// SPDX-License-Identifier: GPL-2.0-only /* * linux/net/sunrpc/xprt.c * * This is a generic RPC call interface supporting congestion avoidance, * and asynchronous calls. * * The interface works like this: * * - When a process places a call, it allocates a request slot if * one is available. Otherwise, it sleeps on the backlog queue * (xprt_reserve). * - Next, the caller puts together the RPC message, stuffs it into * the request struct, and calls xprt_transmit(). * - xprt_transmit sends the message and installs the caller on the * transport's wait list. At the same time, if a reply is expected, * it installs a timer that is run after the packet's timeout has * expired. * - When a packet arrives, the data_ready handler walks the list of * pending requests for that transport. If a matching XID is found, the * caller is woken up, and the timer removed. * - When no reply arrives within the timeout interval, the timer is * fired by the kernel and runs xprt_timer(). It either adjusts the * timeout values (minor timeout) or wakes up the caller with a status * of -ETIMEDOUT. * - When the caller receives a notification from RPC that a reply arrived, * it should release the RPC slot, and process the reply. * If the call timed out, it may choose to retry the operation by * adjusting the initial timeout value, and simply calling rpc_call * again. * * Support for async RPC is done through a set of RPC-specific scheduling * primitives that `transparently' work for processes as well as async * tasks that rely on callbacks. * * Copyright (C) 1995-1997, Olaf Kirch * * Transport switch API copyright (C) 2005, Chuck Lever */ #include #include #include #include #include #include #include #include #include #include #include #include #include "sunrpc.h" #include "sysfs.h" #include "fail.h" /* * Local variables */ #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_XPRT #endif /* * Local functions */ static void xprt_init(struct rpc_xprt *xprt, struct net *net); static __be32 xprt_alloc_xid(struct rpc_xprt *xprt); static void xprt_destroy(struct rpc_xprt *xprt); static void xprt_request_init(struct rpc_task *task); static DEFINE_SPINLOCK(xprt_list_lock); static LIST_HEAD(xprt_list); static unsigned long xprt_request_timeout(const struct rpc_rqst *req) { unsigned long timeout = jiffies + req->rq_timeout; if (time_before(timeout, req->rq_majortimeo)) return timeout; return req->rq_majortimeo; } /** * xprt_register_transport - register a transport implementation * @transport: transport to register * * If a transport implementation is loaded as a kernel module, it can * call this interface to make itself known to the RPC client. * * Returns: * 0: transport successfully registered * -EEXIST: transport already registered * -EINVAL: transport module being unloaded */ int xprt_register_transport(struct xprt_class *transport) { struct xprt_class *t; int result; result = -EEXIST; spin_lock(&xprt_list_lock); list_for_each_entry(t, &xprt_list, list) { /* don't register the same transport class twice */ if (t->ident == transport->ident) goto out; } list_add_tail(&transport->list, &xprt_list); printk(KERN_INFO "RPC: Registered %s transport module.\n", transport->name); result = 0; out: spin_unlock(&xprt_list_lock); return result; } EXPORT_SYMBOL_GPL(xprt_register_transport); /** * xprt_unregister_transport - unregister a transport implementation * @transport: transport to unregister * * Returns: * 0: transport successfully unregistered * -ENOENT: transport never registered */ int xprt_unregister_transport(struct xprt_class *transport) { struct xprt_class *t; int result; result = 0; spin_lock(&xprt_list_lock); list_for_each_entry(t, &xprt_list, list) { if (t == transport) { printk(KERN_INFO "RPC: Unregistered %s transport module.\n", transport->name); list_del_init(&transport->list); goto out; } } result = -ENOENT; out: spin_unlock(&xprt_list_lock); return result; } EXPORT_SYMBOL_GPL(xprt_unregister_transport); static void xprt_class_release(const struct xprt_class *t) { module_put(t->owner); } static const struct xprt_class * xprt_class_find_by_ident_locked(int ident) { const struct xprt_class *t; list_for_each_entry(t, &xprt_list, list) { if (t->ident != ident) continue; if (!try_module_get(t->owner)) continue; return t; } return NULL; } static const struct xprt_class * xprt_class_find_by_ident(int ident) { const struct xprt_class *t; spin_lock(&xprt_list_lock); t = xprt_class_find_by_ident_locked(ident); spin_unlock(&xprt_list_lock); return t; } static const struct xprt_class * xprt_class_find_by_netid_locked(const char *netid) { const struct xprt_class *t; unsigned int i; list_for_each_entry(t, &xprt_list, list) { for (i = 0; t->netid[i][0] != '\0'; i++) { if (strcmp(t->netid[i], netid) != 0) continue; if (!try_module_get(t->owner)) continue; return t; } } return NULL; } static const struct xprt_class * xprt_class_find_by_netid(const char *netid) { const struct xprt_class *t; spin_lock(&xprt_list_lock); t = xprt_class_find_by_netid_locked(netid); if (!t) { spin_unlock(&xprt_list_lock); request_module("rpc%s", netid); spin_lock(&xprt_list_lock); t = xprt_class_find_by_netid_locked(netid); } spin_unlock(&xprt_list_lock); return t; } /** * xprt_find_transport_ident - convert a netid into a transport identifier * @netid: transport to load * * Returns: * > 0: transport identifier * -ENOENT: transport module not available */ int xprt_find_transport_ident(const char *netid) { const struct xprt_class *t; int ret; t = xprt_class_find_by_netid(netid); if (!t) return -ENOENT; ret = t->ident; xprt_class_release(t); return ret; } EXPORT_SYMBOL_GPL(xprt_find_transport_ident); static void xprt_clear_locked(struct rpc_xprt *xprt) { xprt->snd_task = NULL; if (!test_bit(XPRT_CLOSE_WAIT, &xprt->state)) clear_bit_unlock(XPRT_LOCKED, &xprt->state); else queue_work(xprtiod_workqueue, &xprt->task_cleanup); } /** * xprt_reserve_xprt - serialize write access to transports * @task: task that is requesting access to the transport * @xprt: pointer to the target transport * * This prevents mixing the payload of separate requests, and prevents * transport connects from colliding with writes. No congestion control * is provided. */ int xprt_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) { if (task == xprt->snd_task) goto out_locked; goto out_sleep; } if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) goto out_unlock; xprt->snd_task = task; out_locked: trace_xprt_reserve_xprt(xprt, task); return 1; out_unlock: xprt_clear_locked(xprt); out_sleep: task->tk_status = -EAGAIN; if (RPC_IS_SOFT(task)) rpc_sleep_on_timeout(&xprt->sending, task, NULL, xprt_request_timeout(req)); else rpc_sleep_on(&xprt->sending, task, NULL); return 0; } EXPORT_SYMBOL_GPL(xprt_reserve_xprt); static bool xprt_need_congestion_window_wait(struct rpc_xprt *xprt) { return test_bit(XPRT_CWND_WAIT, &xprt->state); } static void xprt_set_congestion_window_wait(struct rpc_xprt *xprt) { if (!list_empty(&xprt->xmit_queue)) { /* Peek at head of queue to see if it can make progress */ if (list_first_entry(&xprt->xmit_queue, struct rpc_rqst, rq_xmit)->rq_cong) return; } set_bit(XPRT_CWND_WAIT, &xprt->state); } static void xprt_test_and_clear_congestion_window_wait(struct rpc_xprt *xprt) { if (!RPCXPRT_CONGESTED(xprt)) clear_bit(XPRT_CWND_WAIT, &xprt->state); } /* * xprt_reserve_xprt_cong - serialize write access to transports * @task: task that is requesting access to the transport * * Same as xprt_reserve_xprt, but Van Jacobson congestion control is * integrated into the decision of whether a request is allowed to be * woken up and given access to the transport. * Note that the lock is only granted if we know there are free slots. */ int xprt_reserve_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) { if (task == xprt->snd_task) goto out_locked; goto out_sleep; } if (req == NULL) { xprt->snd_task = task; goto out_locked; } if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) goto out_unlock; if (!xprt_need_congestion_window_wait(xprt)) { xprt->snd_task = task; goto out_locked; } out_unlock: xprt_clear_locked(xprt); out_sleep: task->tk_status = -EAGAIN; if (RPC_IS_SOFT(task)) rpc_sleep_on_timeout(&xprt->sending, task, NULL, xprt_request_timeout(req)); else rpc_sleep_on(&xprt->sending, task, NULL); return 0; out_locked: trace_xprt_reserve_cong(xprt, task); return 1; } EXPORT_SYMBOL_GPL(xprt_reserve_xprt_cong); static inline int xprt_lock_write(struct rpc_xprt *xprt, struct rpc_task *task) { int retval; if (test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == task) return 1; spin_lock(&xprt->transport_lock); retval = xprt->ops->reserve_xprt(xprt, task); spin_unlock(&xprt->transport_lock); return retval; } static bool __xprt_lock_write_func(struct rpc_task *task, void *data) { struct rpc_xprt *xprt = data; xprt->snd_task = task; return true; } static void __xprt_lock_write_next(struct rpc_xprt *xprt) { if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) return; if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) goto out_unlock; if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending, __xprt_lock_write_func, xprt)) return; out_unlock: xprt_clear_locked(xprt); } static void __xprt_lock_write_next_cong(struct rpc_xprt *xprt) { if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) return; if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) goto out_unlock; if (xprt_need_congestion_window_wait(xprt)) goto out_unlock; if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending, __xprt_lock_write_func, xprt)) return; out_unlock: xprt_clear_locked(xprt); } /** * xprt_release_xprt - allow other requests to use a transport * @xprt: transport with other tasks potentially waiting * @task: task that is releasing access to the transport * * Note that "task" can be NULL. No congestion control is provided. */ void xprt_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task) { if (xprt->snd_task == task) { xprt_clear_locked(xprt); __xprt_lock_write_next(xprt); } trace_xprt_release_xprt(xprt, task); } EXPORT_SYMBOL_GPL(xprt_release_xprt); /** * xprt_release_xprt_cong - allow other requests to use a transport * @xprt: transport with other tasks potentially waiting * @task: task that is releasing access to the transport * * Note that "task" can be NULL. Another task is awoken to use the * transport if the transport's congestion window allows it. */ void xprt_release_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task) { if (xprt->snd_task == task) { xprt_clear_locked(xprt); __xprt_lock_write_next_cong(xprt); } trace_xprt_release_cong(xprt, task); } EXPORT_SYMBOL_GPL(xprt_release_xprt_cong); void xprt_release_write(struct rpc_xprt *xprt, struct rpc_task *task) { if (xprt->snd_task != task) return; spin_lock(&xprt->transport_lock); xprt->ops->release_xprt(xprt, task); spin_unlock(&xprt->transport_lock); } /* * Van Jacobson congestion avoidance. Check if the congestion window * overflowed. Put the task to sleep if this is the case. */ static int __xprt_get_cong(struct rpc_xprt *xprt, struct rpc_rqst *req) { if (req->rq_cong) return 1; trace_xprt_get_cong(xprt, req->rq_task); if (RPCXPRT_CONGESTED(xprt)) { xprt_set_congestion_window_wait(xprt); return 0; } req->rq_cong = 1; xprt->cong += RPC_CWNDSCALE; return 1; } /* * Adjust the congestion window, and wake up the next task * that has been sleeping due to congestion */ static void __xprt_put_cong(struct rpc_xprt *xprt, struct rpc_rqst *req) { if (!req->rq_cong) return; req->rq_cong = 0; xprt->cong -= RPC_CWNDSCALE; xprt_test_and_clear_congestion_window_wait(xprt); trace_xprt_put_cong(xprt, req->rq_task); __xprt_lock_write_next_cong(xprt); } /** * xprt_request_get_cong - Request congestion control credits * @xprt: pointer to transport * @req: pointer to RPC request * * Useful for transports that require congestion control. */ bool xprt_request_get_cong(struct rpc_xprt *xprt, struct rpc_rqst *req) { bool ret = false; if (req->rq_cong) return true; spin_lock(&xprt->transport_lock); ret = __xprt_get_cong(xprt, req) != 0; spin_unlock(&xprt->transport_lock); return ret; } EXPORT_SYMBOL_GPL(xprt_request_get_cong); /** * xprt_release_rqst_cong - housekeeping when request is complete * @task: RPC request that recently completed * * Useful for transports that require congestion control. */ void xprt_release_rqst_cong(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; __xprt_put_cong(req->rq_xprt, req); } EXPORT_SYMBOL_GPL(xprt_release_rqst_cong); static void xprt_clear_congestion_window_wait_locked(struct rpc_xprt *xprt) { if (test_and_clear_bit(XPRT_CWND_WAIT, &xprt->state)) __xprt_lock_write_next_cong(xprt); } /* * Clear the congestion window wait flag and wake up the next * entry on xprt->sending */ static void xprt_clear_congestion_window_wait(struct rpc_xprt *xprt) { if (test_and_clear_bit(XPRT_CWND_WAIT, &xprt->state)) { spin_lock(&xprt->transport_lock); __xprt_lock_write_next_cong(xprt); spin_unlock(&xprt->transport_lock); } } /** * xprt_adjust_cwnd - adjust transport congestion window * @xprt: pointer to xprt * @task: recently completed RPC request used to adjust window * @result: result code of completed RPC request * * The transport code maintains an estimate on the maximum number of out- * standing RPC requests, using a smoothed version of the congestion * avoidance implemented in 44BSD. This is basically the Van Jacobson * congestion algorithm: If a retransmit occurs, the congestion window is * halved; otherwise, it is incremented by 1/cwnd when * * - a reply is received and * - a full number of requests are outstanding and * - the congestion window hasn't been updated recently. */ void xprt_adjust_cwnd(struct rpc_xprt *xprt, struct rpc_task *task, int result) { struct rpc_rqst *req = task->tk_rqstp; unsigned long cwnd = xprt->cwnd; if (result >= 0 && cwnd <= xprt->cong) { /* The (cwnd >> 1) term makes sure * the result gets rounded properly. */ cwnd += (RPC_CWNDSCALE * RPC_CWNDSCALE + (cwnd >> 1)) / cwnd; if (cwnd > RPC_MAXCWND(xprt)) cwnd = RPC_MAXCWND(xprt); __xprt_lock_write_next_cong(xprt); } else if (result == -ETIMEDOUT) { cwnd >>= 1; if (cwnd < RPC_CWNDSCALE) cwnd = RPC_CWNDSCALE; } dprintk("RPC: cong %ld, cwnd was %ld, now %ld\n", xprt->cong, xprt->cwnd, cwnd); xprt->cwnd = cwnd; __xprt_put_cong(xprt, req); } EXPORT_SYMBOL_GPL(xprt_adjust_cwnd); /** * xprt_wake_pending_tasks - wake all tasks on a transport's pending queue * @xprt: transport with waiting tasks * @status: result code to plant in each task before waking it * */ void xprt_wake_pending_tasks(struct rpc_xprt *xprt, int status) { if (status < 0) rpc_wake_up_status(&xprt->pending, status); else rpc_wake_up(&xprt->pending); } EXPORT_SYMBOL_GPL(xprt_wake_pending_tasks); /** * xprt_wait_for_buffer_space - wait for transport output buffer to clear * @xprt: transport * * Note that we only set the timer for the case of RPC_IS_SOFT(), since * we don't in general want to force a socket disconnection due to * an incomplete RPC call transmission. */ void xprt_wait_for_buffer_space(struct rpc_xprt *xprt) { set_bit(XPRT_WRITE_SPACE, &xprt->state); } EXPORT_SYMBOL_GPL(xprt_wait_for_buffer_space); static bool xprt_clear_write_space_locked(struct rpc_xprt *xprt) { if (test_and_clear_bit(XPRT_WRITE_SPACE, &xprt->state)) { __xprt_lock_write_next(xprt); dprintk("RPC: write space: waking waiting task on " "xprt %p\n", xprt); return true; } return false; } /** * xprt_write_space - wake the task waiting for transport output buffer space * @xprt: transport with waiting tasks * * Can be called in a soft IRQ context, so xprt_write_space never sleeps. */ bool xprt_write_space(struct rpc_xprt *xprt) { bool ret; if (!test_bit(XPRT_WRITE_SPACE, &xprt->state)) return false; spin_lock(&xprt->transport_lock); ret = xprt_clear_write_space_locked(xprt); spin_unlock(&xprt->transport_lock); return ret; } EXPORT_SYMBOL_GPL(xprt_write_space); static unsigned long xprt_abs_ktime_to_jiffies(ktime_t abstime) { s64 delta = ktime_to_ns(ktime_get() - abstime); return likely(delta >= 0) ? jiffies - nsecs_to_jiffies(delta) : jiffies + nsecs_to_jiffies(-delta); } static unsigned long xprt_calc_majortimeo(struct rpc_rqst *req) { const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout; unsigned long majortimeo = req->rq_timeout; if (to->to_exponential) majortimeo <<= to->to_retries; else majortimeo += to->to_increment * to->to_retries; if (majortimeo > to->to_maxval || majortimeo == 0) majortimeo = to->to_maxval; return majortimeo; } static void xprt_reset_majortimeo(struct rpc_rqst *req) { req->rq_majortimeo += xprt_calc_majortimeo(req); } static void xprt_reset_minortimeo(struct rpc_rqst *req) { req->rq_minortimeo += req->rq_timeout; } static void xprt_init_majortimeo(struct rpc_task *task, struct rpc_rqst *req) { unsigned long time_init; struct rpc_xprt *xprt = req->rq_xprt; if (likely(xprt && xprt_connected(xprt))) time_init = jiffies; else time_init = xprt_abs_ktime_to_jiffies(task->tk_start); req->rq_timeout = task->tk_client->cl_timeout->to_initval; req->rq_majortimeo = time_init + xprt_calc_majortimeo(req); req->rq_minortimeo = time_init + req->rq_timeout; } /** * xprt_adjust_timeout - adjust timeout values for next retransmit * @req: RPC request containing parameters to use for the adjustment * */ int xprt_adjust_timeout(struct rpc_rqst *req) { struct rpc_xprt *xprt = req->rq_xprt; const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout; int status = 0; if (time_before(jiffies, req->rq_majortimeo)) { if (time_before(jiffies, req->rq_minortimeo)) return status; if (to->to_exponential) req->rq_timeout <<= 1; else req->rq_timeout += to->to_increment; if (to->to_maxval && req->rq_timeout >= to->to_maxval) req->rq_timeout = to->to_maxval; req->rq_retries++; } else { req->rq_timeout = to->to_initval; req->rq_retries = 0; xprt_reset_majortimeo(req); /* Reset the RTT counters == "slow start" */ spin_lock(&xprt->transport_lock); rpc_init_rtt(req->rq_task->tk_client->cl_rtt, to->to_initval); spin_unlock(&xprt->transport_lock); status = -ETIMEDOUT; } xprt_reset_minortimeo(req); if (req->rq_timeout == 0) { printk(KERN_WARNING "xprt_adjust_timeout: rq_timeout = 0!\n"); req->rq_timeout = 5 * HZ; } return status; } static void xprt_autoclose(struct work_struct *work) { struct rpc_xprt *xprt = container_of(work, struct rpc_xprt, task_cleanup); unsigned int pflags = memalloc_nofs_save(); trace_xprt_disconnect_auto(xprt); xprt->connect_cookie++; smp_mb__before_atomic(); clear_bit(XPRT_CLOSE_WAIT, &xprt->state); xprt->ops->close(xprt); xprt_release_write(xprt, NULL); wake_up_bit(&xprt->state, XPRT_LOCKED); memalloc_nofs_restore(pflags); } /** * xprt_disconnect_done - mark a transport as disconnected * @xprt: transport to flag for disconnect * */ void xprt_disconnect_done(struct rpc_xprt *xprt) { trace_xprt_disconnect_done(xprt); spin_lock(&xprt->transport_lock); xprt_clear_connected(xprt); xprt_clear_write_space_locked(xprt); xprt_clear_congestion_window_wait_locked(xprt); xprt_wake_pending_tasks(xprt, -ENOTCONN); spin_unlock(&xprt->transport_lock); } EXPORT_SYMBOL_GPL(xprt_disconnect_done); /** * xprt_schedule_autoclose_locked - Try to schedule an autoclose RPC call * @xprt: transport to disconnect */ static void xprt_schedule_autoclose_locked(struct rpc_xprt *xprt) { if (test_and_set_bit(XPRT_CLOSE_WAIT, &xprt->state)) return; if (test_and_set_bit(XPRT_LOCKED, &xprt->state) == 0) queue_work(xprtiod_workqueue, &xprt->task_cleanup); else if (xprt->snd_task && !test_bit(XPRT_SND_IS_COOKIE, &xprt->state)) rpc_wake_up_queued_task_set_status(&xprt->pending, xprt->snd_task, -ENOTCONN); } /** * xprt_force_disconnect - force a transport to disconnect * @xprt: transport to disconnect * */ void xprt_force_disconnect(struct rpc_xprt *xprt) { trace_xprt_disconnect_force(xprt); /* Don't race with the test_bit() in xprt_clear_locked() */ spin_lock(&xprt->transport_lock); xprt_schedule_autoclose_locked(xprt); spin_unlock(&xprt->transport_lock); } EXPORT_SYMBOL_GPL(xprt_force_disconnect); static unsigned int xprt_connect_cookie(struct rpc_xprt *xprt) { return READ_ONCE(xprt->connect_cookie); } static bool xprt_request_retransmit_after_disconnect(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; return req->rq_connect_cookie != xprt_connect_cookie(xprt) || !xprt_connected(xprt); } /** * xprt_conditional_disconnect - force a transport to disconnect * @xprt: transport to disconnect * @cookie: 'connection cookie' * * This attempts to break the connection if and only if 'cookie' matches * the current transport 'connection cookie'. It ensures that we don't * try to break the connection more than once when we need to retransmit * a batch of RPC requests. * */ void xprt_conditional_disconnect(struct rpc_xprt *xprt, unsigned int cookie) { /* Don't race with the test_bit() in xprt_clear_locked() */ spin_lock(&xprt->transport_lock); if (cookie != xprt->connect_cookie) goto out; if (test_bit(XPRT_CLOSING, &xprt->state)) goto out; xprt_schedule_autoclose_locked(xprt); out: spin_unlock(&xprt->transport_lock); } static bool xprt_has_timer(const struct rpc_xprt *xprt) { return xprt->idle_timeout != 0; } static void xprt_schedule_autodisconnect(struct rpc_xprt *xprt) __must_hold(&xprt->transport_lock) { xprt->last_used = jiffies; if (RB_EMPTY_ROOT(&xprt->recv_queue) && xprt_has_timer(xprt)) mod_timer(&xprt->timer, xprt->last_used + xprt->idle_timeout); } static void xprt_init_autodisconnect(struct timer_list *t) { struct rpc_xprt *xprt = from_timer(xprt, t, timer); if (!RB_EMPTY_ROOT(&xprt->recv_queue)) return; /* Reset xprt->last_used to avoid connect/autodisconnect cycling */ xprt->last_used = jiffies; if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) return; queue_work(xprtiod_workqueue, &xprt->task_cleanup); } #if IS_ENABLED(CONFIG_FAIL_SUNRPC) static void xprt_inject_disconnect(struct rpc_xprt *xprt) { if (!fail_sunrpc.ignore_client_disconnect && should_fail(&fail_sunrpc.attr, 1)) xprt->ops->inject_disconnect(xprt); } #else static inline void xprt_inject_disconnect(struct rpc_xprt *xprt) { } #endif bool xprt_lock_connect(struct rpc_xprt *xprt, struct rpc_task *task, void *cookie) { bool ret = false; spin_lock(&xprt->transport_lock); if (!test_bit(XPRT_LOCKED, &xprt->state)) goto out; if (xprt->snd_task != task) goto out; set_bit(XPRT_SND_IS_COOKIE, &xprt->state); xprt->snd_task = cookie; ret = true; out: spin_unlock(&xprt->transport_lock); return ret; } EXPORT_SYMBOL_GPL(xprt_lock_connect); void xprt_unlock_connect(struct rpc_xprt *xprt, void *cookie) { spin_lock(&xprt->transport_lock); if (xprt->snd_task != cookie) goto out; if (!test_bit(XPRT_LOCKED, &xprt->state)) goto out; xprt->snd_task =NULL; clear_bit(XPRT_SND_IS_COOKIE, &xprt->state); xprt->ops->release_xprt(xprt, NULL); xprt_schedule_autodisconnect(xprt); out: spin_unlock(&xprt->transport_lock); wake_up_bit(&xprt->state, XPRT_LOCKED); } EXPORT_SYMBOL_GPL(xprt_unlock_connect); /** * xprt_connect - schedule a transport connect operation * @task: RPC task that is requesting the connect * */ void xprt_connect(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; trace_xprt_connect(xprt); if (!xprt_bound(xprt)) { task->tk_status = -EAGAIN; return; } if (!xprt_lock_write(xprt, task)) return; if (test_and_clear_bit(XPRT_CLOSE_WAIT, &xprt->state)) { trace_xprt_disconnect_cleanup(xprt); xprt->ops->close(xprt); } if (!xprt_connected(xprt)) { task->tk_rqstp->rq_connect_cookie = xprt->connect_cookie; rpc_sleep_on_timeout(&xprt->pending, task, NULL, xprt_request_timeout(task->tk_rqstp)); if (test_bit(XPRT_CLOSING, &xprt->state)) return; if (xprt_test_and_set_connecting(xprt)) return; /* Race breaker */ if (!xprt_connected(xprt)) { xprt->stat.connect_start = jiffies; xprt->ops->connect(xprt, task); } else { xprt_clear_connecting(xprt); task->tk_status = 0; rpc_wake_up_queued_task(&xprt->pending, task); } } xprt_release_write(xprt, task); } /** * xprt_reconnect_delay - compute the wait before scheduling a connect * @xprt: transport instance * */ unsigned long xprt_reconnect_delay(const struct rpc_xprt *xprt) { unsigned long start, now = jiffies; start = xprt->stat.connect_start + xprt->reestablish_timeout; if (time_after(start, now)) return start - now; return 0; } EXPORT_SYMBOL_GPL(xprt_reconnect_delay); /** * xprt_reconnect_backoff - compute the new re-establish timeout * @xprt: transport instance * @init_to: initial reestablish timeout * */ void xprt_reconnect_backoff(struct rpc_xprt *xprt, unsigned long init_to) { xprt->reestablish_timeout <<= 1; if (xprt->reestablish_timeout > xprt->max_reconnect_timeout) xprt->reestablish_timeout = xprt->max_reconnect_timeout; if (xprt->reestablish_timeout < init_to) xprt->reestablish_timeout = init_to; } EXPORT_SYMBOL_GPL(xprt_reconnect_backoff); enum xprt_xid_rb_cmp { XID_RB_EQUAL, XID_RB_LEFT, XID_RB_RIGHT, }; static enum xprt_xid_rb_cmp xprt_xid_cmp(__be32 xid1, __be32 xid2) { if (xid1 == xid2) return XID_RB_EQUAL; if ((__force u32)xid1 < (__force u32)xid2) return XID_RB_LEFT; return XID_RB_RIGHT; } static struct rpc_rqst * xprt_request_rb_find(struct rpc_xprt *xprt, __be32 xid) { struct rb_node *n = xprt->recv_queue.rb_node; struct rpc_rqst *req; while (n != NULL) { req = rb_entry(n, struct rpc_rqst, rq_recv); switch (xprt_xid_cmp(xid, req->rq_xid)) { case XID_RB_LEFT: n = n->rb_left; break; case XID_RB_RIGHT: n = n->rb_right; break; case XID_RB_EQUAL: return req; } } return NULL; } static void xprt_request_rb_insert(struct rpc_xprt *xprt, struct rpc_rqst *new) { struct rb_node **p = &xprt->recv_queue.rb_node; struct rb_node *n = NULL; struct rpc_rqst *req; while (*p != NULL) { n = *p; req = rb_entry(n, struct rpc_rqst, rq_recv); switch(xprt_xid_cmp(new->rq_xid, req->rq_xid)) { case XID_RB_LEFT: p = &n->rb_left; break; case XID_RB_RIGHT: p = &n->rb_right; break; case XID_RB_EQUAL: WARN_ON_ONCE(new != req); return; } } rb_link_node(&new->rq_recv, n, p); rb_insert_color(&new->rq_recv, &xprt->recv_queue); } static void xprt_request_rb_remove(struct rpc_xprt *xprt, struct rpc_rqst *req) { rb_erase(&req->rq_recv, &xprt->recv_queue); } /** * xprt_lookup_rqst - find an RPC request corresponding to an XID * @xprt: transport on which the original request was transmitted * @xid: RPC XID of incoming reply * * Caller holds xprt->queue_lock. */ struct rpc_rqst *xprt_lookup_rqst(struct rpc_xprt *xprt, __be32 xid) { struct rpc_rqst *entry; entry = xprt_request_rb_find(xprt, xid); if (entry != NULL) { trace_xprt_lookup_rqst(xprt, xid, 0); entry->rq_rtt = ktime_sub(ktime_get(), entry->rq_xtime); return entry; } dprintk("RPC: xprt_lookup_rqst did not find xid %08x\n", ntohl(xid)); trace_xprt_lookup_rqst(xprt, xid, -ENOENT); xprt->stat.bad_xids++; return NULL; } EXPORT_SYMBOL_GPL(xprt_lookup_rqst); static bool xprt_is_pinned_rqst(struct rpc_rqst *req) { return atomic_read(&req->rq_pin) != 0; } /** * xprt_pin_rqst - Pin a request on the transport receive list * @req: Request to pin * * Caller must ensure this is atomic with the call to xprt_lookup_rqst() * so should be holding xprt->queue_lock. */ void xprt_pin_rqst(struct rpc_rqst *req) { atomic_inc(&req->rq_pin); } EXPORT_SYMBOL_GPL(xprt_pin_rqst); /** * xprt_unpin_rqst - Unpin a request on the transport receive list * @req: Request to pin * * Caller should be holding xprt->queue_lock. */ void xprt_unpin_rqst(struct rpc_rqst *req) { if (!test_bit(RPC_TASK_MSG_PIN_WAIT, &req->rq_task->tk_runstate)) { atomic_dec(&req->rq_pin); return; } if (atomic_dec_and_test(&req->rq_pin)) wake_up_var(&req->rq_pin); } EXPORT_SYMBOL_GPL(xprt_unpin_rqst); static void xprt_wait_on_pinned_rqst(struct rpc_rqst *req) { wait_var_event(&req->rq_pin, !xprt_is_pinned_rqst(req)); } static bool xprt_request_data_received(struct rpc_task *task) { return !test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) && READ_ONCE(task->tk_rqstp->rq_reply_bytes_recvd) != 0; } static bool xprt_request_need_enqueue_receive(struct rpc_task *task, struct rpc_rqst *req) { return !test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) && READ_ONCE(task->tk_rqstp->rq_reply_bytes_recvd) == 0; } /** * xprt_request_enqueue_receive - Add an request to the receive queue * @task: RPC task * */ void xprt_request_enqueue_receive(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; if (!xprt_request_need_enqueue_receive(task, req)) return; xprt_request_prepare(task->tk_rqstp); spin_lock(&xprt->queue_lock); /* Update the softirq receive buffer */ memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(req->rq_private_buf)); /* Add request to the receive list */ xprt_request_rb_insert(xprt, req); set_bit(RPC_TASK_NEED_RECV, &task->tk_runstate); spin_unlock(&xprt->queue_lock); /* Turn off autodisconnect */ del_singleshot_timer_sync(&xprt->timer); } /** * xprt_request_dequeue_receive_locked - Remove a request from the receive queue * @task: RPC task * * Caller must hold xprt->queue_lock. */ static void xprt_request_dequeue_receive_locked(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (test_and_clear_bit(RPC_TASK_NEED_RECV, &task->tk_runstate)) xprt_request_rb_remove(req->rq_xprt, req); } /** * xprt_update_rtt - Update RPC RTT statistics * @task: RPC request that recently completed * * Caller holds xprt->queue_lock. */ void xprt_update_rtt(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_rtt *rtt = task->tk_client->cl_rtt; unsigned int timer = task->tk_msg.rpc_proc->p_timer; long m = usecs_to_jiffies(ktime_to_us(req->rq_rtt)); if (timer) { if (req->rq_ntrans == 1) rpc_update_rtt(rtt, timer, m); rpc_set_timeo(rtt, timer, req->rq_ntrans - 1); } } EXPORT_SYMBOL_GPL(xprt_update_rtt); /** * xprt_complete_rqst - called when reply processing is complete * @task: RPC request that recently completed * @copied: actual number of bytes received from the transport * * Caller holds xprt->queue_lock. */ void xprt_complete_rqst(struct rpc_task *task, int copied) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; xprt->stat.recvs++; req->rq_private_buf.len = copied; /* Ensure all writes are done before we update */ /* req->rq_reply_bytes_recvd */ smp_wmb(); req->rq_reply_bytes_recvd = copied; xprt_request_dequeue_receive_locked(task); rpc_wake_up_queued_task(&xprt->pending, task); } EXPORT_SYMBOL_GPL(xprt_complete_rqst); static void xprt_timer(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; if (task->tk_status != -ETIMEDOUT) return; trace_xprt_timer(xprt, req->rq_xid, task->tk_status); if (!req->rq_reply_bytes_recvd) { if (xprt->ops->timer) xprt->ops->timer(xprt, task); } else task->tk_status = 0; } /** * xprt_wait_for_reply_request_def - wait for reply * @task: pointer to rpc_task * * Set a request's retransmit timeout based on the transport's * default timeout parameters. Used by transports that don't adjust * the retransmit timeout based on round-trip time estimation, * and put the task to sleep on the pending queue. */ void xprt_wait_for_reply_request_def(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; rpc_sleep_on_timeout(&req->rq_xprt->pending, task, xprt_timer, xprt_request_timeout(req)); } EXPORT_SYMBOL_GPL(xprt_wait_for_reply_request_def); /** * xprt_wait_for_reply_request_rtt - wait for reply using RTT estimator * @task: pointer to rpc_task * * Set a request's retransmit timeout using the RTT estimator, * and put the task to sleep on the pending queue. */ void xprt_wait_for_reply_request_rtt(struct rpc_task *task) { int timer = task->tk_msg.rpc_proc->p_timer; struct rpc_clnt *clnt = task->tk_client; struct rpc_rtt *rtt = clnt->cl_rtt; struct rpc_rqst *req = task->tk_rqstp; unsigned long max_timeout = clnt->cl_timeout->to_maxval; unsigned long timeout; timeout = rpc_calc_rto(rtt, timer); timeout <<= rpc_ntimeo(rtt, timer) + req->rq_retries; if (timeout > max_timeout || timeout == 0) timeout = max_timeout; rpc_sleep_on_timeout(&req->rq_xprt->pending, task, xprt_timer, jiffies + timeout); } EXPORT_SYMBOL_GPL(xprt_wait_for_reply_request_rtt); /** * xprt_request_wait_receive - wait for the reply to an RPC request * @task: RPC task about to send a request * */ void xprt_request_wait_receive(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; if (!test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate)) return; /* * Sleep on the pending queue if we're expecting a reply. * The spinlock ensures atomicity between the test of * req->rq_reply_bytes_recvd, and the call to rpc_sleep_on(). */ spin_lock(&xprt->queue_lock); if (test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate)) { xprt->ops->wait_for_reply_request(task); /* * Send an extra queue wakeup call if the * connection was dropped in case the call to * rpc_sleep_on() raced. */ if (xprt_request_retransmit_after_disconnect(task)) rpc_wake_up_queued_task_set_status(&xprt->pending, task, -ENOTCONN); } spin_unlock(&xprt->queue_lock); } static bool xprt_request_need_enqueue_transmit(struct rpc_task *task, struct rpc_rqst *req) { return !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate); } /** * xprt_request_enqueue_transmit - queue a task for transmission * @task: pointer to rpc_task * * Add a task to the transmission queue. */ void xprt_request_enqueue_transmit(struct rpc_task *task) { struct rpc_rqst *pos, *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; if (xprt_request_need_enqueue_transmit(task, req)) { req->rq_bytes_sent = 0; spin_lock(&xprt->queue_lock); /* * Requests that carry congestion control credits are added * to the head of the list to avoid starvation issues. */ if (req->rq_cong) { xprt_clear_congestion_window_wait(xprt); list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) { if (pos->rq_cong) continue; /* Note: req is added _before_ pos */ list_add_tail(&req->rq_xmit, &pos->rq_xmit); INIT_LIST_HEAD(&req->rq_xmit2); goto out; } } else if (!req->rq_seqno) { list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) { if (pos->rq_task->tk_owner != task->tk_owner) continue; list_add_tail(&req->rq_xmit2, &pos->rq_xmit2); INIT_LIST_HEAD(&req->rq_xmit); goto out; } } list_add_tail(&req->rq_xmit, &xprt->xmit_queue); INIT_LIST_HEAD(&req->rq_xmit2); out: atomic_long_inc(&xprt->xmit_queuelen); set_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate); spin_unlock(&xprt->queue_lock); } } /** * xprt_request_dequeue_transmit_locked - remove a task from the transmission queue * @task: pointer to rpc_task * * Remove a task from the transmission queue * Caller must hold xprt->queue_lock */ static void xprt_request_dequeue_transmit_locked(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (!test_and_clear_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) return; if (!list_empty(&req->rq_xmit)) { list_del(&req->rq_xmit); if (!list_empty(&req->rq_xmit2)) { struct rpc_rqst *next = list_first_entry(&req->rq_xmit2, struct rpc_rqst, rq_xmit2); list_del(&req->rq_xmit2); list_add_tail(&next->rq_xmit, &next->rq_xprt->xmit_queue); } } else list_del(&req->rq_xmit2); atomic_long_dec(&req->rq_xprt->xmit_queuelen); } /** * xprt_request_dequeue_transmit - remove a task from the transmission queue * @task: pointer to rpc_task * * Remove a task from the transmission queue */ static void xprt_request_dequeue_transmit(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; spin_lock(&xprt->queue_lock); xprt_request_dequeue_transmit_locked(task); spin_unlock(&xprt->queue_lock); } /** * xprt_request_dequeue_xprt - remove a task from the transmit+receive queue * @task: pointer to rpc_task * * Remove a task from the transmit and receive queues, and ensure that * it is not pinned by the receive work item. */ void xprt_request_dequeue_xprt(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate) || test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) || xprt_is_pinned_rqst(req)) { spin_lock(&xprt->queue_lock); xprt_request_dequeue_transmit_locked(task); xprt_request_dequeue_receive_locked(task); while (xprt_is_pinned_rqst(req)) { set_bit(RPC_TASK_MSG_PIN_WAIT, &task->tk_runstate); spin_unlock(&xprt->queue_lock); xprt_wait_on_pinned_rqst(req); spin_lock(&xprt->queue_lock); clear_bit(RPC_TASK_MSG_PIN_WAIT, &task->tk_runstate); } spin_unlock(&xprt->queue_lock); } } /** * xprt_request_prepare - prepare an encoded request for transport * @req: pointer to rpc_rqst * * Calls into the transport layer to do whatever is needed to prepare * the request for transmission or receive. */ void xprt_request_prepare(struct rpc_rqst *req) { struct rpc_xprt *xprt = req->rq_xprt; if (xprt->ops->prepare_request) xprt->ops->prepare_request(req); } /** * xprt_request_need_retransmit - Test if a task needs retransmission * @task: pointer to rpc_task * * Test for whether a connection breakage requires the task to retransmit */ bool xprt_request_need_retransmit(struct rpc_task *task) { return xprt_request_retransmit_after_disconnect(task); } /** * xprt_prepare_transmit - reserve the transport before sending a request * @task: RPC task about to send a request * */ bool xprt_prepare_transmit(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; if (!xprt_lock_write(xprt, task)) { /* Race breaker: someone may have transmitted us */ if (!test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) rpc_wake_up_queued_task_set_status(&xprt->sending, task, 0); return false; } if (atomic_read(&xprt->swapper)) /* This will be clear in __rpc_execute */ current->flags |= PF_MEMALLOC; return true; } void xprt_end_transmit(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; xprt_inject_disconnect(xprt); xprt_release_write(xprt, task); } /** * xprt_request_transmit - send an RPC request on a transport * @req: pointer to request to transmit * @snd_task: RPC task that owns the transport lock * * This performs the transmission of a single request. * Note that if the request is not the same as snd_task, then it * does need to be pinned. * Returns '0' on success. */ static int xprt_request_transmit(struct rpc_rqst *req, struct rpc_task *snd_task) { struct rpc_xprt *xprt = req->rq_xprt; struct rpc_task *task = req->rq_task; unsigned int connect_cookie; int is_retrans = RPC_WAS_SENT(task); int status; if (!req->rq_bytes_sent) { if (xprt_request_data_received(task)) { status = 0; goto out_dequeue; } /* Verify that our message lies in the RPCSEC_GSS window */ if (rpcauth_xmit_need_reencode(task)) { status = -EBADMSG; goto out_dequeue; } if (RPC_SIGNALLED(task)) { status = -ERESTARTSYS; goto out_dequeue; } } /* * Update req->rq_ntrans before transmitting to avoid races with * xprt_update_rtt(), which needs to know that it is recording a * reply to the first transmission. */ req->rq_ntrans++; trace_rpc_xdr_sendto(task, &req->rq_snd_buf); connect_cookie = xprt->connect_cookie; status = xprt->ops->send_request(req); if (status != 0) { req->rq_ntrans--; trace_xprt_transmit(req, status); return status; } if (is_retrans) { task->tk_client->cl_stats->rpcretrans++; trace_xprt_retransmit(req); } xprt_inject_disconnect(xprt); task->tk_flags |= RPC_TASK_SENT; spin_lock(&xprt->transport_lock); xprt->stat.sends++; xprt->stat.req_u += xprt->stat.sends - xprt->stat.recvs; xprt->stat.bklog_u += xprt->backlog.qlen; xprt->stat.sending_u += xprt->sending.qlen; xprt->stat.pending_u += xprt->pending.qlen; spin_unlock(&xprt->transport_lock); req->rq_connect_cookie = connect_cookie; out_dequeue: trace_xprt_transmit(req, status); xprt_request_dequeue_transmit(task); rpc_wake_up_queued_task_set_status(&xprt->sending, task, status); return status; } /** * xprt_transmit - send an RPC request on a transport * @task: controlling RPC task * * Attempts to drain the transmit queue. On exit, either the transport * signalled an error that needs to be handled before transmission can * resume, or @task finished transmitting, and detected that it already * received a reply. */ void xprt_transmit(struct rpc_task *task) { struct rpc_rqst *next, *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; int status; spin_lock(&xprt->queue_lock); for (;;) { next = list_first_entry_or_null(&xprt->xmit_queue, struct rpc_rqst, rq_xmit); if (!next) break; xprt_pin_rqst(next); spin_unlock(&xprt->queue_lock); status = xprt_request_transmit(next, task); if (status == -EBADMSG && next != req) status = 0; spin_lock(&xprt->queue_lock); xprt_unpin_rqst(next); if (status < 0) { if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) task->tk_status = status; break; } /* Was @task transmitted, and has it received a reply? */ if (xprt_request_data_received(task) && !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) break; cond_resched_lock(&xprt->queue_lock); } spin_unlock(&xprt->queue_lock); } static void xprt_complete_request_init(struct rpc_task *task) { if (task->tk_rqstp) xprt_request_init(task); } void xprt_add_backlog(struct rpc_xprt *xprt, struct rpc_task *task) { set_bit(XPRT_CONGESTED, &xprt->state); rpc_sleep_on(&xprt->backlog, task, xprt_complete_request_init); } EXPORT_SYMBOL_GPL(xprt_add_backlog); static bool __xprt_set_rq(struct rpc_task *task, void *data) { struct rpc_rqst *req = data; if (task->tk_rqstp == NULL) { memset(req, 0, sizeof(*req)); /* mark unused */ task->tk_rqstp = req; return true; } return false; } bool xprt_wake_up_backlog(struct rpc_xprt *xprt, struct rpc_rqst *req) { if (rpc_wake_up_first(&xprt->backlog, __xprt_set_rq, req) == NULL) { clear_bit(XPRT_CONGESTED, &xprt->state); return false; } return true; } EXPORT_SYMBOL_GPL(xprt_wake_up_backlog); static bool xprt_throttle_congested(struct rpc_xprt *xprt, struct rpc_task *task) { bool ret = false; if (!test_bit(XPRT_CONGESTED, &xprt->state)) goto out; spin_lock(&xprt->reserve_lock); if (test_bit(XPRT_CONGESTED, &xprt->state)) { xprt_add_backlog(xprt, task); ret = true; } spin_unlock(&xprt->reserve_lock); out: return ret; } static struct rpc_rqst *xprt_dynamic_alloc_slot(struct rpc_xprt *xprt) { struct rpc_rqst *req = ERR_PTR(-EAGAIN); if (xprt->num_reqs >= xprt->max_reqs) goto out; ++xprt->num_reqs; spin_unlock(&xprt->reserve_lock); req = kzalloc(sizeof(*req), rpc_task_gfp_mask()); spin_lock(&xprt->reserve_lock); if (req != NULL) goto out; --xprt->num_reqs; req = ERR_PTR(-ENOMEM); out: return req; } static bool xprt_dynamic_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req) { if (xprt->num_reqs > xprt->min_reqs) { --xprt->num_reqs; kfree(req); return true; } return false; } void xprt_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task) { struct rpc_rqst *req; spin_lock(&xprt->reserve_lock); if (!list_empty(&xprt->free)) { req = list_entry(xprt->free.next, struct rpc_rqst, rq_list); list_del(&req->rq_list); goto out_init_req; } req = xprt_dynamic_alloc_slot(xprt); if (!IS_ERR(req)) goto out_init_req; switch (PTR_ERR(req)) { case -ENOMEM: dprintk("RPC: dynamic allocation of request slot " "failed! Retrying\n"); task->tk_status = -ENOMEM; break; case -EAGAIN: xprt_add_backlog(xprt, task); dprintk("RPC: waiting for request slot\n"); fallthrough; default: task->tk_status = -EAGAIN; } spin_unlock(&xprt->reserve_lock); return; out_init_req: xprt->stat.max_slots = max_t(unsigned int, xprt->stat.max_slots, xprt->num_reqs); spin_unlock(&xprt->reserve_lock); task->tk_status = 0; task->tk_rqstp = req; } EXPORT_SYMBOL_GPL(xprt_alloc_slot); void xprt_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req) { spin_lock(&xprt->reserve_lock); if (!xprt_wake_up_backlog(xprt, req) && !xprt_dynamic_free_slot(xprt, req)) { memset(req, 0, sizeof(*req)); /* mark unused */ list_add(&req->rq_list, &xprt->free); } spin_unlock(&xprt->reserve_lock); } EXPORT_SYMBOL_GPL(xprt_free_slot); static void xprt_free_all_slots(struct rpc_xprt *xprt) { struct rpc_rqst *req; while (!list_empty(&xprt->free)) { req = list_first_entry(&xprt->free, struct rpc_rqst, rq_list); list_del(&req->rq_list); kfree(req); } } static DEFINE_IDA(rpc_xprt_ids); void xprt_cleanup_ids(void) { ida_destroy(&rpc_xprt_ids); } static int xprt_alloc_id(struct rpc_xprt *xprt) { int id; id = ida_simple_get(&rpc_xprt_ids, 0, 0, GFP_KERNEL); if (id < 0) return id; xprt->id = id; return 0; } static void xprt_free_id(struct rpc_xprt *xprt) { ida_simple_remove(&rpc_xprt_ids, xprt->id); } struct rpc_xprt *xprt_alloc(struct net *net, size_t size, unsigned int num_prealloc, unsigned int max_alloc) { struct rpc_xprt *xprt; struct rpc_rqst *req; int i; xprt = kzalloc(size, GFP_KERNEL); if (xprt == NULL) goto out; xprt_alloc_id(xprt); xprt_init(xprt, net); for (i = 0; i < num_prealloc; i++) { req = kzalloc(sizeof(struct rpc_rqst), GFP_KERNEL); if (!req) goto out_free; list_add(&req->rq_list, &xprt->free); } if (max_alloc > num_prealloc) xprt->max_reqs = max_alloc; else xprt->max_reqs = num_prealloc; xprt->min_reqs = num_prealloc; xprt->num_reqs = num_prealloc; return xprt; out_free: xprt_free(xprt); out: return NULL; } EXPORT_SYMBOL_GPL(xprt_alloc); void xprt_free(struct rpc_xprt *xprt) { put_net(xprt->xprt_net); xprt_free_all_slots(xprt); xprt_free_id(xprt); rpc_sysfs_xprt_destroy(xprt); kfree_rcu(xprt, rcu); } EXPORT_SYMBOL_GPL(xprt_free); static void xprt_init_connect_cookie(struct rpc_rqst *req, struct rpc_xprt *xprt) { req->rq_connect_cookie = xprt_connect_cookie(xprt) - 1; } static __be32 xprt_alloc_xid(struct rpc_xprt *xprt) { __be32 xid; spin_lock(&xprt->reserve_lock); xid = (__force __be32)xprt->xid++; spin_unlock(&xprt->reserve_lock); return xid; } static void xprt_init_xid(struct rpc_xprt *xprt) { xprt->xid = prandom_u32(); } static void xprt_request_init(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; struct rpc_rqst *req = task->tk_rqstp; req->rq_task = task; req->rq_xprt = xprt; req->rq_buffer = NULL; req->rq_xid = xprt_alloc_xid(xprt); xprt_init_connect_cookie(req, xprt); req->rq_snd_buf.len = 0; req->rq_snd_buf.buflen = 0; req->rq_rcv_buf.len = 0; req->rq_rcv_buf.buflen = 0; req->rq_snd_buf.bvec = NULL; req->rq_rcv_buf.bvec = NULL; req->rq_release_snd_buf = NULL; xprt_init_majortimeo(task, req); trace_xprt_reserve(req); } static void xprt_do_reserve(struct rpc_xprt *xprt, struct rpc_task *task) { xprt->ops->alloc_slot(xprt, task); if (task->tk_rqstp != NULL) xprt_request_init(task); } /** * xprt_reserve - allocate an RPC request slot * @task: RPC task requesting a slot allocation * * If the transport is marked as being congested, or if no more * slots are available, place the task on the transport's * backlog queue. */ void xprt_reserve(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; task->tk_status = 0; if (task->tk_rqstp != NULL) return; task->tk_status = -EAGAIN; if (!xprt_throttle_congested(xprt, task)) xprt_do_reserve(xprt, task); } /** * xprt_retry_reserve - allocate an RPC request slot * @task: RPC task requesting a slot allocation * * If no more slots are available, place the task on the transport's * backlog queue. * Note that the only difference with xprt_reserve is that we now * ignore the value of the XPRT_CONGESTED flag. */ void xprt_retry_reserve(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; task->tk_status = 0; if (task->tk_rqstp != NULL) return; task->tk_status = -EAGAIN; xprt_do_reserve(xprt, task); } /** * xprt_release - release an RPC request slot * @task: task which is finished with the slot * */ void xprt_release(struct rpc_task *task) { struct rpc_xprt *xprt; struct rpc_rqst *req = task->tk_rqstp; if (req == NULL) { if (task->tk_client) { xprt = task->tk_xprt; xprt_release_write(xprt, task); } return; } xprt = req->rq_xprt; xprt_request_dequeue_xprt(task); spin_lock(&xprt->transport_lock); xprt->ops->release_xprt(xprt, task); if (xprt->ops->release_request) xprt->ops->release_request(task); xprt_schedule_autodisconnect(xprt); spin_unlock(&xprt->transport_lock); if (req->rq_buffer) xprt->ops->buf_free(task); xdr_free_bvec(&req->rq_rcv_buf); xdr_free_bvec(&req->rq_snd_buf); if (req->rq_cred != NULL) put_rpccred(req->rq_cred); if (req->rq_release_snd_buf) req->rq_release_snd_buf(req); task->tk_rqstp = NULL; if (likely(!bc_prealloc(req))) xprt->ops->free_slot(xprt, req); else xprt_free_bc_request(req); } #ifdef CONFIG_SUNRPC_BACKCHANNEL void xprt_init_bc_request(struct rpc_rqst *req, struct rpc_task *task) { struct xdr_buf *xbufp = &req->rq_snd_buf; task->tk_rqstp = req; req->rq_task = task; xprt_init_connect_cookie(req, req->rq_xprt); /* * Set up the xdr_buf length. * This also indicates that the buffer is XDR encoded already. */ xbufp->len = xbufp->head[0].iov_len + xbufp->page_len + xbufp->tail[0].iov_len; } #endif static void xprt_init(struct rpc_xprt *xprt, struct net *net) { kref_init(&xprt->kref); spin_lock_init(&xprt->transport_lock); spin_lock_init(&xprt->reserve_lock); spin_lock_init(&xprt->queue_lock); INIT_LIST_HEAD(&xprt->free); xprt->recv_queue = RB_ROOT; INIT_LIST_HEAD(&xprt->xmit_queue); #if defined(CONFIG_SUNRPC_BACKCHANNEL) spin_lock_init(&xprt->bc_pa_lock); INIT_LIST_HEAD(&xprt->bc_pa_list); #endif /* CONFIG_SUNRPC_BACKCHANNEL */ INIT_LIST_HEAD(&xprt->xprt_switch); xprt->last_used = jiffies; xprt->cwnd = RPC_INITCWND; xprt->bind_index = 0; rpc_init_wait_queue(&xprt->binding, "xprt_binding"); rpc_init_wait_queue(&xprt->pending, "xprt_pending"); rpc_init_wait_queue(&xprt->sending, "xprt_sending"); rpc_init_priority_wait_queue(&xprt->backlog, "xprt_backlog"); xprt_init_xid(xprt); xprt->xprt_net = get_net(net); } /** * xprt_create_transport - create an RPC transport * @args: rpc transport creation arguments * */ struct rpc_xprt *xprt_create_transport(struct xprt_create *args) { struct rpc_xprt *xprt; const struct xprt_class *t; t = xprt_class_find_by_ident(args->ident); if (!t) { dprintk("RPC: transport (%d) not supported\n", args->ident); return ERR_PTR(-EIO); } xprt = t->setup(args); xprt_class_release(t); if (IS_ERR(xprt)) goto out; if (args->flags & XPRT_CREATE_NO_IDLE_TIMEOUT) xprt->idle_timeout = 0; INIT_WORK(&xprt->task_cleanup, xprt_autoclose); if (xprt_has_timer(xprt)) timer_setup(&xprt->timer, xprt_init_autodisconnect, 0); else timer_setup(&xprt->timer, NULL, 0); if (strlen(args->servername) > RPC_MAXNETNAMELEN) { xprt_destroy(xprt); return ERR_PTR(-EINVAL); } xprt->servername = kstrdup(args->servername, GFP_KERNEL); if (xprt->servername == NULL) { xprt_destroy(xprt); return ERR_PTR(-ENOMEM); } rpc_xprt_debugfs_register(xprt); trace_xprt_create(xprt); out: return xprt; } static void xprt_destroy_cb(struct work_struct *work) { struct rpc_xprt *xprt = container_of(work, struct rpc_xprt, task_cleanup); trace_xprt_destroy(xprt); rpc_xprt_debugfs_unregister(xprt); rpc_destroy_wait_queue(&xprt->binding); rpc_destroy_wait_queue(&xprt->pending); rpc_destroy_wait_queue(&xprt->sending); rpc_destroy_wait_queue(&xprt->backlog); kfree(xprt->servername); /* * Destroy any existing back channel */ xprt_destroy_backchannel(xprt, UINT_MAX); /* * Tear down transport state and free the rpc_xprt */ xprt->ops->destroy(xprt); } /** * xprt_destroy - destroy an RPC transport, killing off all requests. * @xprt: transport to destroy * */ static void xprt_destroy(struct rpc_xprt *xprt) { /* * Exclude transport connect/disconnect handlers and autoclose */ wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_UNINTERRUPTIBLE); /* * xprt_schedule_autodisconnect() can run after XPRT_LOCKED * is cleared. We use ->transport_lock to ensure the mod_timer() * can only run *before* del_time_sync(), never after. */ spin_lock(&xprt->transport_lock); del_timer_sync(&xprt->timer); spin_unlock(&xprt->transport_lock); /* * Destroy sockets etc from the system workqueue so they can * safely flush receive work running on rpciod. */ INIT_WORK(&xprt->task_cleanup, xprt_destroy_cb); schedule_work(&xprt->task_cleanup); } static void xprt_destroy_kref(struct kref *kref) { xprt_destroy(container_of(kref, struct rpc_xprt, kref)); } /** * xprt_get - return a reference to an RPC transport. * @xprt: pointer to the transport * */ struct rpc_xprt *xprt_get(struct rpc_xprt *xprt) { if (xprt != NULL && kref_get_unless_zero(&xprt->kref)) return xprt; return NULL; } EXPORT_SYMBOL_GPL(xprt_get); /** * xprt_put - release a reference to an RPC transport. * @xprt: pointer to the transport * */ void xprt_put(struct rpc_xprt *xprt) { if (xprt != NULL) kref_put(&xprt->kref, xprt_destroy_kref); } EXPORT_SYMBOL_GPL(xprt_put);