/* * QLogic qlge NIC HBA Driver * Copyright (c) 2003-2008 QLogic Corporation * See LICENSE.qlge for copyright and licensing details. * Author: Linux qlge network device driver by * Ron Mercer */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qlge.h" char qlge_driver_name[] = DRV_NAME; const char qlge_driver_version[] = DRV_VERSION; MODULE_AUTHOR("Ron Mercer "); MODULE_DESCRIPTION(DRV_STRING " "); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | /* NETIF_MSG_TIMER | */ NETIF_MSG_IFDOWN | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR | /* NETIF_MSG_TX_QUEUED | */ /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */ /* NETIF_MSG_PKTDATA | */ NETIF_MSG_HW | NETIF_MSG_WOL | 0; static int debug = 0x00007fff; /* defaults above */ module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); #define MSIX_IRQ 0 #define MSI_IRQ 1 #define LEG_IRQ 2 static int irq_type = MSIX_IRQ; module_param(irq_type, int, MSIX_IRQ); MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy."); static struct pci_device_id qlge_pci_tbl[] __devinitdata = { {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)}, {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)}, /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, qlge_pci_tbl); /* This hardware semaphore causes exclusive access to * resources shared between the NIC driver, MPI firmware, * FCOE firmware and the FC driver. */ static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask) { u32 sem_bits = 0; switch (sem_mask) { case SEM_XGMAC0_MASK: sem_bits = SEM_SET << SEM_XGMAC0_SHIFT; break; case SEM_XGMAC1_MASK: sem_bits = SEM_SET << SEM_XGMAC1_SHIFT; break; case SEM_ICB_MASK: sem_bits = SEM_SET << SEM_ICB_SHIFT; break; case SEM_MAC_ADDR_MASK: sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT; break; case SEM_FLASH_MASK: sem_bits = SEM_SET << SEM_FLASH_SHIFT; break; case SEM_PROBE_MASK: sem_bits = SEM_SET << SEM_PROBE_SHIFT; break; case SEM_RT_IDX_MASK: sem_bits = SEM_SET << SEM_RT_IDX_SHIFT; break; case SEM_PROC_REG_MASK: sem_bits = SEM_SET << SEM_PROC_REG_SHIFT; break; default: QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n"); return -EINVAL; } ql_write32(qdev, SEM, sem_bits | sem_mask); return !(ql_read32(qdev, SEM) & sem_bits); } int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask) { unsigned int wait_count = 30; do { if (!ql_sem_trylock(qdev, sem_mask)) return 0; udelay(100); } while (--wait_count); return -ETIMEDOUT; } void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask) { ql_write32(qdev, SEM, sem_mask); ql_read32(qdev, SEM); /* flush */ } /* This function waits for a specific bit to come ready * in a given register. It is used mostly by the initialize * process, but is also used in kernel thread API such as * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid. */ int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit) { u32 temp; int count = UDELAY_COUNT; while (count) { temp = ql_read32(qdev, reg); /* check for errors */ if (temp & err_bit) { QPRINTK(qdev, PROBE, ALERT, "register 0x%.08x access error, value = 0x%.08x!.\n", reg, temp); return -EIO; } else if (temp & bit) return 0; udelay(UDELAY_DELAY); count--; } QPRINTK(qdev, PROBE, ALERT, "Timed out waiting for reg %x to come ready.\n", reg); return -ETIMEDOUT; } /* The CFG register is used to download TX and RX control blocks * to the chip. This function waits for an operation to complete. */ static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit) { int count = UDELAY_COUNT; u32 temp; while (count) { temp = ql_read32(qdev, CFG); if (temp & CFG_LE) return -EIO; if (!(temp & bit)) return 0; udelay(UDELAY_DELAY); count--; } return -ETIMEDOUT; } /* Used to issue init control blocks to hw. Maps control block, * sets address, triggers download, waits for completion. */ int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit, u16 q_id) { u64 map; int status = 0; int direction; u32 mask; u32 value; direction = (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE; map = pci_map_single(qdev->pdev, ptr, size, direction); if (pci_dma_mapping_error(qdev->pdev, map)) { QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n"); return -ENOMEM; } status = ql_wait_cfg(qdev, bit); if (status) { QPRINTK(qdev, IFUP, ERR, "Timed out waiting for CFG to come ready.\n"); goto exit; } status = ql_sem_spinlock(qdev, SEM_ICB_MASK); if (status) goto exit; ql_write32(qdev, ICB_L, (u32) map); ql_write32(qdev, ICB_H, (u32) (map >> 32)); ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */ mask = CFG_Q_MASK | (bit << 16); value = bit | (q_id << CFG_Q_SHIFT); ql_write32(qdev, CFG, (mask | value)); /* * Wait for the bit to clear after signaling hw. */ status = ql_wait_cfg(qdev, bit); exit: pci_unmap_single(qdev->pdev, map, size, direction); return status; } /* Get a specific MAC address from the CAM. Used for debug and reg dump. */ int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index, u32 *value) { u32 offset = 0; int status; switch (type) { case MAC_ADDR_TYPE_MULTI_MAC: case MAC_ADDR_TYPE_CAM_MAC: { status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MR, 0); if (status) goto exit; *value++ = ql_read32(qdev, MAC_ADDR_DATA); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MR, 0); if (status) goto exit; *value++ = ql_read32(qdev, MAC_ADDR_DATA); if (type == MAC_ADDR_TYPE_CAM_MAC) { status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MR, 0); if (status) goto exit; *value++ = ql_read32(qdev, MAC_ADDR_DATA); } break; } case MAC_ADDR_TYPE_VLAN: case MAC_ADDR_TYPE_MULTI_FLTR: default: QPRINTK(qdev, IFUP, CRIT, "Address type %d not yet supported.\n", type); status = -EPERM; } exit: return status; } /* Set up a MAC, multicast or VLAN address for the * inbound frame matching. */ static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type, u16 index) { u32 offset = 0; int status = 0; switch (type) { case MAC_ADDR_TYPE_MULTI_MAC: case MAC_ADDR_TYPE_CAM_MAC: { u32 cam_output; u32 upper = (addr[0] << 8) | addr[1]; u32 lower = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | (addr[5]); QPRINTK(qdev, IFUP, DEBUG, "Adding %s address %pM" " at index %d in the CAM.\n", ((type == MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" : "UNICAST"), addr, index); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type); /* type */ ql_write32(qdev, MAC_ADDR_DATA, lower); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type); /* type */ ql_write32(qdev, MAC_ADDR_DATA, upper); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type); /* type */ /* This field should also include the queue id and possibly the function id. Right now we hardcode the route field to NIC core. */ if (type == MAC_ADDR_TYPE_CAM_MAC) { cam_output = (CAM_OUT_ROUTE_NIC | (qdev-> func << CAM_OUT_FUNC_SHIFT) | (qdev-> rss_ring_first_cq_id << CAM_OUT_CQ_ID_SHIFT)); if (qdev->vlgrp) cam_output |= CAM_OUT_RV; /* route to NIC core */ ql_write32(qdev, MAC_ADDR_DATA, cam_output); } break; } case MAC_ADDR_TYPE_VLAN: { u32 enable_bit = *((u32 *) &addr[0]); /* For VLAN, the addr actually holds a bit that * either enables or disables the vlan id we are * addressing. It's either MAC_ADDR_E on or off. * That's bit-27 we're talking about. */ QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n", (enable_bit ? "Adding" : "Removing"), index, (enable_bit ? "to" : "from")); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type | /* type */ enable_bit); /* enable/disable */ break; } case MAC_ADDR_TYPE_MULTI_FLTR: default: QPRINTK(qdev, IFUP, CRIT, "Address type %d not yet supported.\n", type); status = -EPERM; } exit: return status; } /* Get a specific frame routing value from the CAM. * Used for debug and reg dump. */ int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value) { int status = 0; status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); if (status) goto exit; ql_write32(qdev, RT_IDX, RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT)); status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0); if (status) goto exit; *value = ql_read32(qdev, RT_DATA); exit: return status; } /* The NIC function for this chip has 16 routing indexes. Each one can be used * to route different frame types to various inbound queues. We send broadcast/ * multicast/error frames to the default queue for slow handling, * and CAM hit/RSS frames to the fast handling queues. */ static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask, int enable) { int status = -EINVAL; /* Return error if no mask match. */ u32 value = 0; QPRINTK(qdev, IFUP, DEBUG, "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n", (enable ? "Adding" : "Removing"), ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""), ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""), ((index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""), ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""), ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""), ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""), ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""), ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""), ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""), ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""), ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""), ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""), ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""), ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""), ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""), ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""), (enable ? "to" : "from")); switch (mask) { case RT_IDX_CAM_HIT: { value = RT_IDX_DST_CAM_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_VALID: /* Promiscuous Mode frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_MCAST: /* Pass up All Multicast frames. */ { value = RT_IDX_DST_CAM_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */ { value = RT_IDX_DST_CAM_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */ { value = RT_IDX_DST_RSS | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case 0: /* Clear the E-bit on an entry. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (index << RT_IDX_IDX_SHIFT);/* index */ break; } default: QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n", mask); status = -EPERM; goto exit; } if (value) { status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); if (status) goto exit; value |= (enable ? RT_IDX_E : 0); ql_write32(qdev, RT_IDX, value); ql_write32(qdev, RT_DATA, enable ? mask : 0); } exit: return status; } static void ql_enable_interrupts(struct ql_adapter *qdev) { ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI); } static void ql_disable_interrupts(struct ql_adapter *qdev) { ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16)); } /* If we're running with multiple MSI-X vectors then we enable on the fly. * Otherwise, we may have multiple outstanding workers and don't want to * enable until the last one finishes. In this case, the irq_cnt gets * incremented everytime we queue a worker and decremented everytime * a worker finishes. Once it hits zero we enable the interrupt. */ u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr) { u32 var = 0; unsigned long hw_flags = 0; struct intr_context *ctx = qdev->intr_context + intr; if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) { /* Always enable if we're MSIX multi interrupts and * it's not the default (zeroeth) interrupt. */ ql_write32(qdev, INTR_EN, ctx->intr_en_mask); var = ql_read32(qdev, STS); return var; } spin_lock_irqsave(&qdev->hw_lock, hw_flags); if (atomic_dec_and_test(&ctx->irq_cnt)) { ql_write32(qdev, INTR_EN, ctx->intr_en_mask); var = ql_read32(qdev, STS); } spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return var; } static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr) { u32 var = 0; struct intr_context *ctx; /* HW disables for us if we're MSIX multi interrupts and * it's not the default (zeroeth) interrupt. */ if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) return 0; ctx = qdev->intr_context + intr; spin_lock(&qdev->hw_lock); if (!atomic_read(&ctx->irq_cnt)) { ql_write32(qdev, INTR_EN, ctx->intr_dis_mask); var = ql_read32(qdev, STS); } atomic_inc(&ctx->irq_cnt); spin_unlock(&qdev->hw_lock); return var; } static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev) { int i; for (i = 0; i < qdev->intr_count; i++) { /* The enable call does a atomic_dec_and_test * and enables only if the result is zero. * So we precharge it here. */ if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) || i == 0)) atomic_set(&qdev->intr_context[i].irq_cnt, 1); ql_enable_completion_interrupt(qdev, i); } } static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str) { int status, i; u16 csum = 0; __le16 *flash = (__le16 *)&qdev->flash; status = strncmp((char *)&qdev->flash, str, 4); if (status) { QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n"); return status; } for (i = 0; i < size; i++) csum += le16_to_cpu(*flash++); if (csum) QPRINTK(qdev, IFUP, ERR, "Invalid flash checksum, csum = 0x%.04x.\n", csum); return csum; } static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data) { int status = 0; /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); if (status) goto exit; /* set up for reg read */ ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset); /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); if (status) goto exit; /* This data is stored on flash as an array of * __le32. Since ql_read32() returns cpu endian * we need to swap it back. */ *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA)); exit: return status; } static int ql_get_8000_flash_params(struct ql_adapter *qdev) { u32 i, size; int status; __le32 *p = (__le32 *)&qdev->flash; u32 offset; /* Get flash offset for function and adjust * for dword access. */ if (!qdev->func) offset = FUNC0_FLASH_OFFSET / sizeof(u32); else offset = FUNC1_FLASH_OFFSET / sizeof(u32); if (ql_sem_spinlock(qdev, SEM_FLASH_MASK)) return -ETIMEDOUT; size = sizeof(struct flash_params_8000) / sizeof(u32); for (i = 0; i < size; i++, p++) { status = ql_read_flash_word(qdev, i+offset, p); if (status) { QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n"); goto exit; } } status = ql_validate_flash(qdev, sizeof(struct flash_params_8000) / sizeof(u16), "8000"); if (status) { QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n"); status = -EINVAL; goto exit; } if (!is_valid_ether_addr(qdev->flash.flash_params_8000.mac_addr)) { QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n"); status = -EINVAL; goto exit; } memcpy(qdev->ndev->dev_addr, qdev->flash.flash_params_8000.mac_addr, qdev->ndev->addr_len); exit: ql_sem_unlock(qdev, SEM_FLASH_MASK); return status; } static int ql_get_8012_flash_params(struct ql_adapter *qdev) { int i; int status; __le32 *p = (__le32 *)&qdev->flash; u32 offset = 0; u32 size = sizeof(struct flash_params_8012) / sizeof(u32); /* Second function's parameters follow the first * function's. */ if (qdev->func) offset = size; if (ql_sem_spinlock(qdev, SEM_FLASH_MASK)) return -ETIMEDOUT; for (i = 0; i < size; i++, p++) { status = ql_read_flash_word(qdev, i+offset, p); if (status) { QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n"); goto exit; } } status = ql_validate_flash(qdev, sizeof(struct flash_params_8012) / sizeof(u16), "8012"); if (status) { QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n"); status = -EINVAL; goto exit; } if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) { status = -EINVAL; goto exit; } memcpy(qdev->ndev->dev_addr, qdev->flash.flash_params_8012.mac_addr, qdev->ndev->addr_len); exit: ql_sem_unlock(qdev, SEM_FLASH_MASK); return status; } /* xgmac register are located behind the xgmac_addr and xgmac_data * register pair. Each read/write requires us to wait for the ready * bit before reading/writing the data. */ static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data) { int status; /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); if (status) return status; /* write the data to the data reg */ ql_write32(qdev, XGMAC_DATA, data); /* trigger the write */ ql_write32(qdev, XGMAC_ADDR, reg); return status; } /* xgmac register are located behind the xgmac_addr and xgmac_data * register pair. Each read/write requires us to wait for the ready * bit before reading/writing the data. */ int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data) { int status = 0; /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); if (status) goto exit; /* set up for reg read */ ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R); /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); if (status) goto exit; /* get the data */ *data = ql_read32(qdev, XGMAC_DATA); exit: return status; } /* This is used for reading the 64-bit statistics regs. */ int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data) { int status = 0; u32 hi = 0; u32 lo = 0; status = ql_read_xgmac_reg(qdev, reg, &lo); if (status) goto exit; status = ql_read_xgmac_reg(qdev, reg + 4, &hi); if (status) goto exit; *data = (u64) lo | ((u64) hi << 32); exit: return status; } static int ql_8000_port_initialize(struct ql_adapter *qdev) { int status; status = ql_mb_get_fw_state(qdev); if (status) goto exit; /* Wake up a worker to get/set the TX/RX frame sizes. */ queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0); exit: return status; } /* Take the MAC Core out of reset. * Enable statistics counting. * Take the transmitter/receiver out of reset. * This functionality may be done in the MPI firmware at a * later date. */ static int ql_8012_port_initialize(struct ql_adapter *qdev) { int status = 0; u32 data; if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) { /* Another function has the semaphore, so * wait for the port init bit to come ready. */ QPRINTK(qdev, LINK, INFO, "Another function has the semaphore, so wait for the port init bit to come ready.\n"); status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0); if (status) { QPRINTK(qdev, LINK, CRIT, "Port initialize timed out.\n"); } return status; } QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n"); /* Set the core reset. */ status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data); if (status) goto end; data |= GLOBAL_CFG_RESET; status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); if (status) goto end; /* Clear the core reset and turn on jumbo for receiver. */ data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */ data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */ data |= GLOBAL_CFG_TX_STAT_EN; data |= GLOBAL_CFG_RX_STAT_EN; status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); if (status) goto end; /* Enable transmitter, and clear it's reset. */ status = ql_read_xgmac_reg(qdev, TX_CFG, &data); if (status) goto end; data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */ data |= TX_CFG_EN; /* Enable the transmitter. */ status = ql_write_xgmac_reg(qdev, TX_CFG, data); if (status) goto end; /* Enable receiver and clear it's reset. */ status = ql_read_xgmac_reg(qdev, RX_CFG, &data); if (status) goto end; data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */ data |= RX_CFG_EN; /* Enable the receiver. */ status = ql_write_xgmac_reg(qdev, RX_CFG, data); if (status) goto end; /* Turn on jumbo. */ status = ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16)); if (status) goto end; status = ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580); if (status) goto end; /* Signal to the world that the port is enabled. */ ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init)); end: ql_sem_unlock(qdev, qdev->xg_sem_mask); return status; } /* Get the next large buffer. */ static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring) { struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx]; rx_ring->lbq_curr_idx++; if (rx_ring->lbq_curr_idx == rx_ring->lbq_len) rx_ring->lbq_curr_idx = 0; rx_ring->lbq_free_cnt++; return lbq_desc; } /* Get the next small buffer. */ static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring) { struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx]; rx_ring->sbq_curr_idx++; if (rx_ring->sbq_curr_idx == rx_ring->sbq_len) rx_ring->sbq_curr_idx = 0; rx_ring->sbq_free_cnt++; return sbq_desc; } /* Update an rx ring index. */ static void ql_update_cq(struct rx_ring *rx_ring) { rx_ring->cnsmr_idx++; rx_ring->curr_entry++; if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) { rx_ring->cnsmr_idx = 0; rx_ring->curr_entry = rx_ring->cq_base; } } static void ql_write_cq_idx(struct rx_ring *rx_ring) { ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg); } /* Process (refill) a large buffer queue. */ static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) { u32 clean_idx = rx_ring->lbq_clean_idx; u32 start_idx = clean_idx; struct bq_desc *lbq_desc; u64 map; int i; while (rx_ring->lbq_free_cnt > 16) { for (i = 0; i < 16; i++) { QPRINTK(qdev, RX_STATUS, DEBUG, "lbq: try cleaning clean_idx = %d.\n", clean_idx); lbq_desc = &rx_ring->lbq[clean_idx]; if (lbq_desc->p.lbq_page == NULL) { QPRINTK(qdev, RX_STATUS, DEBUG, "lbq: getting new page for index %d.\n", lbq_desc->index); lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC); if (lbq_desc->p.lbq_page == NULL) { rx_ring->lbq_clean_idx = clean_idx; QPRINTK(qdev, RX_STATUS, ERR, "Couldn't get a page.\n"); return; } map = pci_map_page(qdev->pdev, lbq_desc->p.lbq_page, 0, PAGE_SIZE, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(qdev->pdev, map)) { rx_ring->lbq_clean_idx = clean_idx; put_page(lbq_desc->p.lbq_page); lbq_desc->p.lbq_page = NULL; QPRINTK(qdev, RX_STATUS, ERR, "PCI mapping failed.\n"); return; } pci_unmap_addr_set(lbq_desc, mapaddr, map); pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE); *lbq_desc->addr = cpu_to_le64(map); } clean_idx++; if (clean_idx == rx_ring->lbq_len) clean_idx = 0; } rx_ring->lbq_clean_idx = clean_idx; rx_ring->lbq_prod_idx += 16; if (rx_ring->lbq_prod_idx == rx_ring->lbq_len) rx_ring->lbq_prod_idx = 0; rx_ring->lbq_free_cnt -= 16; } if (start_idx != clean_idx) { QPRINTK(qdev, RX_STATUS, DEBUG, "lbq: updating prod idx = %d.\n", rx_ring->lbq_prod_idx); ql_write_db_reg(rx_ring->lbq_prod_idx, rx_ring->lbq_prod_idx_db_reg); } } /* Process (refill) a small buffer queue. */ static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) { u32 clean_idx = rx_ring->sbq_clean_idx; u32 start_idx = clean_idx; struct bq_desc *sbq_desc; u64 map; int i; while (rx_ring->sbq_free_cnt > 16) { for (i = 0; i < 16; i++) { sbq_desc = &rx_ring->sbq[clean_idx]; QPRINTK(qdev, RX_STATUS, DEBUG, "sbq: try cleaning clean_idx = %d.\n", clean_idx); if (sbq_desc->p.skb == NULL) { QPRINTK(qdev, RX_STATUS, DEBUG, "sbq: getting new skb for index %d.\n", sbq_desc->index); sbq_desc->p.skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size); if (sbq_desc->p.skb == NULL) { QPRINTK(qdev, PROBE, ERR, "Couldn't get an skb.\n"); rx_ring->sbq_clean_idx = clean_idx; return; } skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD); map = pci_map_single(qdev->pdev, sbq_desc->p.skb->data, rx_ring->sbq_buf_size / 2, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(qdev->pdev, map)) { QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n"); rx_ring->sbq_clean_idx = clean_idx; dev_kfree_skb_any(sbq_desc->p.skb); sbq_desc->p.skb = NULL; return; } pci_unmap_addr_set(sbq_desc, mapaddr, map); pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2); *sbq_desc->addr = cpu_to_le64(map); } clean_idx++; if (clean_idx == rx_ring->sbq_len) clean_idx = 0; } rx_ring->sbq_clean_idx = clean_idx; rx_ring->sbq_prod_idx += 16; if (rx_ring->sbq_prod_idx == rx_ring->sbq_len) rx_ring->sbq_prod_idx = 0; rx_ring->sbq_free_cnt -= 16; } if (start_idx != clean_idx) { QPRINTK(qdev, RX_STATUS, DEBUG, "sbq: updating prod idx = %d.\n", rx_ring->sbq_prod_idx); ql_write_db_reg(rx_ring->sbq_prod_idx, rx_ring->sbq_prod_idx_db_reg); } } static void ql_update_buffer_queues(struct ql_adapter *qdev, struct rx_ring *rx_ring) { ql_update_sbq(qdev, rx_ring); ql_update_lbq(qdev, rx_ring); } /* Unmaps tx buffers. Can be called from send() if a pci mapping * fails at some stage, or from the interrupt when a tx completes. */ static void ql_unmap_send(struct ql_adapter *qdev, struct tx_ring_desc *tx_ring_desc, int mapped) { int i; for (i = 0; i < mapped; i++) { if (i == 0 || (i == 7 && mapped > 7)) { /* * Unmap the skb->data area, or the * external sglist (AKA the Outbound * Address List (OAL)). * If its the zeroeth element, then it's * the skb->data area. If it's the 7th * element and there is more than 6 frags, * then its an OAL. */ if (i == 7) { QPRINTK(qdev, TX_DONE, DEBUG, "unmapping OAL area.\n"); } pci_unmap_single(qdev->pdev, pci_unmap_addr(&tx_ring_desc->map[i], mapaddr), pci_unmap_len(&tx_ring_desc->map[i], maplen), PCI_DMA_TODEVICE); } else { QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n", i); pci_unmap_page(qdev->pdev, pci_unmap_addr(&tx_ring_desc->map[i], mapaddr), pci_unmap_len(&tx_ring_desc->map[i], maplen), PCI_DMA_TODEVICE); } } } /* Map the buffers for this transmit. This will return * NETDEV_TX_BUSY or NETDEV_TX_OK based on success. */ static int ql_map_send(struct ql_adapter *qdev, struct ob_mac_iocb_req *mac_iocb_ptr, struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc) { int len = skb_headlen(skb); dma_addr_t map; int frag_idx, err, map_idx = 0; struct tx_buf_desc *tbd = mac_iocb_ptr->tbd; int frag_cnt = skb_shinfo(skb)->nr_frags; if (frag_cnt) { QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt); } /* * Map the skb buffer first. */ map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE); err = pci_dma_mapping_error(qdev->pdev, map); if (err) { QPRINTK(qdev, TX_QUEUED, ERR, "PCI mapping failed with error: %d\n", err); return NETDEV_TX_BUSY; } tbd->len = cpu_to_le32(len); tbd->addr = cpu_to_le64(map); pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len); map_idx++; /* * This loop fills the remainder of the 8 address descriptors * in the IOCB. If there are more than 7 fragments, then the * eighth address desc will point to an external list (OAL). * When this happens, the remainder of the frags will be stored * in this list. */ for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx]; tbd++; if (frag_idx == 6 && frag_cnt > 7) { /* Let's tack on an sglist. * Our control block will now * look like this: * iocb->seg[0] = skb->data * iocb->seg[1] = frag[0] * iocb->seg[2] = frag[1] * iocb->seg[3] = frag[2] * iocb->seg[4] = frag[3] * iocb->seg[5] = frag[4] * iocb->seg[6] = frag[5] * iocb->seg[7] = ptr to OAL (external sglist) * oal->seg[0] = frag[6] * oal->seg[1] = frag[7] * oal->seg[2] = frag[8] * oal->seg[3] = frag[9] * oal->seg[4] = frag[10] * etc... */ /* Tack on the OAL in the eighth segment of IOCB. */ map = pci_map_single(qdev->pdev, &tx_ring_desc->oal, sizeof(struct oal), PCI_DMA_TODEVICE); err = pci_dma_mapping_error(qdev->pdev, map); if (err) { QPRINTK(qdev, TX_QUEUED, ERR, "PCI mapping outbound address list with error: %d\n", err); goto map_error; } tbd->addr = cpu_to_le64(map); /* * The length is the number of fragments * that remain to be mapped times the length * of our sglist (OAL). */ tbd->len = cpu_to_le32((sizeof(struct tx_buf_desc) * (frag_cnt - frag_idx)) | TX_DESC_C); pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, sizeof(struct oal)); tbd = (struct tx_buf_desc *)&tx_ring_desc->oal; map_idx++; } map = pci_map_page(qdev->pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); err = pci_dma_mapping_error(qdev->pdev, map); if (err) { QPRINTK(qdev, TX_QUEUED, ERR, "PCI mapping frags failed with error: %d.\n", err); goto map_error; } tbd->addr = cpu_to_le64(map); tbd->len = cpu_to_le32(frag->size); pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, frag->size); } /* Save the number of segments we've mapped. */ tx_ring_desc->map_cnt = map_idx; /* Terminate the last segment. */ tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E); return NETDEV_TX_OK; map_error: /* * If the first frag mapping failed, then i will be zero. * This causes the unmap of the skb->data area. Otherwise * we pass in the number of frags that mapped successfully * so they can be umapped. */ ql_unmap_send(qdev, tx_ring_desc, map_idx); return NETDEV_TX_BUSY; } static void ql_realign_skb(struct sk_buff *skb, int len) { void *temp_addr = skb->data; /* Undo the skb_reserve(skb,32) we did before * giving to hardware, and realign data on * a 2-byte boundary. */ skb->data -= QLGE_SB_PAD - NET_IP_ALIGN; skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN; skb_copy_to_linear_data(skb, temp_addr, (unsigned int)len); } /* * This function builds an skb for the given inbound * completion. It will be rewritten for readability in the near * future, but for not it works well. */ static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev, struct rx_ring *rx_ring, struct ib_mac_iocb_rsp *ib_mac_rsp) { struct bq_desc *lbq_desc; struct bq_desc *sbq_desc; struct sk_buff *skb = NULL; u32 length = le32_to_cpu(ib_mac_rsp->data_len); u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len); /* * Handle the header buffer if present. */ if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV && ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len); /* * Headers fit nicely into a small buffer. */ sbq_desc = ql_get_curr_sbuf(rx_ring); pci_unmap_single(qdev->pdev, pci_unmap_addr(sbq_desc, mapaddr), pci_unmap_len(sbq_desc, maplen), PCI_DMA_FROMDEVICE); skb = sbq_desc->p.skb; ql_realign_skb(skb, hdr_len); skb_put(skb, hdr_len); sbq_desc->p.skb = NULL; } /* * Handle the data buffer(s). */ if (unlikely(!length)) { /* Is there data too? */ QPRINTK(qdev, RX_STATUS, DEBUG, "No Data buffer in this packet.\n"); return skb; } if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) { if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { QPRINTK(qdev, RX_STATUS, DEBUG, "Headers in small, data of %d bytes in small, combine them.\n", length); /* * Data is less than small buffer size so it's * stuffed in a small buffer. * For this case we append the data * from the "data" small buffer to the "header" small * buffer. */ sbq_desc = ql_get_curr_sbuf(rx_ring); pci_dma_sync_single_for_cpu(qdev->pdev, pci_unmap_addr (sbq_desc, mapaddr), pci_unmap_len (sbq_desc, maplen), PCI_DMA_FROMDEVICE); memcpy(skb_put(skb, length), sbq_desc->p.skb->data, length); pci_dma_sync_single_for_device(qdev->pdev, pci_unmap_addr (sbq_desc, mapaddr), pci_unmap_len (sbq_desc, maplen), PCI_DMA_FROMDEVICE); } else { QPRINTK(qdev, RX_STATUS, DEBUG, "%d bytes in a single small buffer.\n", length); sbq_desc = ql_get_curr_sbuf(rx_ring); skb = sbq_desc->p.skb; ql_realign_skb(skb, length); skb_put(skb, length); pci_unmap_single(qdev->pdev, pci_unmap_addr(sbq_desc, mapaddr), pci_unmap_len(sbq_desc, maplen), PCI_DMA_FROMDEVICE); sbq_desc->p.skb = NULL; } } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) { if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { QPRINTK(qdev, RX_STATUS, DEBUG, "Header in small, %d bytes in large. Chain large to small!\n", length); /* * The data is in a single large buffer. We * chain it to the header buffer's skb and let * it rip. */ lbq_desc = ql_get_curr_lbuf(rx_ring); pci_unmap_page(qdev->pdev, pci_unmap_addr(lbq_desc, mapaddr), pci_unmap_len(lbq_desc, maplen), PCI_DMA_FROMDEVICE); QPRINTK(qdev, RX_STATUS, DEBUG, "Chaining page to skb.\n"); skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page, 0, length); skb->len += length; skb->data_len += length; skb->truesize += length; lbq_desc->p.lbq_page = NULL; } else { /* * The headers and data are in a single large buffer. We * copy it to a new skb and let it go. This can happen with * jumbo mtu on a non-TCP/UDP frame. */ lbq_desc = ql_get_curr_lbuf(rx_ring); skb = netdev_alloc_skb(qdev->ndev, length); if (skb == NULL) { QPRINTK(qdev, PROBE, DEBUG, "No skb available, drop the packet.\n"); return NULL; } pci_unmap_page(qdev->pdev, pci_unmap_addr(lbq_desc, mapaddr), pci_unmap_len(lbq_desc, maplen), PCI_DMA_FROMDEVICE); skb_reserve(skb, NET_IP_ALIGN); QPRINTK(qdev, RX_STATUS, DEBUG, "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length); skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page, 0, length); skb->len += length; skb->data_len += length; skb->truesize += length; length -= length; lbq_desc->p.lbq_page = NULL; __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? VLAN_ETH_HLEN : ETH_HLEN); } } else { /* * The data is in a chain of large buffers * pointed to by a small buffer. We loop * thru and chain them to the our small header * buffer's skb. * frags: There are 18 max frags and our small * buffer will hold 32 of them. The thing is, * we'll use 3 max for our 9000 byte jumbo * frames. If the MTU goes up we could * eventually be in trouble. */ int size, offset, i = 0; __le64 *bq, bq_array[8]; sbq_desc = ql_get_curr_sbuf(rx_ring); pci_unmap_single(qdev->pdev, pci_unmap_addr(sbq_desc, mapaddr), pci_unmap_len(sbq_desc, maplen), PCI_DMA_FROMDEVICE); if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) { /* * This is an non TCP/UDP IP frame, so * the headers aren't split into a small * buffer. We have to use the small buffer * that contains our sg list as our skb to * send upstairs. Copy the sg list here to * a local buffer and use it to find the * pages to chain. */ QPRINTK(qdev, RX_STATUS, DEBUG, "%d bytes of headers & data in chain of large.\n", length); skb = sbq_desc->p.skb; bq = &bq_array[0]; memcpy(bq, skb->data, sizeof(bq_array)); sbq_desc->p.skb = NULL; skb_reserve(skb, NET_IP_ALIGN); } else { QPRINTK(qdev, RX_STATUS, DEBUG, "Headers in small, %d bytes of data in chain of large.\n", length); bq = (__le64 *)sbq_desc->p.skb->data; } while (length > 0) { lbq_desc = ql_get_curr_lbuf(rx_ring); pci_unmap_page(qdev->pdev, pci_unmap_addr(lbq_desc, mapaddr), pci_unmap_len(lbq_desc, maplen), PCI_DMA_FROMDEVICE); size = (length < PAGE_SIZE) ? length : PAGE_SIZE; offset = 0; QPRINTK(qdev, RX_STATUS, DEBUG, "Adding page %d to skb for %d bytes.\n", i, size); skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page, offset, size); skb->len += size; skb->data_len += size; skb->truesize += size; length -= size; lbq_desc->p.lbq_page = NULL; bq++; i++; } __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? VLAN_ETH_HLEN : ETH_HLEN); } return skb; } /* Process an inbound completion from an rx ring. */ static void ql_process_mac_rx_intr(struct ql_adapter *qdev, struct rx_ring *rx_ring, struct ib_mac_iocb_rsp *ib_mac_rsp) { struct net_device *ndev = qdev->ndev; struct sk_buff *skb = NULL; u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) & IB_MAC_IOCB_RSP_VLAN_MASK) QL_DUMP_IB_MAC_RSP(ib_mac_rsp); skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp); if (unlikely(!skb)) { QPRINTK(qdev, RX_STATUS, DEBUG, "No skb available, drop packet.\n"); return; } prefetch(skb->data); skb->dev = ndev; if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) { QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n", (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "", (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_REG ? "Registered" : "", (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); } if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) { QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n"); } skb->protocol = eth_type_trans(skb, ndev); skb->ip_summed = CHECKSUM_NONE; /* If rx checksum is on, and there are no * csum or frame errors. */ if (qdev->rx_csum && !(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) && !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { /* TCP frame. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { QPRINTK(qdev, RX_STATUS, DEBUG, "TCP checksum done!\n"); skb->ip_summed = CHECKSUM_UNNECESSARY; } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { /* Unfragmented ipv4 UDP frame. */ struct iphdr *iph = (struct iphdr *) skb->data; if (!(iph->frag_off & cpu_to_be16(IP_MF|IP_OFFSET))) { skb->ip_summed = CHECKSUM_UNNECESSARY; QPRINTK(qdev, RX_STATUS, DEBUG, "TCP checksum done!\n"); } } } qdev->stats.rx_packets++; qdev->stats.rx_bytes += skb->len; skb_record_rx_queue(skb, rx_ring->cq_id - qdev->rss_ring_first_cq_id); if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0)) vlan_gro_receive(&rx_ring->napi, qdev->vlgrp, vlan_id, skb); else napi_gro_receive(&rx_ring->napi, skb); } else { if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0)) vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id); else netif_receive_skb(skb); } } /* Process an outbound completion from an rx ring. */ static void ql_process_mac_tx_intr(struct ql_adapter *qdev, struct ob_mac_iocb_rsp *mac_rsp) { struct tx_ring *tx_ring; struct tx_ring_desc *tx_ring_desc; QL_DUMP_OB_MAC_RSP(mac_rsp); tx_ring = &qdev->tx_ring[mac_rsp->txq_idx]; tx_ring_desc = &tx_ring->q[mac_rsp->tid]; ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); qdev->stats.tx_bytes += tx_ring_desc->map_cnt; qdev->stats.tx_packets++; dev_kfree_skb(tx_ring_desc->skb); tx_ring_desc->skb = NULL; if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E | OB_MAC_IOCB_RSP_S | OB_MAC_IOCB_RSP_L | OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) { if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) { QPRINTK(qdev, TX_DONE, WARNING, "Total descriptor length did not match transfer length.\n"); } if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) { QPRINTK(qdev, TX_DONE, WARNING, "Frame too short to be legal, not sent.\n"); } if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) { QPRINTK(qdev, TX_DONE, WARNING, "Frame too long, but sent anyway.\n"); } if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) { QPRINTK(qdev, TX_DONE, WARNING, "PCI backplane error. Frame not sent.\n"); } } atomic_inc(&tx_ring->tx_count); } /* Fire up a handler to reset the MPI processor. */ void ql_queue_fw_error(struct ql_adapter *qdev) { netif_carrier_off(qdev->ndev); queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0); } void ql_queue_asic_error(struct ql_adapter *qdev) { netif_carrier_off(qdev->ndev); ql_disable_interrupts(qdev); /* Clear adapter up bit to signal the recovery * process that it shouldn't kill the reset worker * thread */ clear_bit(QL_ADAPTER_UP, &qdev->flags); queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0); } static void ql_process_chip_ae_intr(struct ql_adapter *qdev, struct ib_ae_iocb_rsp *ib_ae_rsp) { switch (ib_ae_rsp->event) { case MGMT_ERR_EVENT: QPRINTK(qdev, RX_ERR, ERR, "Management Processor Fatal Error.\n"); ql_queue_fw_error(qdev); return; case CAM_LOOKUP_ERR_EVENT: QPRINTK(qdev, LINK, ERR, "Multiple CAM hits lookup occurred.\n"); QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n"); ql_queue_asic_error(qdev); return; case SOFT_ECC_ERROR_EVENT: QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n"); ql_queue_asic_error(qdev); break; case PCI_ERR_ANON_BUF_RD: QPRINTK(qdev, RX_ERR, ERR, "PCI error occurred when reading anonymous buffers from rx_ring %d.\n", ib_ae_rsp->q_id); ql_queue_asic_error(qdev); break; default: QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n", ib_ae_rsp->event); ql_queue_asic_error(qdev); break; } } static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring) { struct ql_adapter *qdev = rx_ring->qdev; u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); struct ob_mac_iocb_rsp *net_rsp = NULL; int count = 0; struct tx_ring *tx_ring; /* While there are entries in the completion queue. */ while (prod != rx_ring->cnsmr_idx) { QPRINTK(qdev, RX_STATUS, DEBUG, "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id, prod, rx_ring->cnsmr_idx); net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry; rmb(); switch (net_rsp->opcode) { case OPCODE_OB_MAC_TSO_IOCB: case OPCODE_OB_MAC_IOCB: ql_process_mac_tx_intr(qdev, net_rsp); break; default: QPRINTK(qdev, RX_STATUS, DEBUG, "Hit default case, not handled! dropping the packet, opcode = %x.\n", net_rsp->opcode); } count++; ql_update_cq(rx_ring); prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); } ql_write_cq_idx(rx_ring); tx_ring = &qdev->tx_ring[net_rsp->txq_idx]; if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) && net_rsp != NULL) { if (atomic_read(&tx_ring->queue_stopped) && (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4))) /* * The queue got stopped because the tx_ring was full. * Wake it up, because it's now at least 25% empty. */ netif_wake_subqueue(qdev->ndev, tx_ring->wq_id); } return count; } static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget) { struct ql_adapter *qdev = rx_ring->qdev; u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); struct ql_net_rsp_iocb *net_rsp; int count = 0; /* While there are entries in the completion queue. */ while (prod != rx_ring->cnsmr_idx) { QPRINTK(qdev, RX_STATUS, DEBUG, "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id, prod, rx_ring->cnsmr_idx); net_rsp = rx_ring->curr_entry; rmb(); switch (net_rsp->opcode) { case OPCODE_IB_MAC_IOCB: ql_process_mac_rx_intr(qdev, rx_ring, (struct ib_mac_iocb_rsp *) net_rsp); break; case OPCODE_IB_AE_IOCB: ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *) net_rsp); break; default: { QPRINTK(qdev, RX_STATUS, DEBUG, "Hit default case, not handled! dropping the packet, opcode = %x.\n", net_rsp->opcode); } } count++; ql_update_cq(rx_ring); prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); if (count == budget) break; } ql_update_buffer_queues(qdev, rx_ring); ql_write_cq_idx(rx_ring); return count; } static int ql_napi_poll_msix(struct napi_struct *napi, int budget) { struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi); struct ql_adapter *qdev = rx_ring->qdev; int work_done = ql_clean_inbound_rx_ring(rx_ring, budget); QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id); if (work_done < budget) { napi_complete(napi); ql_enable_completion_interrupt(qdev, rx_ring->irq); } return work_done; } static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp) { struct ql_adapter *qdev = netdev_priv(ndev); qdev->vlgrp = grp; if (grp) { QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n"); ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK | NIC_RCV_CFG_VLAN_MATCH_AND_NON); } else { QPRINTK(qdev, IFUP, DEBUG, "Turning off VLAN in NIC_RCV_CFG.\n"); ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK); } } static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid) { struct ql_adapter *qdev = netdev_priv(ndev); u32 enable_bit = MAC_ADDR_E; int status; status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return; spin_lock(&qdev->hw_lock); if (ql_set_mac_addr_reg (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) { QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n"); } spin_unlock(&qdev->hw_lock); ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); } static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid) { struct ql_adapter *qdev = netdev_priv(ndev); u32 enable_bit = 0; int status; status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return; spin_lock(&qdev->hw_lock); if (ql_set_mac_addr_reg (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) { QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n"); } spin_unlock(&qdev->hw_lock); ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); } /* Worker thread to process a given rx_ring that is dedicated * to outbound completions. */ static void ql_tx_clean(struct work_struct *work) { struct rx_ring *rx_ring = container_of(work, struct rx_ring, rx_work.work); ql_clean_outbound_rx_ring(rx_ring); ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq); } /* Worker thread to process a given rx_ring that is dedicated * to inbound completions. */ static void ql_rx_clean(struct work_struct *work) { struct rx_ring *rx_ring = container_of(work, struct rx_ring, rx_work.work); ql_clean_inbound_rx_ring(rx_ring, 64); ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq); } /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */ static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id) { struct rx_ring *rx_ring = dev_id; queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue, &rx_ring->rx_work, 0); return IRQ_HANDLED; } /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */ static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id) { struct rx_ring *rx_ring = dev_id; napi_schedule(&rx_ring->napi); return IRQ_HANDLED; } /* This handles a fatal error, MPI activity, and the default * rx_ring in an MSI-X multiple vector environment. * In MSI/Legacy environment it also process the rest of * the rx_rings. */ static irqreturn_t qlge_isr(int irq, void *dev_id) { struct rx_ring *rx_ring = dev_id; struct ql_adapter *qdev = rx_ring->qdev; struct intr_context *intr_context = &qdev->intr_context[0]; u32 var; int i; int work_done = 0; spin_lock(&qdev->hw_lock); if (atomic_read(&qdev->intr_context[0].irq_cnt)) { QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n"); spin_unlock(&qdev->hw_lock); return IRQ_NONE; } spin_unlock(&qdev->hw_lock); var = ql_disable_completion_interrupt(qdev, intr_context->intr); /* * Check for fatal error. */ if (var & STS_FE) { ql_queue_asic_error(qdev); QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var); var = ql_read32(qdev, ERR_STS); QPRINTK(qdev, INTR, ERR, "Resetting chip. Error Status Register = 0x%x\n", var); return IRQ_HANDLED; } /* * Check MPI processor activity. */ if (var & STS_PI) { /* * We've got an async event or mailbox completion. * Handle it and clear the source of the interrupt. */ QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n"); ql_disable_completion_interrupt(qdev, intr_context->intr); queue_delayed_work_on(smp_processor_id(), qdev->workqueue, &qdev->mpi_work, 0); work_done++; } /* * Check the default queue and wake handler if active. */ rx_ring = &qdev->rx_ring[0]; if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) { QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n"); ql_disable_completion_interrupt(qdev, intr_context->intr); queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue, &rx_ring->rx_work, 0); work_done++; } if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) { /* * Start the DPC for each active queue. */ for (i = 1; i < qdev->rx_ring_count; i++) { rx_ring = &qdev->rx_ring[i]; if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) { QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[%d].\n", i); ql_disable_completion_interrupt(qdev, intr_context-> intr); if (i < qdev->rss_ring_first_cq_id) queue_delayed_work_on(rx_ring->cpu, qdev->q_workqueue, &rx_ring->rx_work, 0); else napi_schedule(&rx_ring->napi); work_done++; } } } ql_enable_completion_interrupt(qdev, intr_context->intr); return work_done ? IRQ_HANDLED : IRQ_NONE; } static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr) { if (skb_is_gso(skb)) { int err; if (skb_header_cloned(skb)) { err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); if (err) return err; } mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC; mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); mac_iocb_ptr->total_hdrs_len = cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb)); mac_iocb_ptr->net_trans_offset = cpu_to_le16(skb_network_offset(skb) | skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT); mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO; if (likely(skb->protocol == htons(ETH_P_IP))) { struct iphdr *iph = ip_hdr(skb); iph->check = 0; mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); } else if (skb->protocol == htons(ETH_P_IPV6)) { mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6; tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } return 1; } return 0; } static void ql_hw_csum_setup(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr) { int len; struct iphdr *iph = ip_hdr(skb); __sum16 *check; mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); mac_iocb_ptr->net_trans_offset = cpu_to_le16(skb_network_offset(skb) | skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT); mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; len = (ntohs(iph->tot_len) - (iph->ihl << 2)); if (likely(iph->protocol == IPPROTO_TCP)) { check = &(tcp_hdr(skb)->check); mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC; mac_iocb_ptr->total_hdrs_len = cpu_to_le16(skb_transport_offset(skb) + (tcp_hdr(skb)->doff << 2)); } else { check = &(udp_hdr(skb)->check); mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC; mac_iocb_ptr->total_hdrs_len = cpu_to_le16(skb_transport_offset(skb) + sizeof(struct udphdr)); } *check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, len, iph->protocol, 0); } static int qlge_send(struct sk_buff *skb, struct net_device *ndev) { struct tx_ring_desc *tx_ring_desc; struct ob_mac_iocb_req *mac_iocb_ptr; struct ql_adapter *qdev = netdev_priv(ndev); int tso; struct tx_ring *tx_ring; u32 tx_ring_idx = (u32) skb->queue_mapping; tx_ring = &qdev->tx_ring[tx_ring_idx]; if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) { QPRINTK(qdev, TX_QUEUED, INFO, "%s: shutting down tx queue %d du to lack of resources.\n", __func__, tx_ring_idx); netif_stop_subqueue(ndev, tx_ring->wq_id); atomic_inc(&tx_ring->queue_stopped); return NETDEV_TX_BUSY; } tx_ring_desc = &tx_ring->q[tx_ring->prod_idx]; mac_iocb_ptr = tx_ring_desc->queue_entry; memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr)); mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB; mac_iocb_ptr->tid = tx_ring_desc->index; /* We use the upper 32-bits to store the tx queue for this IO. * When we get the completion we can use it to establish the context. */ mac_iocb_ptr->txq_idx = tx_ring_idx; tx_ring_desc->skb = skb; mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len); if (qdev->vlgrp && vlan_tx_tag_present(skb)) { QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb)); mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V; mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb)); } tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); if (tso < 0) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) { ql_hw_csum_setup(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); } if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) { QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n"); return NETDEV_TX_BUSY; } QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr); tx_ring->prod_idx++; if (tx_ring->prod_idx == tx_ring->wq_len) tx_ring->prod_idx = 0; wmb(); ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg); ndev->trans_start = jiffies; QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n", tx_ring->prod_idx, skb->len); atomic_dec(&tx_ring->tx_count); return NETDEV_TX_OK; } static void ql_free_shadow_space(struct ql_adapter *qdev) { if (qdev->rx_ring_shadow_reg_area) { pci_free_consistent(qdev->pdev, PAGE_SIZE, qdev->rx_ring_shadow_reg_area, qdev->rx_ring_shadow_reg_dma); qdev->rx_ring_shadow_reg_area = NULL; } if (qdev->tx_ring_shadow_reg_area) { pci_free_consistent(qdev->pdev, PAGE_SIZE, qdev->tx_ring_shadow_reg_area, qdev->tx_ring_shadow_reg_dma); qdev->tx_ring_shadow_reg_area = NULL; } } static int ql_alloc_shadow_space(struct ql_adapter *qdev) { qdev->rx_ring_shadow_reg_area = pci_alloc_consistent(qdev->pdev, PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma); if (qdev->rx_ring_shadow_reg_area == NULL) { QPRINTK(qdev, IFUP, ERR, "Allocation of RX shadow space failed.\n"); return -ENOMEM; } memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE); qdev->tx_ring_shadow_reg_area = pci_alloc_consistent(qdev->pdev, PAGE_SIZE, &qdev->tx_ring_shadow_reg_dma); if (qdev->tx_ring_shadow_reg_area == NULL) { QPRINTK(qdev, IFUP, ERR, "Allocation of TX shadow space failed.\n"); goto err_wqp_sh_area; } memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE); return 0; err_wqp_sh_area: pci_free_consistent(qdev->pdev, PAGE_SIZE, qdev->rx_ring_shadow_reg_area, qdev->rx_ring_shadow_reg_dma); return -ENOMEM; } static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring) { struct tx_ring_desc *tx_ring_desc; int i; struct ob_mac_iocb_req *mac_iocb_ptr; mac_iocb_ptr = tx_ring->wq_base; tx_ring_desc = tx_ring->q; for (i = 0; i < tx_ring->wq_len; i++) { tx_ring_desc->index = i; tx_ring_desc->skb = NULL; tx_ring_desc->queue_entry = mac_iocb_ptr; mac_iocb_ptr++; tx_ring_desc++; } atomic_set(&tx_ring->tx_count, tx_ring->wq_len); atomic_set(&tx_ring->queue_stopped, 0); } static void ql_free_tx_resources(struct ql_adapter *qdev, struct tx_ring *tx_ring) { if (tx_ring->wq_base) { pci_free_consistent(qdev->pdev, tx_ring->wq_size, tx_ring->wq_base, tx_ring->wq_base_dma); tx_ring->wq_base = NULL; } kfree(tx_ring->q); tx_ring->q = NULL; } static int ql_alloc_tx_resources(struct ql_adapter *qdev, struct tx_ring *tx_ring) { tx_ring->wq_base = pci_alloc_consistent(qdev->pdev, tx_ring->wq_size, &tx_ring->wq_base_dma); if ((tx_ring->wq_base == NULL) || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) { QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n"); return -ENOMEM; } tx_ring->q = kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL); if (tx_ring->q == NULL) goto err; return 0; err: pci_free_consistent(qdev->pdev, tx_ring->wq_size, tx_ring->wq_base, tx_ring->wq_base_dma); return -ENOMEM; } static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) { int i; struct bq_desc *lbq_desc; for (i = 0; i < rx_ring->lbq_len; i++) { lbq_desc = &rx_ring->lbq[i]; if (lbq_desc->p.lbq_page) { pci_unmap_page(qdev->pdev, pci_unmap_addr(lbq_desc, mapaddr), pci_unmap_len(lbq_desc, maplen), PCI_DMA_FROMDEVICE); put_page(lbq_desc->p.lbq_page); lbq_desc->p.lbq_page = NULL; } } } static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) { int i; struct bq_desc *sbq_desc; for (i = 0; i < rx_ring->sbq_len; i++) { sbq_desc = &rx_ring->sbq[i]; if (sbq_desc == NULL) { QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i); return; } if (sbq_desc->p.skb) { pci_unmap_single(qdev->pdev, pci_unmap_addr(sbq_desc, mapaddr), pci_unmap_len(sbq_desc, maplen), PCI_DMA_FROMDEVICE); dev_kfree_skb(sbq_desc->p.skb); sbq_desc->p.skb = NULL; } } } /* Free all large and small rx buffers associated * with the completion queues for this device. */ static void ql_free_rx_buffers(struct ql_adapter *qdev) { int i; struct rx_ring *rx_ring; for (i = 0; i < qdev->rx_ring_count; i++) { rx_ring = &qdev->rx_ring[i]; if (rx_ring->lbq) ql_free_lbq_buffers(qdev, rx_ring); if (rx_ring->sbq) ql_free_sbq_buffers(qdev, rx_ring); } } static void ql_alloc_rx_buffers(struct ql_adapter *qdev) { struct rx_ring *rx_ring; int i; for (i = 0; i < qdev->rx_ring_count; i++) { rx_ring = &qdev->rx_ring[i]; if (rx_ring->type != TX_Q) ql_update_buffer_queues(qdev, rx_ring); } } static void ql_init_lbq_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring) { int i; struct bq_desc *lbq_desc; __le64 *bq = rx_ring->lbq_base; memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc)); for (i = 0; i < rx_ring->lbq_len; i++) { lbq_desc = &rx_ring->lbq[i]; memset(lbq_desc, 0, sizeof(*lbq_desc)); lbq_desc->index = i; lbq_desc->addr = bq; bq++; } } static void ql_init_sbq_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring) { int i; struct bq_desc *sbq_desc; __le64 *bq = rx_ring->sbq_base; memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc)); for (i = 0; i < rx_ring->sbq_len; i++) { sbq_desc = &rx_ring->sbq[i]; memset(sbq_desc, 0, sizeof(*sbq_desc)); sbq_desc->index = i; sbq_desc->addr = bq; bq++; } } static void ql_free_rx_resources(struct ql_adapter *qdev, struct rx_ring *rx_ring) { /* Free the small buffer queue. */ if (rx_ring->sbq_base) { pci_free_consistent(qdev->pdev, rx_ring->sbq_size, rx_ring->sbq_base, rx_ring->sbq_base_dma); rx_ring->sbq_base = NULL; } /* Free the small buffer queue control blocks. */ kfree(rx_ring->sbq); rx_ring->sbq = NULL; /* Free the large buffer queue. */ if (rx_ring->lbq_base) { pci_free_consistent(qdev->pdev, rx_ring->lbq_size, rx_ring->lbq_base, rx_ring->lbq_base_dma); rx_ring->lbq_base = NULL; } /* Free the large buffer queue control blocks. */ kfree(rx_ring->lbq); rx_ring->lbq = NULL; /* Free the rx queue. */ if (rx_ring->cq_base) { pci_free_consistent(qdev->pdev, rx_ring->cq_size, rx_ring->cq_base, rx_ring->cq_base_dma); rx_ring->cq_base = NULL; } } /* Allocate queues and buffers for this completions queue based * on the values in the parameter structure. */ static int ql_alloc_rx_resources(struct ql_adapter *qdev, struct rx_ring *rx_ring) { /* * Allocate the completion queue for this rx_ring. */ rx_ring->cq_base = pci_alloc_consistent(qdev->pdev, rx_ring->cq_size, &rx_ring->cq_base_dma); if (rx_ring->cq_base == NULL) { QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n"); return -ENOMEM; } if (rx_ring->sbq_len) { /* * Allocate small buffer queue. */ rx_ring->sbq_base = pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size, &rx_ring->sbq_base_dma); if (rx_ring->sbq_base == NULL) { QPRINTK(qdev, IFUP, ERR, "Small buffer queue allocation failed.\n"); goto err_mem; } /* * Allocate small buffer queue control blocks. */ rx_ring->sbq = kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc), GFP_KERNEL); if (rx_ring->sbq == NULL) { QPRINTK(qdev, IFUP, ERR, "Small buffer queue control block allocation failed.\n"); goto err_mem; } ql_init_sbq_ring(qdev, rx_ring); } if (rx_ring->lbq_len) { /* * Allocate large buffer queue. */ rx_ring->lbq_base = pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size, &rx_ring->lbq_base_dma); if (rx_ring->lbq_base == NULL) { QPRINTK(qdev, IFUP, ERR, "Large buffer queue allocation failed.\n"); goto err_mem; } /* * Allocate large buffer queue control blocks. */ rx_ring->lbq = kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc), GFP_KERNEL); if (rx_ring->lbq == NULL) { QPRINTK(qdev, IFUP, ERR, "Large buffer queue control block allocation failed.\n"); goto err_mem; } ql_init_lbq_ring(qdev, rx_ring); } return 0; err_mem: ql_free_rx_resources(qdev, rx_ring); return -ENOMEM; } static void ql_tx_ring_clean(struct ql_adapter *qdev) { struct tx_ring *tx_ring; struct tx_ring_desc *tx_ring_desc; int i, j; /* * Loop through all queues and free * any resources. */ for (j = 0; j < qdev->tx_ring_count; j++) { tx_ring = &qdev->tx_ring[j]; for (i = 0; i < tx_ring->wq_len; i++) { tx_ring_desc = &tx_ring->q[i]; if (tx_ring_desc && tx_ring_desc->skb) { QPRINTK(qdev, IFDOWN, ERR, "Freeing lost SKB %p, from queue %d, index %d.\n", tx_ring_desc->skb, j, tx_ring_desc->index); ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); dev_kfree_skb(tx_ring_desc->skb); tx_ring_desc->skb = NULL; } } } } static void ql_free_mem_resources(struct ql_adapter *qdev) { int i; for (i = 0; i < qdev->tx_ring_count; i++) ql_free_tx_resources(qdev, &qdev->tx_ring[i]); for (i = 0; i < qdev->rx_ring_count; i++) ql_free_rx_resources(qdev, &qdev->rx_ring[i]); ql_free_shadow_space(qdev); } static int ql_alloc_mem_resources(struct ql_adapter *qdev) { int i; /* Allocate space for our shadow registers and such. */ if (ql_alloc_shadow_space(qdev)) return -ENOMEM; for (i = 0; i < qdev->rx_ring_count; i++) { if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) { QPRINTK(qdev, IFUP, ERR, "RX resource allocation failed.\n"); goto err_mem; } } /* Allocate tx queue resources */ for (i = 0; i < qdev->tx_ring_count; i++) { if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) { QPRINTK(qdev, IFUP, ERR, "TX resource allocation failed.\n"); goto err_mem; } } return 0; err_mem: ql_free_mem_resources(qdev); return -ENOMEM; } /* Set up the rx ring control block and pass it to the chip. * The control block is defined as * "Completion Queue Initialization Control Block", or cqicb. */ static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring) { struct cqicb *cqicb = &rx_ring->cqicb; void *shadow_reg = qdev->rx_ring_shadow_reg_area + (rx_ring->cq_id * sizeof(u64) * 4); u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma + (rx_ring->cq_id * sizeof(u64) * 4); void __iomem *doorbell_area = qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id)); int err = 0; u16 bq_len; /* Set up the shadow registers for this ring. */ rx_ring->prod_idx_sh_reg = shadow_reg; rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma; shadow_reg += sizeof(u64); shadow_reg_dma += sizeof(u64); rx_ring->lbq_base_indirect = shadow_reg; rx_ring->lbq_base_indirect_dma = shadow_reg_dma; shadow_reg += sizeof(u64); shadow_reg_dma += sizeof(u64); rx_ring->sbq_base_indirect = shadow_reg; rx_ring->sbq_base_indirect_dma = shadow_reg_dma; /* PCI doorbell mem area + 0x00 for consumer index register */ rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area; rx_ring->cnsmr_idx = 0; rx_ring->curr_entry = rx_ring->cq_base; /* PCI doorbell mem area + 0x04 for valid register */ rx_ring->valid_db_reg = doorbell_area + 0x04; /* PCI doorbell mem area + 0x18 for large buffer consumer */ rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18); /* PCI doorbell mem area + 0x1c */ rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c); memset((void *)cqicb, 0, sizeof(struct cqicb)); cqicb->msix_vect = rx_ring->irq; bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len; cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT); cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma); cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma); /* * Set up the control block load flags. */ cqicb->flags = FLAGS_LC | /* Load queue base address */ FLAGS_LV | /* Load MSI-X vector */ FLAGS_LI; /* Load irq delay values */ if (rx_ring->lbq_len) { cqicb->flags |= FLAGS_LL; /* Load lbq values */ *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma; cqicb->lbq_addr = cpu_to_le64(rx_ring->lbq_base_indirect_dma); bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 : (u16) rx_ring->lbq_buf_size; cqicb->lbq_buf_size = cpu_to_le16(bq_len); bq_len = (rx_ring->lbq_len == 65536) ? 0 : (u16) rx_ring->lbq_len; cqicb->lbq_len = cpu_to_le16(bq_len); rx_ring->lbq_prod_idx = 0; rx_ring->lbq_curr_idx = 0; rx_ring->lbq_clean_idx = 0; rx_ring->lbq_free_cnt = rx_ring->lbq_len; } if (rx_ring->sbq_len) { cqicb->flags |= FLAGS_LS; /* Load sbq values */ *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma; cqicb->sbq_addr = cpu_to_le64(rx_ring->sbq_base_indirect_dma); cqicb->sbq_buf_size = cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8); bq_len = (rx_ring->sbq_len == 65536) ? 0 : (u16) rx_ring->sbq_len; cqicb->sbq_len = cpu_to_le16(bq_len); rx_ring->sbq_prod_idx = 0; rx_ring->sbq_curr_idx = 0; rx_ring->sbq_clean_idx = 0; rx_ring->sbq_free_cnt = rx_ring->sbq_len; } switch (rx_ring->type) { case TX_Q: /* If there's only one interrupt, then we use * worker threads to process the outbound * completion handling rx_rings. We do this so * they can be run on multiple CPUs. There is * room to play with this more where we would only * run in a worker if there are more than x number * of outbound completions on the queue and more * than one queue active. Some threshold that * would indicate a benefit in spite of the cost * of a context switch. * If there's more than one interrupt, then the * outbound completions are processed in the ISR. */ if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean); else { /* With all debug warnings on we see a WARN_ON message * when we free the skb in the interrupt context. */ INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean); } cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs); cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames); break; case DEFAULT_Q: INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean); cqicb->irq_delay = 0; cqicb->pkt_delay = 0; break; case RX_Q: /* Inbound completion handling rx_rings run in * separate NAPI contexts. */ netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix, 64); cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs); cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames); break; default: QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n", rx_ring->type); } QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n"); err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb), CFG_LCQ, rx_ring->cq_id); if (err) { QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n"); return err; } return err; } static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring) { struct wqicb *wqicb = (struct wqicb *)tx_ring; void __iomem *doorbell_area = qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id); void *shadow_reg = qdev->tx_ring_shadow_reg_area + (tx_ring->wq_id * sizeof(u64)); u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma + (tx_ring->wq_id * sizeof(u64)); int err = 0; /* * Assign doorbell registers for this tx_ring. */ /* TX PCI doorbell mem area for tx producer index */ tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area; tx_ring->prod_idx = 0; /* TX PCI doorbell mem area + 0x04 */ tx_ring->valid_db_reg = doorbell_area + 0x04; /* * Assign shadow registers for this tx_ring. */ tx_ring->cnsmr_idx_sh_reg = shadow_reg; tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma; wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT); wqicb->flags = cpu_to_le16(Q_FLAGS_LC | Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO); wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id); wqicb->rid = 0; wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma); wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma); ql_init_tx_ring(qdev, tx_ring); err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ, (u16) tx_ring->wq_id); if (err) { QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n"); return err; } QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n"); return err; } static void ql_disable_msix(struct ql_adapter *qdev) { if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { pci_disable_msix(qdev->pdev); clear_bit(QL_MSIX_ENABLED, &qdev->flags); kfree(qdev->msi_x_entry); qdev->msi_x_entry = NULL; } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) { pci_disable_msi(qdev->pdev); clear_bit(QL_MSI_ENABLED, &qdev->flags); } } static void ql_enable_msix(struct ql_adapter *qdev) { int i; qdev->intr_count = 1; /* Get the MSIX vectors. */ if (irq_type == MSIX_IRQ) { /* Try to alloc space for the msix struct, * if it fails then go to MSI/legacy. */ qdev->msi_x_entry = kcalloc(qdev->rx_ring_count, sizeof(struct msix_entry), GFP_KERNEL); if (!qdev->msi_x_entry) { irq_type = MSI_IRQ; goto msi; } for (i = 0; i < qdev->rx_ring_count; i++) qdev->msi_x_entry[i].entry = i; if (!pci_enable_msix (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) { set_bit(QL_MSIX_ENABLED, &qdev->flags); qdev->intr_count = qdev->rx_ring_count; QPRINTK(qdev, IFUP, DEBUG, "MSI-X Enabled, got %d vectors.\n", qdev->intr_count); return; } else { kfree(qdev->msi_x_entry); qdev->msi_x_entry = NULL; QPRINTK(qdev, IFUP, WARNING, "MSI-X Enable failed, trying MSI.\n"); irq_type = MSI_IRQ; } } msi: if (irq_type == MSI_IRQ) { if (!pci_enable_msi(qdev->pdev)) { set_bit(QL_MSI_ENABLED, &qdev->flags); QPRINTK(qdev, IFUP, INFO, "Running with MSI interrupts.\n"); return; } } irq_type = LEG_IRQ; QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n"); } /* * Here we build the intr_context structures based on * our rx_ring count and intr vector count. * The intr_context structure is used to hook each vector * to possibly different handlers. */ static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev) { int i = 0; struct intr_context *intr_context = &qdev->intr_context[0]; ql_enable_msix(qdev); if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { /* Each rx_ring has it's * own intr_context since we have separate * vectors for each queue. * This only true when MSI-X is enabled. */ for (i = 0; i < qdev->intr_count; i++, intr_context++) { qdev->rx_ring[i].irq = i; intr_context->intr = i; intr_context->qdev = qdev; /* * We set up each vectors enable/disable/read bits so * there's no bit/mask calculations in the critical path. */ intr_context->intr_en_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD | i; intr_context->intr_dis_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK | INTR_EN_IHD | i; intr_context->intr_read_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD | i; if (i == 0) { /* * Default queue handles bcast/mcast plus * async events. Needs buffers. */ intr_context->handler = qlge_isr; sprintf(intr_context->name, "%s-default-queue", qdev->ndev->name); } else if (i < qdev->rss_ring_first_cq_id) { /* * Outbound queue is for outbound completions only. */ intr_context->handler = qlge_msix_tx_isr; sprintf(intr_context->name, "%s-tx-%d", qdev->ndev->name, i); } else { /* * Inbound queues handle unicast frames only. */ intr_context->handler = qlge_msix_rx_isr; sprintf(intr_context->name, "%s-rx-%d", qdev->ndev->name, i); } } } else { /* * All rx_rings use the same intr_context since * there is only one vector. */ intr_context->intr = 0; intr_context->qdev = qdev; /* * We set up each vectors enable/disable/read bits so * there's no bit/mask calculations in the critical path. */ intr_context->intr_en_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE; intr_context->intr_dis_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_DISABLE; intr_context->intr_read_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ; /* * Single interrupt means one handler for all rings. */ intr_context->handler = qlge_isr; sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name); for (i = 0; i < qdev->rx_ring_count; i++) qdev->rx_ring[i].irq = 0; } } static void ql_free_irq(struct ql_adapter *qdev) { int i; struct intr_context *intr_context = &qdev->intr_context[0]; for (i = 0; i < qdev->intr_count; i++, intr_context++) { if (intr_context->hooked) { if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { free_irq(qdev->msi_x_entry[i].vector, &qdev->rx_ring[i]); QPRINTK(qdev, IFDOWN, DEBUG, "freeing msix interrupt %d.\n", i); } else { free_irq(qdev->pdev->irq, &qdev->rx_ring[0]); QPRINTK(qdev, IFDOWN, DEBUG, "freeing msi interrupt %d.\n", i); } } } ql_disable_msix(qdev); } static int ql_request_irq(struct ql_adapter *qdev) { int i; int status = 0; struct pci_dev *pdev = qdev->pdev; struct intr_context *intr_context = &qdev->intr_context[0]; ql_resolve_queues_to_irqs(qdev); for (i = 0; i < qdev->intr_count; i++, intr_context++) { atomic_set(&intr_context->irq_cnt, 0); if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { status = request_irq(qdev->msi_x_entry[i].vector, intr_context->handler, 0, intr_context->name, &qdev->rx_ring[i]); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed request for MSIX interrupt %d.\n", i); goto err_irq; } else { QPRINTK(qdev, IFUP, DEBUG, "Hooked intr %d, queue type %s%s%s, with name %s.\n", i, qdev->rx_ring[i].type == DEFAULT_Q ? "DEFAULT_Q" : "", qdev->rx_ring[i].type == TX_Q ? "TX_Q" : "", qdev->rx_ring[i].type == RX_Q ? "RX_Q" : "", intr_context->name); } } else { QPRINTK(qdev, IFUP, DEBUG, "trying msi or legacy interrupts.\n"); QPRINTK(qdev, IFUP, DEBUG, "%s: irq = %d.\n", __func__, pdev->irq); QPRINTK(qdev, IFUP, DEBUG, "%s: context->name = %s.\n", __func__, intr_context->name); QPRINTK(qdev, IFUP, DEBUG, "%s: dev_id = 0x%p.\n", __func__, &qdev->rx_ring[0]); status = request_irq(pdev->irq, qlge_isr, test_bit(QL_MSI_ENABLED, &qdev-> flags) ? 0 : IRQF_SHARED, intr_context->name, &qdev->rx_ring[0]); if (status) goto err_irq; QPRINTK(qdev, IFUP, ERR, "Hooked intr %d, queue type %s%s%s, with name %s.\n", i, qdev->rx_ring[0].type == DEFAULT_Q ? "DEFAULT_Q" : "", qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "", qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "", intr_context->name); } intr_context->hooked = 1; } return status; err_irq: QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n"); ql_free_irq(qdev); return status; } static int ql_start_rss(struct ql_adapter *qdev) { struct ricb *ricb = &qdev->ricb; int status = 0; int i; u8 *hash_id = (u8 *) ricb->hash_cq_id; memset((void *)ricb, 0, sizeof(ricb)); ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K; ricb->flags = (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 | RSS_RT6); ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1); /* * Fill out the Indirection Table. */ for (i = 0; i < 256; i++) hash_id[i] = i & (qdev->rss_ring_count - 1); /* * Random values for the IPv6 and IPv4 Hash Keys. */ get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40); get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16); QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n"); status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n"); return status; } QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n"); return status; } /* Initialize the frame-to-queue routing. */ static int ql_route_initialize(struct ql_adapter *qdev) { int status = 0; int i; status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); if (status) return status; /* Clear all the entries in the routing table. */ for (i = 0; i < 16; i++) { status = ql_set_routing_reg(qdev, i, 0, 0); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed to init routing register for CAM packets.\n"); goto exit; } } status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed to init routing register for error packets.\n"); goto exit; } status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed to init routing register for broadcast packets.\n"); goto exit; } /* If we have more than one inbound queue, then turn on RSS in the * routing block. */ if (qdev->rss_ring_count > 1) { status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT, RT_IDX_RSS_MATCH, 1); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed to init routing register for MATCH RSS packets.\n"); goto exit; } } status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT, RT_IDX_CAM_HIT, 1); if (status) QPRINTK(qdev, IFUP, ERR, "Failed to init routing register for CAM packets.\n"); exit: ql_sem_unlock(qdev, SEM_RT_IDX_MASK); return status; } int ql_cam_route_initialize(struct ql_adapter *qdev) { int status; status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return status; status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr, MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ); ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n"); return status; } status = ql_route_initialize(qdev); if (status) QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n"); return status; } static int ql_adapter_initialize(struct ql_adapter *qdev) { u32 value, mask; int i; int status = 0; /* * Set up the System register to halt on errors. */ value = SYS_EFE | SYS_FAE; mask = value << 16; ql_write32(qdev, SYS, mask | value); /* Set the default queue, and VLAN behavior. */ value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV; mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16); ql_write32(qdev, NIC_RCV_CFG, (mask | value)); /* Set the MPI interrupt to enabled. */ ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI); /* Enable the function, set pagesize, enable error checking. */ value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND | FSC_EC | FSC_VM_PAGE_4K | FSC_SH; /* Set/clear header splitting. */ mask = FSC_VM_PAGESIZE_MASK | FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16); ql_write32(qdev, FSC, mask | value); ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP | min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE)); /* Start up the rx queues. */ for (i = 0; i < qdev->rx_ring_count; i++) { status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed to start rx ring[%d].\n", i); return status; } } /* If there is more than one inbound completion queue * then download a RICB to configure RSS. */ if (qdev->rss_ring_count > 1) { status = ql_start_rss(qdev); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n"); return status; } } /* Start up the tx queues. */ for (i = 0; i < qdev->tx_ring_count; i++) { status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed to start tx ring[%d].\n", i); return status; } } /* Initialize the port and set the max framesize. */ status = qdev->nic_ops->port_initialize(qdev); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n"); return status; } /* Set up the MAC address and frame routing filter. */ status = ql_cam_route_initialize(qdev); if (status) { QPRINTK(qdev, IFUP, ERR, "Failed to init CAM/Routing tables.\n"); return status; } /* Start NAPI for the RSS queues. */ for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) { QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n", i); napi_enable(&qdev->rx_ring[i].napi); } return status; } /* Issue soft reset to chip. */ static int ql_adapter_reset(struct ql_adapter *qdev) { u32 value; int status = 0; unsigned long end_jiffies = jiffies + max((unsigned long)1, usecs_to_jiffies(30)); ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR); do { value = ql_read32(qdev, RST_FO); if ((value & RST_FO_FR) == 0) break; cpu_relax(); } while (time_before(jiffies, end_jiffies)); if (value & RST_FO_FR) { QPRINTK(qdev, IFDOWN, ERR, "ETIMEOUT!!! errored out of resetting the chip!\n"); status = -ETIMEDOUT; } return status; } static void ql_display_dev_info(struct net_device *ndev) { struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); QPRINTK(qdev, PROBE, INFO, "Function #%d, NIC Roll %d, NIC Rev = %d, " "XG Roll = %d, XG Rev = %d.\n", qdev->func, qdev->chip_rev_id & 0x0000000f, qdev->chip_rev_id >> 4 & 0x0000000f, qdev->chip_rev_id >> 8 & 0x0000000f, qdev->chip_rev_id >> 12 & 0x0000000f); QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr); } static int ql_adapter_down(struct ql_adapter *qdev) { int i, status = 0; struct rx_ring *rx_ring; netif_carrier_off(qdev->ndev); /* Don't kill the reset worker thread if we * are in the process of recovery. */ if (test_bit(QL_ADAPTER_UP, &qdev->flags)) cancel_delayed_work_sync(&qdev->asic_reset_work); cancel_delayed_work_sync(&qdev->mpi_reset_work); cancel_delayed_work_sync(&qdev->mpi_work); cancel_delayed_work_sync(&qdev->mpi_idc_work); cancel_delayed_work_sync(&qdev->mpi_port_cfg_work); /* The default queue at index 0 is always processed in * a workqueue. */ cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work); /* The rest of the rx_rings are processed in * a workqueue only if it's a single interrupt * environment (MSI/Legacy). */ for (i = 1; i < qdev->rx_ring_count; i++) { rx_ring = &qdev->rx_ring[i]; /* Only the RSS rings use NAPI on multi irq * environment. Outbound completion processing * is done in interrupt context. */ if (i >= qdev->rss_ring_first_cq_id) { napi_disable(&rx_ring->napi); } else { cancel_delayed_work_sync(&rx_ring->rx_work); } } clear_bit(QL_ADAPTER_UP, &qdev->flags); ql_disable_interrupts(qdev); ql_tx_ring_clean(qdev); ql_free_rx_buffers(qdev); spin_lock(&qdev->hw_lock); status = ql_adapter_reset(qdev); if (status) QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n", qdev->func); spin_unlock(&qdev->hw_lock); return status; } static int ql_adapter_up(struct ql_adapter *qdev) { int err = 0; err = ql_adapter_initialize(qdev); if (err) { QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n"); spin_unlock(&qdev->hw_lock); goto err_init; } set_bit(QL_ADAPTER_UP, &qdev->flags); ql_alloc_rx_buffers(qdev); if ((ql_read32(qdev, STS) & qdev->port_init)) netif_carrier_on(qdev->ndev); ql_enable_interrupts(qdev); ql_enable_all_completion_interrupts(qdev); netif_tx_start_all_queues(qdev->ndev); return 0; err_init: ql_adapter_reset(qdev); return err; } static void ql_release_adapter_resources(struct ql_adapter *qdev) { ql_free_mem_resources(qdev); ql_free_irq(qdev); } static int ql_get_adapter_resources(struct ql_adapter *qdev) { int status = 0; if (ql_alloc_mem_resources(qdev)) { QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n"); return -ENOMEM; } status = ql_request_irq(qdev); if (status) goto err_irq; return status; err_irq: ql_free_mem_resources(qdev); return status; } static int qlge_close(struct net_device *ndev) { struct ql_adapter *qdev = netdev_priv(ndev); /* * Wait for device to recover from a reset. * (Rarely happens, but possible.) */ while (!test_bit(QL_ADAPTER_UP, &qdev->flags)) msleep(1); ql_adapter_down(qdev); ql_release_adapter_resources(qdev); return 0; } static int ql_configure_rings(struct ql_adapter *qdev) { int i; struct rx_ring *rx_ring; struct tx_ring *tx_ring; int cpu_cnt = num_online_cpus(); /* * For each processor present we allocate one * rx_ring for outbound completions, and one * rx_ring for inbound completions. Plus there is * always the one default queue. For the CPU * counts we end up with the following rx_rings: * rx_ring count = * one default queue + * (CPU count * outbound completion rx_ring) + * (CPU count * inbound (RSS) completion rx_ring) * To keep it simple we limit the total number of * queues to < 32, so we truncate CPU to 8. * This limitation can be removed when requested. */ if (cpu_cnt > MAX_CPUS) cpu_cnt = MAX_CPUS; /* * rx_ring[0] is always the default queue. */ /* Allocate outbound completion ring for each CPU. */ qdev->tx_ring_count = cpu_cnt; /* Allocate inbound completion (RSS) ring for each CPU. */ qdev->rss_ring_count = cpu_cnt; /* cq_id for the first inbound ring handler. */ qdev->rss_ring_first_cq_id = cpu_cnt + 1; /* * qdev->rx_ring_count: * Total number of rx_rings. This includes the one * default queue, a number of outbound completion * handler rx_rings, and the number of inbound * completion handler rx_rings. */ qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1; netif_set_gso_max_size(qdev->ndev, 65536); for (i = 0; i < qdev->tx_ring_count; i++) { tx_ring = &qdev->tx_ring[i]; memset((void *)tx_ring, 0, sizeof(tx_ring)); tx_ring->qdev = qdev; tx_ring->wq_id = i; tx_ring->wq_len = qdev->tx_ring_size; tx_ring->wq_size = tx_ring->wq_len * sizeof(struct ob_mac_iocb_req); /* * The completion queue ID for the tx rings start * immediately after the default Q ID, which is zero. */ tx_ring->cq_id = i + 1; } for (i = 0; i < qdev->rx_ring_count; i++) { rx_ring = &qdev->rx_ring[i]; memset((void *)rx_ring, 0, sizeof(rx_ring)); rx_ring->qdev = qdev; rx_ring->cq_id = i; rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */ if (i == 0) { /* Default queue at index 0. */ /* * Default queue handles bcast/mcast plus * async events. Needs buffers. */ rx_ring->cq_len = qdev->rx_ring_size; rx_ring->cq_size = rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); rx_ring->lbq_len = NUM_LARGE_BUFFERS; rx_ring->lbq_size = rx_ring->lbq_len * sizeof(__le64); rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE; rx_ring->sbq_len = NUM_SMALL_BUFFERS; rx_ring->sbq_size = rx_ring->sbq_len * sizeof(__le64); rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2; rx_ring->type = DEFAULT_Q; } else if (i < qdev->rss_ring_first_cq_id) { /* * Outbound queue handles outbound completions only. */ /* outbound cq is same size as tx_ring it services. */ rx_ring->cq_len = qdev->tx_ring_size; rx_ring->cq_size = rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); rx_ring->lbq_len = 0; rx_ring->lbq_size = 0; rx_ring->lbq_buf_size = 0; rx_ring->sbq_len = 0; rx_ring->sbq_size = 0; rx_ring->sbq_buf_size = 0; rx_ring->type = TX_Q; } else { /* Inbound completions (RSS) queues */ /* * Inbound queues handle unicast frames only. */ rx_ring->cq_len = qdev->rx_ring_size; rx_ring->cq_size = rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); rx_ring->lbq_len = NUM_LARGE_BUFFERS; rx_ring->lbq_size = rx_ring->lbq_len * sizeof(__le64); rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE; rx_ring->sbq_len = NUM_SMALL_BUFFERS; rx_ring->sbq_size = rx_ring->sbq_len * sizeof(__le64); rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2; rx_ring->type = RX_Q; } } return 0; } static int qlge_open(struct net_device *ndev) { int err = 0; struct ql_adapter *qdev = netdev_priv(ndev); err = ql_configure_rings(qdev); if (err) return err; err = ql_get_adapter_resources(qdev); if (err) goto error_up; err = ql_adapter_up(qdev); if (err) goto error_up; return err; error_up: ql_release_adapter_resources(qdev); return err; } static int qlge_change_mtu(struct net_device *ndev, int new_mtu) { struct ql_adapter *qdev = netdev_priv(ndev); if (ndev->mtu == 1500 && new_mtu == 9000) { QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n"); queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0); } else if (ndev->mtu == 9000 && new_mtu == 1500) { QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n"); } else if ((ndev->mtu == 1500 && new_mtu == 1500) || (ndev->mtu == 9000 && new_mtu == 9000)) { return 0; } else return -EINVAL; ndev->mtu = new_mtu; return 0; } static struct net_device_stats *qlge_get_stats(struct net_device *ndev) { struct ql_adapter *qdev = netdev_priv(ndev); return &qdev->stats; } static void qlge_set_multicast_list(struct net_device *ndev) { struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); struct dev_mc_list *mc_ptr; int i, status; status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); if (status) return; spin_lock(&qdev->hw_lock); /* * Set or clear promiscuous mode if a * transition is taking place. */ if (ndev->flags & IFF_PROMISC) { if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) { if (ql_set_routing_reg (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) { QPRINTK(qdev, HW, ERR, "Failed to set promiscous mode.\n"); } else { set_bit(QL_PROMISCUOUS, &qdev->flags); } } } else { if (test_bit(QL_PROMISCUOUS, &qdev->flags)) { if (ql_set_routing_reg (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) { QPRINTK(qdev, HW, ERR, "Failed to clear promiscous mode.\n"); } else { clear_bit(QL_PROMISCUOUS, &qdev->flags); } } } /* * Set or clear all multicast mode if a * transition is taking place. */ if ((ndev->flags & IFF_ALLMULTI) || (ndev->mc_count > MAX_MULTICAST_ENTRIES)) { if (!test_bit(QL_ALLMULTI, &qdev->flags)) { if (ql_set_routing_reg (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) { QPRINTK(qdev, HW, ERR, "Failed to set all-multi mode.\n"); } else { set_bit(QL_ALLMULTI, &qdev->flags); } } } else { if (test_bit(QL_ALLMULTI, &qdev->flags)) { if (ql_set_routing_reg (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) { QPRINTK(qdev, HW, ERR, "Failed to clear all-multi mode.\n"); } else { clear_bit(QL_ALLMULTI, &qdev->flags); } } } if (ndev->mc_count) { status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) goto exit; for (i = 0, mc_ptr = ndev->mc_list; mc_ptr; i++, mc_ptr = mc_ptr->next) if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr, MAC_ADDR_TYPE_MULTI_MAC, i)) { QPRINTK(qdev, HW, ERR, "Failed to loadmulticast address.\n"); ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); goto exit; } ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); if (ql_set_routing_reg (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) { QPRINTK(qdev, HW, ERR, "Failed to set multicast match mode.\n"); } else { set_bit(QL_ALLMULTI, &qdev->flags); } } exit: spin_unlock(&qdev->hw_lock); ql_sem_unlock(qdev, SEM_RT_IDX_MASK); } static int qlge_set_mac_address(struct net_device *ndev, void *p) { struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); struct sockaddr *addr = p; int status; if (netif_running(ndev)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return status; spin_lock(&qdev->hw_lock); status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr, MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ); spin_unlock(&qdev->hw_lock); if (status) QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n"); ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); return status; } static void qlge_tx_timeout(struct net_device *ndev) { struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); ql_queue_asic_error(qdev); } static void ql_asic_reset_work(struct work_struct *work) { struct ql_adapter *qdev = container_of(work, struct ql_adapter, asic_reset_work.work); int status; status = ql_adapter_down(qdev); if (status) goto error; status = ql_adapter_up(qdev); if (status) goto error; return; error: QPRINTK(qdev, IFUP, ALERT, "Driver up/down cycle failed, closing device\n"); rtnl_lock(); set_bit(QL_ADAPTER_UP, &qdev->flags); dev_close(qdev->ndev); rtnl_unlock(); } static struct nic_operations qla8012_nic_ops = { .get_flash = ql_get_8012_flash_params, .port_initialize = ql_8012_port_initialize, }; static struct nic_operations qla8000_nic_ops = { .get_flash = ql_get_8000_flash_params, .port_initialize = ql_8000_port_initialize, }; static void ql_get_board_info(struct ql_adapter *qdev) { qdev->func = (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT; if (qdev->func) { qdev->xg_sem_mask = SEM_XGMAC1_MASK; qdev->port_link_up = STS_PL1; qdev->port_init = STS_PI1; qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI; qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO; } else { qdev->xg_sem_mask = SEM_XGMAC0_MASK; qdev->port_link_up = STS_PL0; qdev->port_init = STS_PI0; qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI; qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO; } qdev->chip_rev_id = ql_read32(qdev, REV_ID); qdev->device_id = qdev->pdev->device; if (qdev->device_id == QLGE_DEVICE_ID_8012) qdev->nic_ops = &qla8012_nic_ops; else if (qdev->device_id == QLGE_DEVICE_ID_8000) qdev->nic_ops = &qla8000_nic_ops; } static void ql_release_all(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); if (qdev->workqueue) { destroy_workqueue(qdev->workqueue); qdev->workqueue = NULL; } if (qdev->q_workqueue) { destroy_workqueue(qdev->q_workqueue); qdev->q_workqueue = NULL; } if (qdev->reg_base) iounmap(qdev->reg_base); if (qdev->doorbell_area) iounmap(qdev->doorbell_area); pci_release_regions(pdev); pci_set_drvdata(pdev, NULL); } static int __devinit ql_init_device(struct pci_dev *pdev, struct net_device *ndev, int cards_found) { struct ql_adapter *qdev = netdev_priv(ndev); int pos, err = 0; u16 val16; memset((void *)qdev, 0, sizeof(qdev)); err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "PCI device enable failed.\n"); return err; } pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); if (pos <= 0) { dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, " "aborting.\n"); goto err_out; } else { pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16); val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN; val16 |= (PCI_EXP_DEVCTL_CERE | PCI_EXP_DEVCTL_NFERE | PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE); pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16); } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(&pdev->dev, "PCI region request failed.\n"); goto err_out; } pci_set_master(pdev); if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { set_bit(QL_DMA64, &qdev->flags); err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); } else { err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); } if (err) { dev_err(&pdev->dev, "No usable DMA configuration.\n"); goto err_out; } pci_set_drvdata(pdev, ndev); qdev->reg_base = ioremap_nocache(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); if (!qdev->reg_base) { dev_err(&pdev->dev, "Register mapping failed.\n"); err = -ENOMEM; goto err_out; } qdev->doorbell_area_size = pci_resource_len(pdev, 3); qdev->doorbell_area = ioremap_nocache(pci_resource_start(pdev, 3), pci_resource_len(pdev, 3)); if (!qdev->doorbell_area) { dev_err(&pdev->dev, "Doorbell register mapping failed.\n"); err = -ENOMEM; goto err_out; } qdev->ndev = ndev; qdev->pdev = pdev; ql_get_board_info(qdev); qdev->msg_enable = netif_msg_init(debug, default_msg); spin_lock_init(&qdev->hw_lock); spin_lock_init(&qdev->stats_lock); /* make sure the EEPROM is good */ err = qdev->nic_ops->get_flash(qdev); if (err) { dev_err(&pdev->dev, "Invalid FLASH.\n"); goto err_out; } memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len); /* Set up the default ring sizes. */ qdev->tx_ring_size = NUM_TX_RING_ENTRIES; qdev->rx_ring_size = NUM_RX_RING_ENTRIES; /* Set up the coalescing parameters. */ qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT; qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT; qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; /* * Set up the operating parameters. */ qdev->rx_csum = 1; qdev->q_workqueue = create_workqueue(ndev->name); qdev->workqueue = create_singlethread_workqueue(ndev->name); INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work); INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work); INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work); INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work); INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work); mutex_init(&qdev->mpi_mutex); init_completion(&qdev->ide_completion); if (!cards_found) { dev_info(&pdev->dev, "%s\n", DRV_STRING); dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n", DRV_NAME, DRV_VERSION); } return 0; err_out: ql_release_all(pdev); pci_disable_device(pdev); return err; } static const struct net_device_ops qlge_netdev_ops = { .ndo_open = qlge_open, .ndo_stop = qlge_close, .ndo_start_xmit = qlge_send, .ndo_change_mtu = qlge_change_mtu, .ndo_get_stats = qlge_get_stats, .ndo_set_multicast_list = qlge_set_multicast_list, .ndo_set_mac_address = qlge_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_tx_timeout = qlge_tx_timeout, .ndo_vlan_rx_register = ql_vlan_rx_register, .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid, }; static int __devinit qlge_probe(struct pci_dev *pdev, const struct pci_device_id *pci_entry) { struct net_device *ndev = NULL; struct ql_adapter *qdev = NULL; static int cards_found = 0; int err = 0; ndev = alloc_etherdev_mq(sizeof(struct ql_adapter), min(MAX_CPUS, (int)num_online_cpus())); if (!ndev) return -ENOMEM; err = ql_init_device(pdev, ndev, cards_found); if (err < 0) { free_netdev(ndev); return err; } qdev = netdev_priv(ndev); SET_NETDEV_DEV(ndev, &pdev->dev); ndev->features = (0 | NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER); ndev->features |= NETIF_F_GRO; if (test_bit(QL_DMA64, &qdev->flags)) ndev->features |= NETIF_F_HIGHDMA; /* * Set up net_device structure. */ ndev->tx_queue_len = qdev->tx_ring_size; ndev->irq = pdev->irq; ndev->netdev_ops = &qlge_netdev_ops; SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops); ndev->watchdog_timeo = 10 * HZ; err = register_netdev(ndev); if (err) { dev_err(&pdev->dev, "net device registration failed.\n"); ql_release_all(pdev); pci_disable_device(pdev); return err; } netif_carrier_off(ndev); ql_display_dev_info(ndev); cards_found++; return 0; } static void __devexit qlge_remove(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); unregister_netdev(ndev); ql_release_all(pdev); pci_disable_device(pdev); free_netdev(ndev); } /* * This callback is called by the PCI subsystem whenever * a PCI bus error is detected. */ static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev, enum pci_channel_state state) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); if (netif_running(ndev)) ql_adapter_down(qdev); pci_disable_device(pdev); /* Request a slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /* * This callback is called after the PCI buss has been reset. * Basically, this tries to restart the card from scratch. * This is a shortened version of the device probe/discovery code, * it resembles the first-half of the () routine. */ static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); if (pci_enable_device(pdev)) { QPRINTK(qdev, IFUP, ERR, "Cannot re-enable PCI device after reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); netif_carrier_off(ndev); ql_adapter_reset(qdev); /* Make sure the EEPROM is good */ memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len); if (!is_valid_ether_addr(ndev->perm_addr)) { QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n"); return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_RECOVERED; } static void qlge_io_resume(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); pci_set_master(pdev); if (netif_running(ndev)) { if (ql_adapter_up(qdev)) { QPRINTK(qdev, IFUP, ERR, "Device initialization failed after reset.\n"); return; } } netif_device_attach(ndev); } static struct pci_error_handlers qlge_err_handler = { .error_detected = qlge_io_error_detected, .slot_reset = qlge_io_slot_reset, .resume = qlge_io_resume, }; static int qlge_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); int err, i; netif_device_detach(ndev); if (netif_running(ndev)) { err = ql_adapter_down(qdev); if (!err) return err; } for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) netif_napi_del(&qdev->rx_ring[i].napi); err = pci_save_state(pdev); if (err) return err; pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } #ifdef CONFIG_PM static int qlge_resume(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); int err; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); err = pci_enable_device(pdev); if (err) { QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n"); return err; } pci_set_master(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); if (netif_running(ndev)) { err = ql_adapter_up(qdev); if (err) return err; } netif_device_attach(ndev); return 0; } #endif /* CONFIG_PM */ static void qlge_shutdown(struct pci_dev *pdev) { qlge_suspend(pdev, PMSG_SUSPEND); } static struct pci_driver qlge_driver = { .name = DRV_NAME, .id_table = qlge_pci_tbl, .probe = qlge_probe, .remove = __devexit_p(qlge_remove), #ifdef CONFIG_PM .suspend = qlge_suspend, .resume = qlge_resume, #endif .shutdown = qlge_shutdown, .err_handler = &qlge_err_handler }; static int __init qlge_init_module(void) { return pci_register_driver(&qlge_driver); } static void __exit qlge_exit(void) { pci_unregister_driver(&qlge_driver); } module_init(qlge_init_module); module_exit(qlge_exit);