/* * This file is part of the Chelsio T6 Crypto driver for Linux. * * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #ifndef __CHCR_ALGO_H__ #define __CHCR_ALGO_H__ /* Crypto key context */ #define KEY_CONTEXT_CTX_LEN_S 24 #define KEY_CONTEXT_CTX_LEN_M 0xff #define KEY_CONTEXT_CTX_LEN_V(x) ((x) << KEY_CONTEXT_CTX_LEN_S) #define KEY_CONTEXT_CTX_LEN_G(x) \ (((x) >> KEY_CONTEXT_CTX_LEN_S) & KEY_CONTEXT_CTX_LEN_M) #define KEY_CONTEXT_DUAL_CK_S 12 #define KEY_CONTEXT_DUAL_CK_M 0x1 #define KEY_CONTEXT_DUAL_CK_V(x) ((x) << KEY_CONTEXT_DUAL_CK_S) #define KEY_CONTEXT_DUAL_CK_G(x) \ (((x) >> KEY_CONTEXT_DUAL_CK_S) & KEY_CONTEXT_DUAL_CK_M) #define KEY_CONTEXT_DUAL_CK_F KEY_CONTEXT_DUAL_CK_V(1U) #define KEY_CONTEXT_SALT_PRESENT_S 10 #define KEY_CONTEXT_SALT_PRESENT_M 0x1 #define KEY_CONTEXT_SALT_PRESENT_V(x) ((x) << KEY_CONTEXT_SALT_PRESENT_S) #define KEY_CONTEXT_SALT_PRESENT_G(x) \ (((x) >> KEY_CONTEXT_SALT_PRESENT_S) & \ KEY_CONTEXT_SALT_PRESENT_M) #define KEY_CONTEXT_SALT_PRESENT_F KEY_CONTEXT_SALT_PRESENT_V(1U) #define KEY_CONTEXT_VALID_S 0 #define KEY_CONTEXT_VALID_M 0x1 #define KEY_CONTEXT_VALID_V(x) ((x) << KEY_CONTEXT_VALID_S) #define KEY_CONTEXT_VALID_G(x) \ (((x) >> KEY_CONTEXT_VALID_S) & \ KEY_CONTEXT_VALID_M) #define KEY_CONTEXT_VALID_F KEY_CONTEXT_VALID_V(1U) #define KEY_CONTEXT_CK_SIZE_S 6 #define KEY_CONTEXT_CK_SIZE_M 0xf #define KEY_CONTEXT_CK_SIZE_V(x) ((x) << KEY_CONTEXT_CK_SIZE_S) #define KEY_CONTEXT_CK_SIZE_G(x) \ (((x) >> KEY_CONTEXT_CK_SIZE_S) & KEY_CONTEXT_CK_SIZE_M) #define KEY_CONTEXT_MK_SIZE_S 2 #define KEY_CONTEXT_MK_SIZE_M 0xf #define KEY_CONTEXT_MK_SIZE_V(x) ((x) << KEY_CONTEXT_MK_SIZE_S) #define KEY_CONTEXT_MK_SIZE_G(x) \ (((x) >> KEY_CONTEXT_MK_SIZE_S) & KEY_CONTEXT_MK_SIZE_M) #define KEY_CONTEXT_OPAD_PRESENT_S 11 #define KEY_CONTEXT_OPAD_PRESENT_M 0x1 #define KEY_CONTEXT_OPAD_PRESENT_V(x) ((x) << KEY_CONTEXT_OPAD_PRESENT_S) #define KEY_CONTEXT_OPAD_PRESENT_G(x) \ (((x) >> KEY_CONTEXT_OPAD_PRESENT_S) & \ KEY_CONTEXT_OPAD_PRESENT_M) #define KEY_CONTEXT_OPAD_PRESENT_F KEY_CONTEXT_OPAD_PRESENT_V(1U) #define CHCR_HASH_MAX_DIGEST_SIZE 64 #define CHCR_MAX_SHA_DIGEST_SIZE 64 #define IPSEC_TRUNCATED_ICV_SIZE 12 #define TLS_TRUNCATED_HMAC_SIZE 10 #define CBCMAC_DIGEST_SIZE 16 #define MAX_HASH_NAME 20 #define SHA1_INIT_STATE_5X4B 5 #define SHA256_INIT_STATE_8X4B 8 #define SHA512_INIT_STATE_8X8B 8 #define SHA1_INIT_STATE SHA1_INIT_STATE_5X4B #define SHA224_INIT_STATE SHA256_INIT_STATE_8X4B #define SHA256_INIT_STATE SHA256_INIT_STATE_8X4B #define SHA384_INIT_STATE SHA512_INIT_STATE_8X8B #define SHA512_INIT_STATE SHA512_INIT_STATE_8X8B #define DUMMY_BYTES 16 #define IPAD_DATA 0x36363636 #define OPAD_DATA 0x5c5c5c5c #define TRANSHDR_SIZE(alignedkctx_len)\ (sizeof(struct ulptx_idata) +\ sizeof(struct ulp_txpkt) +\ sizeof(struct fw_crypto_lookaside_wr) +\ sizeof(struct cpl_tx_sec_pdu) +\ (alignedkctx_len)) #define CIPHER_TRANSHDR_SIZE(alignedkctx_len, sge_pairs) \ (TRANSHDR_SIZE(alignedkctx_len) + sge_pairs +\ sizeof(struct cpl_rx_phys_dsgl)) #define HASH_TRANSHDR_SIZE(alignedkctx_len)\ (TRANSHDR_SIZE(alignedkctx_len) + DUMMY_BYTES) #define SEC_CPL_OFFSET (sizeof(struct fw_crypto_lookaside_wr) + \ sizeof(struct ulp_txpkt) + \ sizeof(struct ulptx_idata)) #define FILL_SEC_CPL_OP_IVINSR(id, len, hldr, ofst) \ htonl( \ CPL_TX_SEC_PDU_OPCODE_V(CPL_TX_SEC_PDU) | \ CPL_TX_SEC_PDU_RXCHID_V((id)) | \ CPL_TX_SEC_PDU_ACKFOLLOWS_V(0) | \ CPL_TX_SEC_PDU_ULPTXLPBK_V(1) | \ CPL_TX_SEC_PDU_CPLLEN_V((len)) | \ CPL_TX_SEC_PDU_PLACEHOLDER_V((hldr)) | \ CPL_TX_SEC_PDU_IVINSRTOFST_V((ofst))) #define FILL_SEC_CPL_CIPHERSTOP_HI(a_start, a_stop, c_start, c_stop_hi) \ htonl( \ CPL_TX_SEC_PDU_AADSTART_V((a_start)) | \ CPL_TX_SEC_PDU_AADSTOP_V((a_stop)) | \ CPL_TX_SEC_PDU_CIPHERSTART_V((c_start)) | \ CPL_TX_SEC_PDU_CIPHERSTOP_HI_V((c_stop_hi))) #define FILL_SEC_CPL_AUTHINSERT(c_stop_lo, a_start, a_stop, a_inst) \ htonl( \ CPL_TX_SEC_PDU_CIPHERSTOP_LO_V((c_stop_lo)) | \ CPL_TX_SEC_PDU_AUTHSTART_V((a_start)) | \ CPL_TX_SEC_PDU_AUTHSTOP_V((a_stop)) | \ CPL_TX_SEC_PDU_AUTHINSERT_V((a_inst))) #define FILL_SEC_CPL_SCMD0_SEQNO(ctrl, seq, cmode, amode, opad, size, nivs) \ htonl( \ SCMD_SEQ_NO_CTRL_V(0) | \ SCMD_STATUS_PRESENT_V(0) | \ SCMD_PROTO_VERSION_V(CHCR_SCMD_PROTO_VERSION_GENERIC) | \ SCMD_ENC_DEC_CTRL_V((ctrl)) | \ SCMD_CIPH_AUTH_SEQ_CTRL_V((seq)) | \ SCMD_CIPH_MODE_V((cmode)) | \ SCMD_AUTH_MODE_V((amode)) | \ SCMD_HMAC_CTRL_V((opad)) | \ SCMD_IV_SIZE_V((size)) | \ SCMD_NUM_IVS_V((nivs))) #define FILL_SEC_CPL_IVGEN_HDRLEN(last, more, ctx_in, mac, ivdrop, len) htonl( \ SCMD_ENB_DBGID_V(0) | \ SCMD_IV_GEN_CTRL_V(0) | \ SCMD_LAST_FRAG_V((last)) | \ SCMD_MORE_FRAGS_V((more)) | \ SCMD_TLS_COMPPDU_V(0) | \ SCMD_KEY_CTX_INLINE_V((ctx_in)) | \ SCMD_TLS_FRAG_ENABLE_V(0) | \ SCMD_MAC_ONLY_V((mac)) | \ SCMD_AADIVDROP_V((ivdrop)) | \ SCMD_HDR_LEN_V((len))) #define FILL_KEY_CTX_HDR(ck_size, mk_size, d_ck, opad, ctx_len) \ htonl(KEY_CONTEXT_VALID_V(1) | \ KEY_CONTEXT_CK_SIZE_V((ck_size)) | \ KEY_CONTEXT_MK_SIZE_V(mk_size) | \ KEY_CONTEXT_DUAL_CK_V((d_ck)) | \ KEY_CONTEXT_OPAD_PRESENT_V((opad)) | \ KEY_CONTEXT_SALT_PRESENT_V(1) | \ KEY_CONTEXT_CTX_LEN_V((ctx_len))) #define FILL_WR_OP_CCTX_SIZE(len, ctx_len) \ htonl( \ FW_CRYPTO_LOOKASIDE_WR_OPCODE_V( \ FW_CRYPTO_LOOKASIDE_WR) | \ FW_CRYPTO_LOOKASIDE_WR_COMPL_V(0) | \ FW_CRYPTO_LOOKASIDE_WR_IMM_LEN_V((len)) | \ FW_CRYPTO_LOOKASIDE_WR_CCTX_LOC_V(1) | \ FW_CRYPTO_LOOKASIDE_WR_CCTX_SIZE_V((ctx_len))) #define FILL_WR_RX_Q_ID(cid, qid, wr_iv) \ htonl( \ FW_CRYPTO_LOOKASIDE_WR_RX_CHID_V((cid)) | \ FW_CRYPTO_LOOKASIDE_WR_RX_Q_ID_V((qid)) | \ FW_CRYPTO_LOOKASIDE_WR_LCB_V(0) | \ FW_CRYPTO_LOOKASIDE_WR_IV_V((wr_iv))) #define FILL_ULPTX_CMD_DEST(cid) \ htonl(ULPTX_CMD_V(ULP_TX_PKT) | \ ULP_TXPKT_DEST_V(0) | \ ULP_TXPKT_DATAMODIFY_V(0) | \ ULP_TXPKT_CHANNELID_V((cid)) | \ ULP_TXPKT_RO_V(1) | \ ULP_TXPKT_FID_V(0)) #define KEYCTX_ALIGN_PAD(bs) ({unsigned int _bs = (bs);\ _bs == SHA1_DIGEST_SIZE ? 12 : 0; }) #define FILL_PLD_SIZE_HASH_SIZE(payload_sgl_len, sgl_lengths, total_frags) \ htonl(FW_CRYPTO_LOOKASIDE_WR_PLD_SIZE_V(payload_sgl_len ? \ sgl_lengths[total_frags] : 0) |\ FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE_V(0)) #define FILL_LEN_PKD(calc_tx_flits_ofld, skb) \ htonl(FW_CRYPTO_LOOKASIDE_WR_LEN16_V(DIV_ROUND_UP((\ calc_tx_flits_ofld(skb) * 8), 16))) #define FILL_CMD_MORE(immdatalen) htonl(ULPTX_CMD_V(ULP_TX_SC_IMM) |\ ULP_TX_SC_MORE_V((immdatalen) ? 0 : 1)) #define MAX_NK 8 #define CRYPTO_MAX_IMM_TX_PKT_LEN 256 struct algo_param { unsigned int auth_mode; unsigned int mk_size; unsigned int result_size; }; struct hash_wr_param { unsigned int opad_needed; unsigned int more; unsigned int last; struct algo_param alg_prm; unsigned int sg_len; unsigned int bfr_len; u64 scmd1; }; enum { AES_KEYLENGTH_128BIT = 128, AES_KEYLENGTH_192BIT = 192, AES_KEYLENGTH_256BIT = 256 }; enum { KEYLENGTH_3BYTES = 3, KEYLENGTH_4BYTES = 4, KEYLENGTH_6BYTES = 6, KEYLENGTH_8BYTES = 8 }; enum { NUMBER_OF_ROUNDS_10 = 10, NUMBER_OF_ROUNDS_12 = 12, NUMBER_OF_ROUNDS_14 = 14, }; /* * CCM defines values of 4, 6, 8, 10, 12, 14, and 16 octets, * where they indicate the size of the integrity check value (ICV) */ enum { AES_CCM_ICV_4 = 4, AES_CCM_ICV_6 = 6, AES_CCM_ICV_8 = 8, AES_CCM_ICV_10 = 10, AES_CCM_ICV_12 = 12, AES_CCM_ICV_14 = 14, AES_CCM_ICV_16 = 16 }; struct hash_op_params { unsigned char mk_size; unsigned char pad_align; unsigned char auth_mode; char hash_name[MAX_HASH_NAME]; unsigned short block_size; unsigned short word_size; unsigned short ipad_size; }; struct phys_sge_pairs { __be16 len[8]; __be64 addr[8]; }; struct phys_sge_parm { unsigned int nents; unsigned int obsize; unsigned short qid; unsigned char align; }; struct crypto_result { struct completion completion; int err; }; static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, }; static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = { SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, }; static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, }; static const u64 sha384_init[SHA512_DIGEST_SIZE / 8] = { SHA384_H0, SHA384_H1, SHA384_H2, SHA384_H3, SHA384_H4, SHA384_H5, SHA384_H6, SHA384_H7, }; static const u64 sha512_init[SHA512_DIGEST_SIZE / 8] = { SHA512_H0, SHA512_H1, SHA512_H2, SHA512_H3, SHA512_H4, SHA512_H5, SHA512_H6, SHA512_H7, }; static inline void copy_hash_init_values(char *key, int digestsize) { u8 i; __be32 *dkey = (__be32 *)key; u64 *ldkey = (u64 *)key; __be64 *sha384 = (__be64 *)sha384_init; __be64 *sha512 = (__be64 *)sha512_init; switch (digestsize) { case SHA1_DIGEST_SIZE: for (i = 0; i < SHA1_INIT_STATE; i++) dkey[i] = cpu_to_be32(sha1_init[i]); break; case SHA224_DIGEST_SIZE: for (i = 0; i < SHA224_INIT_STATE; i++) dkey[i] = cpu_to_be32(sha224_init[i]); break; case SHA256_DIGEST_SIZE: for (i = 0; i < SHA256_INIT_STATE; i++) dkey[i] = cpu_to_be32(sha256_init[i]); break; case SHA384_DIGEST_SIZE: for (i = 0; i < SHA384_INIT_STATE; i++) ldkey[i] = be64_to_cpu(sha384[i]); break; case SHA512_DIGEST_SIZE: for (i = 0; i < SHA512_INIT_STATE; i++) ldkey[i] = be64_to_cpu(sha512[i]); break; } } static const u8 sgl_lengths[20] = { 0, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15 }; /* Number of len fields(8) * size of one addr field */ #define PHYSDSGL_MAX_LEN_SIZE 16 static inline u16 get_space_for_phys_dsgl(unsigned int sgl_entr) { /* len field size + addr field size */ return ((sgl_entr >> 3) + ((sgl_entr % 8) ? 1 : 0)) * PHYSDSGL_MAX_LEN_SIZE + (sgl_entr << 3) + ((sgl_entr % 2 ? 1 : 0) << 3); } /* The AES s-transform matrix (s-box). */ static const u8 aes_sbox[256] = { 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22 }; static inline u32 aes_ks_subword(const u32 w) { u8 bytes[4]; *(u32 *)(&bytes[0]) = w; bytes[0] = aes_sbox[bytes[0]]; bytes[1] = aes_sbox[bytes[1]]; bytes[2] = aes_sbox[bytes[2]]; bytes[3] = aes_sbox[bytes[3]]; return *(u32 *)(&bytes[0]); } static u32 round_constant[11] = { 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, 0x6C000000 }; #endif /* __CHCR_ALGO_H__ */