, .finish = omap3_pm_finish, .valid = suspend_valid_only_mem, }; #endif /* CONFIG_SUSPEND */ /** * omap3_iva_idle(): ensure IVA is in idle so it can be put into * retention * * In cases where IVA2 is activated by bootcode, it may prevent * full-chip retention or off-mode because it is not idle. This * function forces the IVA2 into idle state so it can go * into retention/off and thus allow full-chip retention/off. * **/ static void __init omap3_iva_idle(void) { /* ensure IVA2 clock is disabled */ cm_write_mod_reg(0, OMAP3430_IVA2_MOD, CM_FCLKEN); /* if no clock activity, nothing else to do */ if (!(cm_read_mod_reg(OMAP3430_IVA2_MOD, OMAP3430_CM_CLKSTST) & OMAP3430_CLKACTIVITY_IVA2_MASK)) return; /* Reset IVA2 */ prm_write_mod_reg(OMAP3430_RST1_IVA2 | OMAP3430_RST2_IVA2 | OMAP3430_RST3_IVA2, OMAP3430_IVA2_MOD, RM_RSTCTRL); /* Enable IVA2 clock */ cm_write_mod_reg(OMAP3430_CM_FCLKEN_IVA2_EN_IVA2, OMAP3430_IVA2_MOD, CM_FCLKEN); /* Set IVA2 boot mode to 'idle' */ omap_ctrl_writel(OMAP3_IVA2_BOOTMOD_IDLE, OMAP343X_CONTROL_IVA2_BOOTMOD); /* Un-reset IVA2 */ prm_write_mod_reg(0, OMAP3430_IVA2_MOD, RM_RSTCTRL); /* Disable IVA2 clock */ cm_write_mod_reg(0, OMAP3430_IVA2_MOD, CM_FCLKEN); /* Reset IVA2 */ prm_write_mod_reg(OMAP3430_RST1_IVA2 | OMAP3430_RST2_IVA2 | OMAP3430_RST3_IVA2, OMAP3430_IVA2_MOD, RM_RSTCTRL); } static void __init omap3_d2d_idle(void) { u16 mask, padconf; /* In a stand alone OMAP3430 where there is not a stacked * modem for the D2D Idle Ack and D2D MStandby must be pulled * high. S CONTROL_PADCONF_SAD2D_IDLEACK and * CONTROL_PADCONF_SAD2D_MSTDBY to have a pull up. */ mask = (1 << 4) | (1 << 3); /* pull-up, enabled */ padconf = omap_ctrl_readw(OMAP3_PADCONF_SAD2D_MSTANDBY); padconf |= mask; omap_ctrl_writew(padconf, OMAP3_PADCONF_SAD2D_MSTANDBY); padconf = omap_ctrl_readw(OMAP3_PADCONF_SAD2D_IDLEACK); padconf |= mask; omap_ctrl_writew(padconf, OMAP3_PADCONF_SAD2D_IDLEACK); /* reset modem */ prm_write_mod_reg(OMAP3430_RM_RSTCTRL_CORE_MODEM_SW_RSTPWRON | OMAP3430_RM_RSTCTRL_CORE_MODEM_SW_RST, CORE_MOD, RM_RSTCTRL); prm_write_mod_reg(0, CORE_MOD, RM_RSTCTRL); } static void __init prcm_setup_regs(void) { /* XXX Reset all wkdeps. This should be done when initializing * powerdomains */ prm_write_mod_reg(0, OMAP3430_IVA2_MOD, PM_WKDEP); prm_write_mod_reg(0, MPU_MOD, PM_WKDEP); prm_write_mod_reg(0, OMAP3430_DSS_MOD, PM_WKDEP); prm_write_mod_reg(0, OMAP3430_NEON_MOD, PM_WKDEP); prm_write_mod_reg(0, OMAP3430_CAM_MOD, PM_WKDEP); prm_write_mod_reg(0, OMAP3430_PER_MOD, PM_WKDEP); if (omap_rev() > OMAP3430_REV_ES1_0) { prm_write_mod_reg(0, OMAP3430ES2_SGX_MOD, PM_WKDEP); prm_write_mod_reg(0, OMAP3430ES2_USBHOST_MOD, PM_WKDEP); } else prm_write_mod_reg(0, GFX_MOD, PM_WKDEP); /* * Enable interface clock autoidle for all modules. * Note that in the long run this should be done by clockfw */ cm_write_mod_reg( OMAP3430_AUTO_MODEM | OMAP3430ES2_AUTO_MMC3 | OMAP3430ES2_AUTO_ICR | OMAP3430_AUTO_AES2 | OMAP3430_AUTO_SHA12 | OMAP3430_AUTO_DES2 | OMAP3430_AUTO_MMC2 | OMAP3430_AUTO_MMC1 | OMAP3430_AUTO_MSPRO | OMAP3430_AUTO_HDQ | OMAP3430_AUTO_MCSPI4 | OMAP3430_AUTO_MCSPI3 | OMAP3430_AUTO_MCSPI2 | OMAP3430_AUTO_MCSPI1 | OMAP3430_AUTO_I2C3 | OMAP3430_AUTO_I2C2 | OMAP3430_AUTO_I2C1 | OMAP3430_AUTO_UART2 | OMAP3430_AUTO_UART1 | OMAP3430_AUTO_GPT11 | OMAP3430_AUTO_GPT10 | OMAP3430_AUTO_MCBSP5 | OMAP3430_AUTO_MCBSP1 | OMAP3430ES1_AUTO_FAC | /* This is es1 only */ OMAP3430_AUTO_MAILBOXES | OMAP3430_AUTO_OMAPCTRL | OMAP3430ES1_AUTO_FSHOSTUSB | OMAP3430_AUTO_HSOTGUSB | OMAP3430_AUTO_SAD2D | OMAP3430_AUTO_SSI, CORE_MOD, CM_AUTOIDLE1); cm_write_mod_reg( OMAP3430_AUTO_PKA | OMAP3430_AUTO_AES1 | OMAP3430_AUTO_RNG | OMAP3430_AUTO_SHA11 | OMAP3430_AUTO_DES1, CORE_MOD, CM_AUTOIDLE2); if (omap_rev() > OMAP3430_REV_ES1_0) { cm_write_mod_reg( OMAP3430_AUTO_MAD2D | OMAP3430ES2_AUTO_USBTLL, CORE_MOD, CM_AUTOIDLE3); } cm_write_mod_reg( OMAP3430_AUTO_WDT2 | OMAP3430_AUTO_WDT1 | OMAP3430_AUTO_GPIO1 | OMAP3430_AUTO_32KSYNC | OMAP3430_AUTO_GPT12 | OMAP3430_AUTO_GPT1 , WKUP_MOD, CM_AUTOIDLE); cm_write_mod_reg( OMAP3430_AUTO_DSS, OMAP3430_DSS_MOD, CM_AUTOIDLE); cm_write_mod_reg( OMAP3430_AUTO_CAM, OMAP3430_CAM_MOD, CM_AUTOIDLE); cm_write_mod_reg( OMAP3430_AUTO_GPIO6 | OMAP3430_AUTO_GPIO5 | OMAP3430_AUTO_GPIO4 | OMAP3430_AUTO_GPIO3 | OMAP3430_AUTO_GPIO2 | OMAP3430_AUTO_WDT3 | OMAP3430_AUTO_UART3 | OMAP3430_AUTO_GPT9 | OMAP3430_AUTO_GPT8 | OMAP3430_AUTO_GPT7 | OMAP3430_AUTO_GPT6 | OMAP3430_AUTO_GPT5 | OMAP3430_AUTO_GPT4 | OMAP3430_AUTO_GPT3 | OMAP3430_AUTO_GPT2 | OMAP3430_AUTO_MCBSP4 | OMAP3430_AUTO_MCBSP3 | OMAP3430_AUTO_MCBSP2, OMAP3430_PER_MOD, CM_AUTOIDLE); if (omap_rev() > OMAP3430_REV_ES1_0) { cm_write_mod_reg( OMAP3430ES2_AUTO_USBHOST, OMAP3430ES2_USBHOST_MOD, CM_AUTOIDLE); } /* * Set all plls to autoidle. This is needed until autoidle is * enabled by clockfw */ cm_write_mod_reg(1 << OMAP3430_AUTO_IVA2_DPLL_SHIFT, OMAP3430_IVA2_MOD, CM_AUTOIDLE2); cm_write_mod_reg(1 << OMAP3430_AUTO_MPU_DPLL_SHIFT, MPU_MOD, CM_AUTOIDLE2); cm_write_mod_reg((1 << OMAP3430_AUTO_PERIPH_DPLL_SHIFT) | (1 << OMAP3430_AUTO_CORE_DPLL_SHIFT), PLL_MOD, CM_AUTOIDLE); cm_write_mod_reg(1 << OMAP3430ES2_AUTO_PERIPH2_DPLL_SHIFT, PLL_MOD, CM_AUTOIDLE2); /* * Enable control of expternal oscillator through * sys_clkreq. In the long run clock framework should * take care of this. */ prm_rmw_mod_reg_bits(OMAP_AUTOEXTCLKMODE_MASK, 1 << OMAP_AUTOEXTCLKMODE_SHIFT, OMAP3430_GR_MOD, OMAP3_PRM_CLKSRC_CTRL_OFFSET); /* setup wakup source */ prm_write_mod_reg(OMAP3430_EN_IO | OMAP3430_EN_GPIO1 | OMAP3430_EN_GPT1 | OMAP3430_EN_GPT12, WKUP_MOD, PM_WKEN); /* No need to write EN_IO, that is always enabled */ prm_write_mod_reg(OMAP3430_EN_GPIO1 | OMAP3430_EN_GPT1 | OMAP3430_EN_GPT12, WKUP_MOD, OMAP3430_PM_MPUGRPSEL); /* For some reason IO doesn't generate wakeup event even if * it is selected to mpu wakeup goup */ prm_write_mod_reg(OMAP3430_IO_EN | OMAP3430_WKUP_EN, OCP_MOD, OMAP3_PRM_IRQENABLE_MPU_OFFSET); /* Enable wakeups in PER */ prm_write_mod_reg(OMAP3430_EN_GPIO2 | OMAP3430_EN_GPIO3 | OMAP3430_EN_GPIO4 | OMAP3430_EN_GPIO5 | OMAP3430_EN_GPIO6 | OMAP3430_EN_UART3, OMAP3430_PER_MOD, PM_WKEN); /* and allow them to wake up MPU */ prm_write_mod_reg(OMAP3430_GRPSEL_GPIO2 | OMAP3430_EN_GPIO3 | OMAP3430_GRPSEL_GPIO4 | OMAP3430_EN_GPIO5 | OMAP3430_GRPSEL_GPIO6 | OMAP3430_EN_UART3, OMAP3430_PER_MOD, OMAP3430_PM_MPUGRPSEL); /* Don't attach IVA interrupts */ prm_write_mod_reg(0, WKUP_MOD, OMAP3430_PM_IVAGRPSEL); prm_write_mod_reg(0, CORE_MOD, OMAP3430_PM_IVAGRPSEL1); prm_write_mod_reg(0, CORE_MOD, OMAP3430ES2_PM_IVAGRPSEL3); prm_write_mod_reg(0, OMAP3430_PER_MOD, OMAP3430_PM_IVAGRPSEL); /* Clear any pending 'reset' flags */ prm_write_mod_reg(0xffffffff, MPU_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, CORE_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, OMAP3430_PER_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, OMAP3430_EMU_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, OMAP3430_NEON_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, OMAP3430_DSS_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, OMAP3430ES2_USBHOST_MOD, RM_RSTST); /* Clear any pending PRCM interrupts */ prm_write_mod_reg(0, OCP_MOD, OMAP3_PRM_IRQSTATUS_MPU_OFFSET); /* Don't attach IVA interrupts */ prm_write_mod_reg(0, WKUP_MOD, OMAP3430_PM_IVAGRPSEL); prm_write_mod_reg(0, CORE_MOD, OMAP3430_PM_IVAGRPSEL1); prm_write_mod_reg(0, CORE_MOD, OMAP3430ES2_PM_IVAGRPSEL3); prm_write_mod_reg(0, OMAP3430_PER_MOD, OMAP3430_PM_IVAGRPSEL); /* Clear any pending 'reset' flags */ prm_write_mod_reg(0xffffffff, MPU_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, CORE_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, OMAP3430_PER_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, OMAP3430_EMU_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, OMAP3430_NEON_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, OMAP3430_DSS_MOD, RM_RSTST); prm_write_mod_reg(0xffffffff, OMAP3430ES2_USBHOST_MOD, RM_RSTST); /* Clear any pending PRCM interrupts */ prm_write_mod_reg(0, OCP_MOD, OMAP3_PRM_IRQSTATUS_MPU_OFFSET); omap3_iva_idle(); omap3_d2d_idle(); } void omap3_pm_off_mode_enable(int enable) { struct power_state *pwrst; u32 state; if (enable) state = PWRDM_POWER_OFF; else state = PWRDM_POWER_RET; list_for_each_entry(pwrst, &pwrst_list, node) { pwrst->next_state = state; set_pwrdm_state(pwrst->pwrdm, state); } } int omap3_pm_get_suspend_state(struct powerdomain *pwrdm) { struct power_state *pwrst; list_for_each_entry(pwrst, &pwrst_list, node) { if (pwrst->pwrdm == pwrdm) return pwrst->next_state; } return -EINVAL; } int omap3_pm_set_suspend_state(struct powerdomain *pwrdm, int state) { struct power_state *pwrst; list_for_each_entry(pwrst, &pwrst_list, node) { if (pwrst->pwrdm == pwrdm) { pwrst->next_state = state; return 0; } } return -EINVAL; } static int __init pwrdms_setup(struct powerdomain *pwrdm, void *unused) { struct power_state *pwrst; if (!pwrdm->pwrsts) return 0; pwrst = kmalloc(sizeof(struct power_state), GFP_ATOMIC); if (!pwrst) return -ENOMEM; pwrst->pwrdm = pwrdm; pwrst->next_state = PWRDM_POWER_RET; list_add(&pwrst->node, &pwrst_list); if (pwrdm_has_hdwr_sar(pwrdm)) pwrdm_enable_hdwr_sar(pwrdm); return set_pwrdm_state(pwrst->pwrdm, pwrst->next_state); } /* * Enable hw supervised mode for all clockdomains if it's * supported. Initiate sleep transition for other clockdomains, if * they are not used */ static int __init clkdms_setup(struct clockdomain *clkdm, void *unused) { if (clkdm->flags & CLKDM_CAN_ENABLE_AUTO) omap2_clkdm_allow_idle(clkdm); else if (clkdm->flags & CLKDM_CAN_FORCE_SLEEP && atomic_read(&clkdm->usecount) == 0) omap2_clkdm_sleep(clkdm); return 0; } void omap_push_sram_idle(void) { _omap_sram_idle = omap_sram_push(omap34xx_cpu_suspend, omap34xx_cpu_suspend_sz); if (omap_type() != OMAP2_DEVICE_TYPE_GP) _omap_save_secure_sram = omap_sram_push(save_secure_ram_context, save_secure_ram_context_sz); } static int __init omap3_pm_init(void) { struct power_state *pwrst, *tmp; int ret; if (!cpu_is_omap34xx()) return -ENODEV; printk(KERN_ERR "Power Management for TI OMAP3.\n"); /* XXX prcm_setup_regs needs to be before enabling hw * supervised mode for powerdomains */ prcm_setup_regs(); ret = request_irq(INT_34XX_PRCM_MPU_IRQ, (irq_handler_t)prcm_interrupt_handler, IRQF_DISABLED, "prcm", NULL); if (ret) { printk(KERN_ERR "request_irq failed to register for 0x%x\n", INT_34XX_PRCM_MPU_IRQ); goto err1; } ret = pwrdm_for_each(pwrdms_setup, NULL); if (ret) { printk(KERN_ERR "Failed to setup powerdomains\n"); goto err2; } (void) clkdm_for_each(clkdms_setup, NULL); mpu_pwrdm = pwrdm_lookup("mpu_pwrdm"); if (mpu_pwrdm == NULL) { printk(KERN_ERR "Failed to get mpu_pwrdm\n"); goto err2; } neon_pwrdm = pwrdm_lookup("neon_pwrdm"); per_pwrdm = pwrdm_lookup("per_pwrdm"); core_pwrdm = pwrdm_lookup("core_pwrdm"); cam_pwrdm = pwrdm_lookup("cam_pwrdm"); omap_push_sram_idle(); #ifdef CONFIG_SUSPEND suspend_set_ops(&omap_pm_ops); #endif /* CONFIG_SUSPEND */ pm_idle = omap3_pm_idle; pwrdm_add_wkdep(neon_pwrdm, mpu_pwrdm); /* * REVISIT: This wkdep is only necessary when GPIO2-6 are enabled for * IO-pad wakeup. Otherwise it will unnecessarily waste power * waking up PER with every CORE wakeup - see * http://marc.info/?l=linux-omap&m=121852150710062&w=2 */ pwrdm_add_wkdep(per_pwrdm, core_pwrdm); if (omap_type() != OMAP2_DEVICE_TYPE_GP) { omap3_secure_ram_storage = kmalloc(0x803F, GFP_KERNEL); if (!omap3_secure_ram_storage) printk(KERN_ERR "Memory allocation failed when" "allocating for secure sram context\n"); local_irq_disable(); local_fiq_disable(); omap_dma_global_context_save(); omap3_save_secure_ram_context(PWRDM_POWER_ON); omap_dma_global_context_restore(); local_irq_enable(); local_fiq_enable(); } omap3_save_scratchpad_contents(); err1: return ret; err2: free_irq(INT_34XX_PRCM_MPU_IRQ, NULL); list_for_each_entry_safe(pwrst, tmp, &pwrst_list, node) { list_del(&pwrst->node); kfree(pwrst); } return ret; } late_initcall(omap3_pm_init);