/* * fs/f2fs/file.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/fs.h> #include <linux/f2fs_fs.h> #include <linux/stat.h> #include <linux/buffer_head.h> #include <linux/writeback.h> #include <linux/falloc.h> #include <linux/types.h> #include <linux/uaccess.h> #include <linux/mount.h> #include "f2fs.h" #include "node.h" #include "segment.h" #include "xattr.h" #include "acl.h" static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) { struct page *page = vmf->page; struct inode *inode = vma->vm_file->f_path.dentry->d_inode; struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); block_t old_blk_addr; struct dnode_of_data dn; int err; f2fs_balance_fs(sbi); sb_start_pagefault(inode->i_sb); mutex_lock_op(sbi, DATA_NEW); /* block allocation */ set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, page->index, 0); if (err) { mutex_unlock_op(sbi, DATA_NEW); goto out; } old_blk_addr = dn.data_blkaddr; if (old_blk_addr == NULL_ADDR) { err = reserve_new_block(&dn); if (err) { f2fs_put_dnode(&dn); mutex_unlock_op(sbi, DATA_NEW); goto out; } } f2fs_put_dnode(&dn); mutex_unlock_op(sbi, DATA_NEW); lock_page(page); if (page->mapping != inode->i_mapping || page_offset(page) >= i_size_read(inode) || !PageUptodate(page)) { unlock_page(page); err = -EFAULT; goto out; } /* * check to see if the page is mapped already (no holes) */ if (PageMappedToDisk(page)) goto out; /* fill the page */ wait_on_page_writeback(page); /* page is wholly or partially inside EOF */ if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) { unsigned offset; offset = i_size_read(inode) & ~PAGE_CACHE_MASK; zero_user_segment(page, offset, PAGE_CACHE_SIZE); } set_page_dirty(page); SetPageUptodate(page); file_update_time(vma->vm_file); out: sb_end_pagefault(inode->i_sb); return block_page_mkwrite_return(err); } static const struct vm_operations_struct f2fs_file_vm_ops = { .fault = filemap_fault, .page_mkwrite = f2fs_vm_page_mkwrite, }; static int need_to_sync_dir(struct f2fs_sb_info *sbi, struct inode *inode) { struct dentry *dentry; nid_t pino; inode = igrab(inode); dentry = d_find_any_alias(inode); if (!dentry) { iput(inode); return 0; } pino = dentry->d_parent->d_inode->i_ino; dput(dentry); iput(inode); return !is_checkpointed_node(sbi, pino); } int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); unsigned long long cur_version; int ret = 0; bool need_cp = false; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .for_reclaim = 0, }; if (inode->i_sb->s_flags & MS_RDONLY) return 0; ret = filemap_write_and_wait_range(inode->i_mapping, start, end); if (ret) return ret; mutex_lock(&inode->i_mutex); if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) goto out; mutex_lock(&sbi->cp_mutex); cur_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver); mutex_unlock(&sbi->cp_mutex); if (F2FS_I(inode)->data_version != cur_version && !(inode->i_state & I_DIRTY)) goto out; F2FS_I(inode)->data_version--; if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1) need_cp = true; if (is_inode_flag_set(F2FS_I(inode), FI_NEED_CP)) need_cp = true; if (!space_for_roll_forward(sbi)) need_cp = true; if (need_to_sync_dir(sbi, inode)) need_cp = true; if (need_cp) { /* all the dirty node pages should be flushed for POR */ ret = f2fs_sync_fs(inode->i_sb, 1); clear_inode_flag(F2FS_I(inode), FI_NEED_CP); } else { /* if there is no written node page, write its inode page */ while (!sync_node_pages(sbi, inode->i_ino, &wbc)) { ret = f2fs_write_inode(inode, NULL); if (ret) goto out; } filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); } out: mutex_unlock(&inode->i_mutex); return ret; } static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) { file_accessed(file); vma->vm_ops = &f2fs_file_vm_ops; return 0; } static int truncate_data_blocks_range(struct dnode_of_data *dn, int count) { int nr_free = 0, ofs = dn->ofs_in_node; struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); struct f2fs_node *raw_node; __le32 *addr; raw_node = page_address(dn->node_page); addr = blkaddr_in_node(raw_node) + ofs; for ( ; count > 0; count--, addr++, dn->ofs_in_node++) { block_t blkaddr = le32_to_cpu(*addr); if (blkaddr == NULL_ADDR) continue; update_extent_cache(NULL_ADDR, dn); invalidate_blocks(sbi, blkaddr); dec_valid_block_count(sbi, dn->inode, 1); nr_free++; } if (nr_free) { set_page_dirty(dn->node_page); sync_inode_page(dn); } dn->ofs_in_node = ofs; return nr_free; } void truncate_data_blocks(struct dnode_of_data *dn) { truncate_data_blocks_range(dn, ADDRS_PER_BLOCK); } static void truncate_partial_data_page(struct inode *inode, u64 from) { unsigned offset = from & (PAGE_CACHE_SIZE - 1); struct page *page; if (!offset) return; page = find_data_page(inode, from >> PAGE_CACHE_SHIFT); if (IS_ERR(page)) return; lock_page(page); wait_on_page_writeback(page); zero_user(page, offset, PAGE_CACHE_SIZE - offset); set_page_dirty(page); f2fs_put_page(page, 1); } static int truncate_blocks(struct inode *inode, u64 from) { struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); unsigned int blocksize = inode->i_sb->s_blocksize; struct dnode_of_data dn; pgoff_t free_from; int count = 0; int err; free_from = (pgoff_t) ((from + blocksize - 1) >> (sbi->log_blocksize)); mutex_lock_op(sbi, DATA_TRUNC); set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, free_from, RDONLY_NODE); if (err) { if (err == -ENOENT) goto free_next; mutex_unlock_op(sbi, DATA_TRUNC); return err; } if (IS_INODE(dn.node_page)) count = ADDRS_PER_INODE; else count = ADDRS_PER_BLOCK; count -= dn.ofs_in_node; BUG_ON(count < 0); if (dn.ofs_in_node || IS_INODE(dn.node_page)) { truncate_data_blocks_range(&dn, count); free_from += count; } f2fs_put_dnode(&dn); free_next: err = truncate_inode_blocks(inode, free_from); mutex_unlock_op(sbi, DATA_TRUNC); /* lastly zero out the first data page */ truncate_partial_data_page(inode, from); return err; } void f2fs_truncate(struct inode *inode) { if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return; if (!truncate_blocks(inode, i_size_read(inode))) { inode->i_mtime = inode->i_ctime = CURRENT_TIME; mark_inode_dirty(inode); } f2fs_balance_fs(F2FS_SB(inode->i_sb)); } static int f2fs_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = dentry->d_inode; generic_fillattr(inode, stat); stat->blocks <<= 3; return 0; } #ifdef CONFIG_F2FS_FS_POSIX_ACL static void __setattr_copy(struct inode *inode, const struct iattr *attr) { struct f2fs_inode_info *fi = F2FS_I(inode); unsigned int ia_valid = attr->ia_valid; if (ia_valid & ATTR_UID) inode->i_uid = attr->ia_uid; if (ia_valid & ATTR_GID) inode->i_gid = attr->ia_gid; if (ia_valid & ATTR_ATIME) inode->i_atime = timespec_trunc(attr->ia_atime, inode->i_sb->s_time_gran); if (ia_valid & ATTR_MTIME) inode->i_mtime = timespec_trunc(attr->ia_mtime, inode->i_sb->s_time_gran); if (ia_valid & ATTR_CTIME) inode->i_ctime = timespec_trunc(attr->ia_ctime, inode->i_sb->s_time_gran); if (ia_valid & ATTR_MODE) { umode_t mode = attr->ia_mode; if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) mode &= ~S_ISGID; set_acl_inode(fi, mode); } } #else #define __setattr_copy setattr_copy #endif int f2fs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = dentry->d_inode; struct f2fs_inode_info *fi = F2FS_I(inode); int err; err = inode_change_ok(inode, attr); if (err) return err; if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size != i_size_read(inode)) { truncate_setsize(inode, attr->ia_size); f2fs_truncate(inode); } __setattr_copy(inode, attr); if (attr->ia_valid & ATTR_MODE) { err = f2fs_acl_chmod(inode); if (err || is_inode_flag_set(fi, FI_ACL_MODE)) { inode->i_mode = fi->i_acl_mode; clear_inode_flag(fi, FI_ACL_MODE); } } mark_inode_dirty(inode); return err; } const struct inode_operations f2fs_file_inode_operations = { .getattr = f2fs_getattr, .setattr = f2fs_setattr, .get_acl = f2fs_get_acl, #ifdef CONFIG_F2FS_FS_XATTR .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = f2fs_listxattr, .removexattr = generic_removexattr, #endif }; static void fill_zero(struct inode *inode, pgoff_t index, loff_t start, loff_t len) { struct page *page; if (!len) return; page = get_new_data_page(inode, index, false); if (!IS_ERR(page)) { wait_on_page_writeback(page); zero_user(page, start, len); set_page_dirty(page); f2fs_put_page(page, 1); } } int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) { pgoff_t index; int err; for (index = pg_start; index < pg_end; index++) { struct dnode_of_data dn; struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); mutex_lock_op(sbi, DATA_TRUNC); set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, index, RDONLY_NODE); if (err) { mutex_unlock_op(sbi, DATA_TRUNC); if (err == -ENOENT) continue; return err; } if (dn.data_blkaddr != NULL_ADDR) truncate_data_blocks_range(&dn, 1); f2fs_put_dnode(&dn); mutex_unlock_op(sbi, DATA_TRUNC); } return 0; } static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode) { pgoff_t pg_start, pg_end; loff_t off_start, off_end; int ret = 0; pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; off_start = offset & (PAGE_CACHE_SIZE - 1); off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); if (pg_start == pg_end) { fill_zero(inode, pg_start, off_start, off_end - off_start); } else { if (off_start) fill_zero(inode, pg_start++, off_start, PAGE_CACHE_SIZE - off_start); if (off_end) fill_zero(inode, pg_end, 0, off_end); if (pg_start < pg_end) { struct address_space *mapping = inode->i_mapping; loff_t blk_start, blk_end; blk_start = pg_start << PAGE_CACHE_SHIFT; blk_end = pg_end << PAGE_CACHE_SHIFT; truncate_inode_pages_range(mapping, blk_start, blk_end - 1); ret = truncate_hole(inode, pg_start, pg_end); } } if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) <= (offset + len)) { i_size_write(inode, offset); mark_inode_dirty(inode); } return ret; } static int expand_inode_data(struct inode *inode, loff_t offset, loff_t len, int mode) { struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); pgoff_t index, pg_start, pg_end; loff_t new_size = i_size_read(inode); loff_t off_start, off_end; int ret = 0; ret = inode_newsize_ok(inode, (len + offset)); if (ret) return ret; pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; off_start = offset & (PAGE_CACHE_SIZE - 1); off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); for (index = pg_start; index <= pg_end; index++) { struct dnode_of_data dn; mutex_lock_op(sbi, DATA_NEW); set_new_dnode(&dn, inode, NULL, NULL, 0); ret = get_dnode_of_data(&dn, index, 0); if (ret) { mutex_unlock_op(sbi, DATA_NEW); break; } if (dn.data_blkaddr == NULL_ADDR) { ret = reserve_new_block(&dn); if (ret) { f2fs_put_dnode(&dn); mutex_unlock_op(sbi, DATA_NEW); break; } } f2fs_put_dnode(&dn); mutex_unlock_op(sbi, DATA_NEW); if (pg_start == pg_end) new_size = offset + len; else if (index == pg_start && off_start) new_size = (index + 1) << PAGE_CACHE_SHIFT; else if (index == pg_end) new_size = (index << PAGE_CACHE_SHIFT) + off_end; else new_size += PAGE_CACHE_SIZE; } if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) { i_size_write(inode, new_size); mark_inode_dirty(inode); } return ret; } static long f2fs_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file->f_path.dentry->d_inode; struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); long ret; if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) return -EOPNOTSUPP; if (mode & FALLOC_FL_PUNCH_HOLE) ret = punch_hole(inode, offset, len, mode); else ret = expand_inode_data(inode, offset, len, mode); f2fs_balance_fs(sbi); return ret; } #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) { if (S_ISDIR(mode)) return flags; else if (S_ISREG(mode)) return flags & F2FS_REG_FLMASK; else return flags & F2FS_OTHER_FLMASK; } long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct inode *inode = filp->f_dentry->d_inode; struct f2fs_inode_info *fi = F2FS_I(inode); unsigned int flags; int ret; switch (cmd) { case FS_IOC_GETFLAGS: flags = fi->i_flags & FS_FL_USER_VISIBLE; return put_user(flags, (int __user *) arg); case FS_IOC_SETFLAGS: { unsigned int oldflags; ret = mnt_want_write(filp->f_path.mnt); if (ret) return ret; if (!inode_owner_or_capable(inode)) { ret = -EACCES; goto out; } if (get_user(flags, (int __user *) arg)) { ret = -EFAULT; goto out; } flags = f2fs_mask_flags(inode->i_mode, flags); mutex_lock(&inode->i_mutex); oldflags = fi->i_flags; if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { if (!capable(CAP_LINUX_IMMUTABLE)) { mutex_unlock(&inode->i_mutex); ret = -EPERM; goto out; } } flags = flags & FS_FL_USER_MODIFIABLE; flags |= oldflags & ~FS_FL_USER_MODIFIABLE; fi->i_flags = flags; mutex_unlock(&inode->i_mutex); f2fs_set_inode_flags(inode); inode->i_ctime = CURRENT_TIME; mark_inode_dirty(inode); out: mnt_drop_write(filp->f_path.mnt); return ret; } default: return -ENOTTY; } } const struct file_operations f2fs_file_operations = { .llseek = generic_file_llseek, .read = do_sync_read, .write = do_sync_write, .aio_read = generic_file_aio_read, .aio_write = generic_file_aio_write, .open = generic_file_open, .mmap = f2fs_file_mmap, .fsync = f2fs_sync_file, .fallocate = f2fs_fallocate, .unlocked_ioctl = f2fs_ioctl, .splice_read = generic_file_splice_read, .splice_write = generic_file_splice_write, };