/* * mac80211 <-> driver interface * * Copyright 2002-2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc * Copyright 2007-2008 Johannes Berg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef MAC80211_H #define MAC80211_H #include #include #include #include #include #include #include #include /** * DOC: Introduction * * mac80211 is the Linux stack for 802.11 hardware that implements * only partial functionality in hard- or firmware. This document * defines the interface between mac80211 and low-level hardware * drivers. */ /** * DOC: Calling mac80211 from interrupts * * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be * called in hardware interrupt context. The low-level driver must not call any * other functions in hardware interrupt context. If there is a need for such * call, the low-level driver should first ACK the interrupt and perform the * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even * tasklet function. * * NOTE: If the driver opts to use the _irqsafe() functions, it may not also * use the non-IRQ-safe functions! */ /** * DOC: Warning * * If you're reading this document and not the header file itself, it will * be incomplete because not all documentation has been converted yet. */ /** * DOC: Frame format * * As a general rule, when frames are passed between mac80211 and the driver, * they start with the IEEE 802.11 header and include the same octets that are * sent over the air except for the FCS which should be calculated by the * hardware. * * There are, however, various exceptions to this rule for advanced features: * * The first exception is for hardware encryption and decryption offload * where the IV/ICV may or may not be generated in hardware. * * Secondly, when the hardware handles fragmentation, the frame handed to * the driver from mac80211 is the MSDU, not the MPDU. * * Finally, for received frames, the driver is able to indicate that it has * filled a radiotap header and put that in front of the frame; if it does * not do so then mac80211 may add this under certain circumstances. */ /** * struct ieee80211_ht_bss_info - describing BSS's HT characteristics * * This structure describes most essential parameters needed * to describe 802.11n HT characteristics in a BSS. * * @primary_channel: channel number of primery channel * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width) * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection) */ struct ieee80211_ht_bss_info { u8 primary_channel; u8 bss_cap; /* use IEEE80211_HT_IE_CHA_ */ u8 bss_op_mode; /* use IEEE80211_HT_IE_ */ }; /** * enum ieee80211_max_queues - maximum number of queues * * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. * @IEEE80211_MAX_AMPDU_QUEUES: Maximum number of queues usable * for A-MPDU operation. */ enum ieee80211_max_queues { IEEE80211_MAX_QUEUES = 16, IEEE80211_MAX_AMPDU_QUEUES = 16, }; /** * struct ieee80211_tx_queue_params - transmit queue configuration * * The information provided in this structure is required for QoS * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. * * @aifs: arbitration interframe space [0..255] * @cw_min: minimum contention window [a value of the form * 2^n-1 in the range 1..32767] * @cw_max: maximum contention window [like @cw_min] * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled */ struct ieee80211_tx_queue_params { u16 txop; u16 cw_min; u16 cw_max; u8 aifs; }; /** * struct ieee80211_tx_queue_stats - transmit queue statistics * * @len: number of packets in queue * @limit: queue length limit * @count: number of frames sent */ struct ieee80211_tx_queue_stats { unsigned int len; unsigned int limit; unsigned int count; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount; unsigned int dot11RTSFailureCount; unsigned int dot11FCSErrorCount; unsigned int dot11RTSSuccessCount; }; /** * enum ieee80211_bss_change - BSS change notification flags * * These flags are used with the bss_info_changed() callback * to indicate which BSS parameter changed. * * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), * also implies a change in the AID. * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed * @BSS_CHANGED_ERP_PREAMBLE: preamble changed * @BSS_CHANGED_ERP_SLOT: slot timing changed * @BSS_CHANGED_HT: 802.11n parameters changed * @BSS_CHANGED_BASIC_RATES: Basic rateset changed */ enum ieee80211_bss_change { BSS_CHANGED_ASSOC = 1<<0, BSS_CHANGED_ERP_CTS_PROT = 1<<1, BSS_CHANGED_ERP_PREAMBLE = 1<<2, BSS_CHANGED_ERP_SLOT = 1<<3, BSS_CHANGED_HT = 1<<4, BSS_CHANGED_BASIC_RATES = 1<<5, }; /** * struct ieee80211_bss_ht_conf - BSS's changing HT configuration * @operation_mode: HT operation mode (like in &struct ieee80211_ht_info) */ struct ieee80211_bss_ht_conf { u16 operation_mode; }; /** * struct ieee80211_bss_conf - holds the BSS's changing parameters * * This structure keeps information about a BSS (and an association * to that BSS) that can change during the lifetime of the BSS. * * @assoc: association status * @aid: association ID number, valid only when @assoc is true * @use_cts_prot: use CTS protection * @use_short_preamble: use 802.11b short preamble; * if the hardware cannot handle this it must set the * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag * @use_short_slot: use short slot time (only relevant for ERP); * if the hardware cannot handle this it must set the * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag * @dtim_period: num of beacons before the next DTIM, for PSM * @timestamp: beacon timestamp * @beacon_int: beacon interval * @assoc_capability: capabilities taken from assoc resp * @ht: BSS's HT configuration * @basic_rates: bitmap of basic rates, each bit stands for an * index into the rate table configured by the driver in * the current band. */ struct ieee80211_bss_conf { /* association related data */ bool assoc; u16 aid; /* erp related data */ bool use_cts_prot; bool use_short_preamble; bool use_short_slot; u8 dtim_period; u16 beacon_int; u16 assoc_capability; u64 timestamp; u64 basic_rates; struct ieee80211_bss_ht_conf ht; }; /** * enum mac80211_tx_control_flags - flags to describe transmission information/status * * These flags are used with the @flags member of &ieee80211_tx_info. * * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame. * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence * number to this frame, taking care of not overwriting the fragment * number and increasing the sequence number only when the * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly * assign sequence numbers to QoS-data frames but cannot do so correctly * for non-QoS-data and management frames because beacons need them from * that counter as well and mac80211 cannot guarantee proper sequencing. * If this flag is set, the driver should instruct the hardware to * assign a sequence number to the frame or assign one itself. Cf. IEEE * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for * beacons and always be clear for frames without a sequence number field. * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination * station * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211. * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted * because the destination STA was in powersave mode. * @IEEE80211_TX_STAT_ACK: Frame was acknowledged * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status * is for the whole aggregation. * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, * so consider using block ack request (BAR). * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be * set by rate control algorithms to indicate probe rate, will * be cleared for fragmented frames (except on the last fragment) */ enum mac80211_tx_control_flags { IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1), IEEE80211_TX_CTL_NO_ACK = BIT(2), IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3), IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4), IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5), IEEE80211_TX_CTL_AMPDU = BIT(6), IEEE80211_TX_CTL_INJECTED = BIT(7), IEEE80211_TX_STAT_TX_FILTERED = BIT(8), IEEE80211_TX_STAT_ACK = BIT(9), IEEE80211_TX_STAT_AMPDU = BIT(10), IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11), IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12), }; enum mac80211_rate_control_flags { IEEE80211_TX_RC_USE_RTS_CTS = BIT(0), IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1), IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2), /* rate index is an MCS rate number instead of an index */ IEEE80211_TX_RC_MCS = BIT(3), IEEE80211_TX_RC_GREEN_FIELD = BIT(4), IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5), IEEE80211_TX_RC_DUP_DATA = BIT(6), IEEE80211_TX_RC_SHORT_GI = BIT(7), }; /* there are 40 bytes if you don't need the rateset to be kept */ #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40 /* if you do need the rateset, then you have less space */ #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24 /* maximum number of rate stages */ #define IEEE80211_TX_MAX_RATES 5 /** * struct ieee80211_tx_rate - rate selection/status * * @idx: rate index to attempt to send with * @flags: rate control flags (&enum mac80211_rate_control_flags) * @count: number of tries in this rate before going to the next rate * * A value of -1 for @idx indicates an invalid rate and, if used * in an array of retry rates, that no more rates should be tried. * * When used for transmit status reporting, the driver should * always report the rate along with the flags it used. */ struct ieee80211_tx_rate { s8 idx; u8 count; u8 flags; } __attribute__((packed)); /** * struct ieee80211_tx_info - skb transmit information * * This structure is placed in skb->cb for three uses: * (1) mac80211 TX control - mac80211 tells the driver what to do * (2) driver internal use (if applicable) * (3) TX status information - driver tells mac80211 what happened * * The TX control's sta pointer is only valid during the ->tx call, * it may be NULL. * * @flags: transmit info flags, defined above * @band: the band to transmit on (use for checking for races) * @antenna_sel_tx: antenna to use, 0 for automatic diversity * @pad: padding, ignore * @control: union for control data * @status: union for status data * @driver_data: array of driver_data pointers * @ampdu_ack_len: number of aggregated frames. * relevant only if IEEE80211_TX_STATUS_AMPDU was set. * @ampdu_ack_map: block ack bit map for the aggregation. * relevant only if IEEE80211_TX_STATUS_AMPDU was set. * @ack_signal: signal strength of the ACK frame */ struct ieee80211_tx_info { /* common information */ u32 flags; u8 band; u8 antenna_sel_tx; /* 2 byte hole */ u8 pad[2]; union { struct { union { /* rate control */ struct { struct ieee80211_tx_rate rates[ IEEE80211_TX_MAX_RATES]; s8 rts_cts_rate_idx; }; /* only needed before rate control */ unsigned long jiffies; }; /* NB: vif can be NULL for injected frames */ struct ieee80211_vif *vif; struct ieee80211_key_conf *hw_key; struct ieee80211_sta *sta; } control; struct { struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES]; u8 ampdu_ack_len; u64 ampdu_ack_map; int ack_signal; /* 8 bytes free */ } status; struct { struct ieee80211_tx_rate driver_rates[ IEEE80211_TX_MAX_RATES]; void *rate_driver_data[ IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)]; }; void *driver_data[ IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)]; }; }; static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) { return (struct ieee80211_tx_info *)skb->cb; } /** * ieee80211_tx_info_clear_status - clear TX status * * @info: The &struct ieee80211_tx_info to be cleared. * * When the driver passes an skb back to mac80211, it must report * a number of things in TX status. This function clears everything * in the TX status but the rate control information (it does clear * the count since you need to fill that in anyway). * * NOTE: You can only use this function if you do NOT use * info->driver_data! Use info->rate_driver_data * instead if you need only the less space that allows. */ static inline void ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info) { int i; BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != offsetof(struct ieee80211_tx_info, control.rates)); BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != offsetof(struct ieee80211_tx_info, driver_rates)); BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8); /* clear the rate counts */ for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) info->status.rates[i].count = 0; BUILD_BUG_ON( offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23); memset(&info->status.ampdu_ack_len, 0, sizeof(struct ieee80211_tx_info) - offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); } /** * enum mac80211_rx_flags - receive flags * * These flags are used with the @flag member of &struct ieee80211_rx_status. * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. * Use together with %RX_FLAG_MMIC_STRIPPED. * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header. * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, * verification has been done by the hardware. * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. * If this flag is set, the stack cannot do any replay detection * hence the driver or hardware will have to do that. * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on * the frame. * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on * the frame. * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field) * is valid. This is useful in monitor mode and necessary for beacon frames * to enable IBSS merging. * @RX_FLAG_SHORTPRE: Short preamble was used for this frame * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index * @RX_FLAG_40MHZ: HT40 (40 MHz) was used * @RX_FLAG_SHORT_GI: Short guard interval was used */ enum mac80211_rx_flags { RX_FLAG_MMIC_ERROR = 1<<0, RX_FLAG_DECRYPTED = 1<<1, RX_FLAG_RADIOTAP = 1<<2, RX_FLAG_MMIC_STRIPPED = 1<<3, RX_FLAG_IV_STRIPPED = 1<<4, RX_FLAG_FAILED_FCS_CRC = 1<<5, RX_FLAG_FAILED_PLCP_CRC = 1<<6, RX_FLAG_TSFT = 1<<7, RX_FLAG_SHORTPRE = 1<<8, RX_FLAG_HT = 1<<9, RX_FLAG_40MHZ = 1<<10, RX_FLAG_SHORT_GI = 1<<11, }; /** * struct ieee80211_rx_status - receive status * * The low-level driver should provide this information (the subset * supported by hardware) to the 802.11 code with each received * frame. * * @mactime: value in microseconds of the 64-bit Time Synchronization Function * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. * @band: the active band when this frame was received * @freq: frequency the radio was tuned to when receiving this frame, in MHz * @signal: signal strength when receiving this frame, either in dBm, in dB or * unspecified depending on the hardware capabilities flags * @IEEE80211_HW_SIGNAL_* * @noise: noise when receiving this frame, in dBm. * @qual: overall signal quality indication, in percent (0-100). * @antenna: antenna used * @rate_idx: index of data rate into band's supported rates or MCS index if * HT rates are use (RX_FLAG_HT) * @flag: %RX_FLAG_* */ struct ieee80211_rx_status { u64 mactime; enum ieee80211_band band; int freq; int signal; int noise; int qual; int antenna; int rate_idx; int flag; }; /** * enum ieee80211_conf_flags - configuration flags * * Flags to define PHY configuration options * * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported) * @IEEE80211_CONF_PS: Enable 802.11 power save mode */ enum ieee80211_conf_flags { IEEE80211_CONF_RADIOTAP = (1<<0), IEEE80211_CONF_PS = (1<<1), }; /* XXX: remove all this once drivers stop trying to use it */ static inline int __deprecated __IEEE80211_CONF_SHORT_SLOT_TIME(void) { return 0; } #define IEEE80211_CONF_SHORT_SLOT_TIME (__IEEE80211_CONF_SHORT_SLOT_TIME()) /** * enum ieee80211_conf_changed - denotes which configuration changed * * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed * @IEEE80211_CONF_CHANGE_BEACON_INTERVAL: the beacon interval changed * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed * @IEEE80211_CONF_CHANGE_PS: the PS flag changed * @IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT: the dynamic PS timeout changed * @IEEE80211_CONF_CHANGE_POWER: the TX power changed * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed */ enum ieee80211_conf_changed { IEEE80211_CONF_CHANGE_RADIO_ENABLED = BIT(0), IEEE80211_CONF_CHANGE_BEACON_INTERVAL = BIT(1), IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2), IEEE80211_CONF_CHANGE_RADIOTAP = BIT(3), IEEE80211_CONF_CHANGE_PS = BIT(4), IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT = BIT(5), IEEE80211_CONF_CHANGE_POWER = BIT(6), IEEE80211_CONF_CHANGE_CHANNEL = BIT(7), IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(8), }; /** * struct ieee80211_conf - configuration of the device * * This struct indicates how the driver shall configure the hardware. * * @radio_enabled: when zero, driver is required to switch off the radio. * @beacon_int: beacon interval (TODO make interface config) * @listen_interval: listen interval in units of beacon interval * @flags: configuration flags defined above * @power_level: requested transmit power (in dBm) * @dynamic_ps_timeout: dynamic powersave timeout (in ms) * @channel: the channel to tune to * @channel_type: the channel (HT) type * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11, * but actually means the number of transmissions not the number of retries * @short_frame_max_tx_count: Maximum number of transmissions for a "short" * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the * number of transmissions not the number of retries */ struct ieee80211_conf { int beacon_int; u32 flags; int power_level, dynamic_ps_timeout; u16 listen_interval; bool radio_enabled; u8 long_frame_max_tx_count, short_frame_max_tx_count; struct ieee80211_channel *channel; enum nl80211_channel_type channel_type; }; /** * struct ieee80211_vif - per-interface data * * Data in this structure is continually present for driver * use during the life of a virtual interface. * * @type: type of this virtual interface * @bss_conf: BSS configuration for this interface, either our own * or the BSS we're associated to * @drv_priv: data area for driver use, will always be aligned to * sizeof(void *). */ struct ieee80211_vif { enum nl80211_iftype type; struct ieee80211_bss_conf bss_conf; /* must be last */ u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); }; static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) { #ifdef CONFIG_MAC80211_MESH return vif->type == NL80211_IFTYPE_MESH_POINT; #endif return false; } /** * struct ieee80211_if_init_conf - initial configuration of an interface * * @vif: pointer to a driver-use per-interface structure. The pointer * itself is also used for various functions including * ieee80211_beacon_get() and ieee80211_get_buffered_bc(). * @type: one of &enum nl80211_iftype constants. Determines the type of * added/removed interface. * @mac_addr: pointer to MAC address of the interface. This pointer is valid * until the interface is removed (i.e. it cannot be used after * remove_interface() callback was called for this interface). * * This structure is used in add_interface() and remove_interface() * callbacks of &struct ieee80211_hw. * * When you allow multiple interfaces to be added to your PHY, take care * that the hardware can actually handle multiple MAC addresses. However, * also take care that when there's no interface left with mac_addr != %NULL * you remove the MAC address from the device to avoid acknowledging packets * in pure monitor mode. */ struct ieee80211_if_init_conf { enum nl80211_iftype type; struct ieee80211_vif *vif; void *mac_addr; }; /** * enum ieee80211_if_conf_change - interface config change flags * * @IEEE80211_IFCC_BSSID: The BSSID changed. * @IEEE80211_IFCC_BEACON: The beacon for this interface changed * (currently AP and MESH only), use ieee80211_beacon_get(). */ enum ieee80211_if_conf_change { IEEE80211_IFCC_BSSID = BIT(0), IEEE80211_IFCC_BEACON = BIT(1), }; /** * struct ieee80211_if_conf - configuration of an interface * * @changed: parameters that have changed, see &enum ieee80211_if_conf_change. * @bssid: BSSID of the network we are associated to/creating. * * This structure is passed to the config_interface() callback of * &struct ieee80211_hw. */ struct ieee80211_if_conf { u32 changed; const u8 *bssid; }; /** * enum ieee80211_key_alg - key algorithm * @ALG_WEP: WEP40 or WEP104 * @ALG_TKIP: TKIP * @ALG_CCMP: CCMP (AES) * @ALG_AES_CMAC: AES-128-CMAC */ enum ieee80211_key_alg { ALG_WEP, ALG_TKIP, ALG_CCMP, ALG_AES_CMAC, }; /** * enum ieee80211_key_len - key length * @LEN_WEP40: WEP 5-byte long key * @LEN_WEP104: WEP 13-byte long key */ enum ieee80211_key_len { LEN_WEP40 = 5, LEN_WEP104 = 13, }; /** * enum ieee80211_key_flags - key flags * * These flags are used for communication about keys between the driver * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. * * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates * that the STA this key will be used with could be using QoS. * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the * driver to indicate that it requires IV generation for this * particular key. * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by * the driver for a TKIP key if it requires Michael MIC * generation in software. * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates * that the key is pairwise rather then a shared key. * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a * CCMP key if it requires CCMP encryption of management frames (MFP) to * be done in software. */ enum ieee80211_key_flags { IEEE80211_KEY_FLAG_WMM_STA = 1<<0, IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, IEEE80211_KEY_FLAG_PAIRWISE = 1<<3, IEEE80211_KEY_FLAG_SW_MGMT = 1<<4, }; /** * struct ieee80211_key_conf - key information * * This key information is given by mac80211 to the driver by * the set_key() callback in &struct ieee80211_ops. * * @hw_key_idx: To be set by the driver, this is the key index the driver * wants to be given when a frame is transmitted and needs to be * encrypted in hardware. * @alg: The key algorithm. * @flags: key flags, see &enum ieee80211_key_flags. * @keyidx: the key index (0-3) * @keylen: key material length * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) * data block: * - Temporal Encryption Key (128 bits) * - Temporal Authenticator Tx MIC Key (64 bits) * - Temporal Authenticator Rx MIC Key (64 bits) * @icv_len: The ICV length for this key type * @iv_len: The IV length for this key type */ struct ieee80211_key_conf { enum ieee80211_key_alg alg; u8 icv_len; u8 iv_len; u8 hw_key_idx; u8 flags; s8 keyidx; u8 keylen; u8 key[0]; }; /** * enum set_key_cmd - key command * * Used with the set_key() callback in &struct ieee80211_ops, this * indicates whether a key is being removed or added. * * @SET_KEY: a key is set * @DISABLE_KEY: a key must be disabled */ enum set_key_cmd { SET_KEY, DISABLE_KEY, }; /** * struct ieee80211_sta - station table entry * * A station table entry represents a station we are possibly * communicating with. Since stations are RCU-managed in * mac80211, any ieee80211_sta pointer you get access to must * either be protected by rcu_read_lock() explicitly or implicitly, * or you must take good care to not use such a pointer after a * call to your sta_notify callback that removed it. * * @addr: MAC address * @aid: AID we assigned to the station if we're an AP * @supp_rates: Bitmap of supported rates (per band) * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities * @drv_priv: data area for driver use, will always be aligned to * sizeof(void *), size is determined in hw information. */ struct ieee80211_sta { u64 supp_rates[IEEE80211_NUM_BANDS]; u8 addr[ETH_ALEN]; u16 aid; struct ieee80211_sta_ht_cap ht_cap; /* must be last */ u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); }; /** * enum sta_notify_cmd - sta notify command * * Used with the sta_notify() callback in &struct ieee80211_ops, this * indicates addition and removal of a station to station table, * or if a associated station made a power state transition. * * @STA_NOTIFY_ADD: a station was added to the station table * @STA_NOTIFY_REMOVE: a station being removed from the station table * @STA_NOTIFY_SLEEP: a station is now sleeping * @STA_NOTIFY_AWAKE: a sleeping station woke up */ enum sta_notify_cmd { STA_NOTIFY_ADD, STA_NOTIFY_REMOVE, STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE, }; /** * enum ieee80211_tkip_key_type - get tkip key * * Used by drivers which need to get a tkip key for skb. Some drivers need a * phase 1 key, others need a phase 2 key. A single function allows the driver * to get the key, this enum indicates what type of key is required. * * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key */ enum ieee80211_tkip_key_type { IEEE80211_TKIP_P1_KEY, IEEE80211_TKIP_P2_KEY, }; /** * enum ieee80211_hw_flags - hardware flags * * These flags are used to indicate hardware capabilities to * the stack. Generally, flags here should have their meaning * done in a way that the simplest hardware doesn't need setting * any particular flags. There are some exceptions to this rule, * however, so you are advised to review these flags carefully. * * @IEEE80211_HW_RX_INCLUDES_FCS: * Indicates that received frames passed to the stack include * the FCS at the end. * * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: * Some wireless LAN chipsets buffer broadcast/multicast frames * for power saving stations in the hardware/firmware and others * rely on the host system for such buffering. This option is used * to configure the IEEE 802.11 upper layer to buffer broadcast and * multicast frames when there are power saving stations so that * the driver can fetch them with ieee80211_get_buffered_bc(). * * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE: * Hardware is not capable of short slot operation on the 2.4 GHz band. * * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE: * Hardware is not capable of receiving frames with short preamble on * the 2.4 GHz band. * * @IEEE80211_HW_SIGNAL_UNSPEC: * Hardware can provide signal values but we don't know its units. We * expect values between 0 and @max_signal. * If possible please provide dB or dBm instead. * * @IEEE80211_HW_SIGNAL_DB: * Hardware gives signal values in dB, decibel difference from an * arbitrary, fixed reference. We expect values between 0 and @max_signal. * If possible please provide dBm instead. * * @IEEE80211_HW_SIGNAL_DBM: * Hardware gives signal values in dBm, decibel difference from * one milliwatt. This is the preferred method since it is standardized * between different devices. @max_signal does not need to be set. * * @IEEE80211_HW_NOISE_DBM: * Hardware can provide noise (radio interference) values in units dBm, * decibel difference from one milliwatt. * * @IEEE80211_HW_SPECTRUM_MGMT: * Hardware supports spectrum management defined in 802.11h * Measurement, Channel Switch, Quieting, TPC * * @IEEE80211_HW_AMPDU_AGGREGATION: * Hardware supports 11n A-MPDU aggregation. * * @IEEE80211_HW_SUPPORTS_PS: * Hardware has power save support (i.e. can go to sleep). * * @IEEE80211_HW_PS_NULLFUNC_STACK: * Hardware requires nullfunc frame handling in stack, implies * stack support for dynamic PS. * * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS: * Hardware has support for dynamic PS. * * @IEEE80211_HW_MFP_CAPABLE: * Hardware supports management frame protection (MFP, IEEE 802.11w). */ enum ieee80211_hw_flags { IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3, IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4, IEEE80211_HW_SIGNAL_UNSPEC = 1<<5, IEEE80211_HW_SIGNAL_DB = 1<<6, IEEE80211_HW_SIGNAL_DBM = 1<<7, IEEE80211_HW_NOISE_DBM = 1<<8, IEEE80211_HW_SPECTRUM_MGMT = 1<<9, IEEE80211_HW_AMPDU_AGGREGATION = 1<<10, IEEE80211_HW_SUPPORTS_PS = 1<<11, IEEE80211_HW_PS_NULLFUNC_STACK = 1<<12, IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<13, IEEE80211_HW_MFP_CAPABLE = 1<<14, }; /** * struct ieee80211_hw - hardware information and state * * This structure contains the configuration and hardware * information for an 802.11 PHY. * * @wiphy: This points to the &struct wiphy allocated for this * 802.11 PHY. You must fill in the @perm_addr and @dev * members of this structure using SET_IEEE80211_DEV() * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported * bands (with channels, bitrates) are registered here. * * @conf: &struct ieee80211_conf, device configuration, don't use. * * @workqueue: single threaded workqueue available for driver use, * allocated by mac80211 on registration and flushed when an * interface is removed. * NOTICE: All work performed on this workqueue should NEVER * acquire the RTNL lock (i.e. Don't use the function * ieee80211_iterate_active_interfaces()) * * @priv: pointer to private area that was allocated for driver use * along with this structure. * * @flags: hardware flags, see &enum ieee80211_hw_flags. * * @extra_tx_headroom: headroom to reserve in each transmit skb * for use by the driver (e.g. for transmit headers.) * * @channel_change_time: time (in microseconds) it takes to change channels. * * @max_signal: Maximum value for signal (rssi) in RX information, used * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB * * @max_listen_interval: max listen interval in units of beacon interval * that HW supports * * @queues: number of available hardware transmit queues for * data packets. WMM/QoS requires at least four, these * queues need to have configurable access parameters. * * @ampdu_queues: number of available hardware transmit queues * for A-MPDU packets, these have no access parameters * because they're used only for A-MPDU frames. Note that * mac80211 will not currently use any of the regular queues * for aggregation. * * @rate_control_algorithm: rate control algorithm for this hardware. * If unset (NULL), the default algorithm will be used. Must be * set before calling ieee80211_register_hw(). * * @vif_data_size: size (in bytes) of the drv_priv data area * within &struct ieee80211_vif. * @sta_data_size: size (in bytes) of the drv_priv data area * within &struct ieee80211_sta. * * @max_rates: maximum number of alternate rate retry stages * @max_rate_tries: maximum number of tries for each stage */ struct ieee80211_hw { struct ieee80211_conf conf; struct wiphy *wiphy; struct workqueue_struct *workqueue; const char *rate_control_algorithm; void *priv; u32 flags; unsigned int extra_tx_headroom; int channel_change_time; int vif_data_size; int sta_data_size; u16 queues; u16 ampdu_queues; u16 max_listen_interval; s8 max_signal; u8 max_rates; u8 max_rate_tries; }; /** * SET_IEEE80211_DEV - set device for 802.11 hardware * * @hw: the &struct ieee80211_hw to set the device for * @dev: the &struct device of this 802.11 device */ static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) { set_wiphy_dev(hw->wiphy, dev); } /** * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware * * @hw: the &struct ieee80211_hw to set the MAC address for * @addr: the address to set */ static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) { memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); } static inline int ieee80211_num_regular_queues(struct ieee80211_hw *hw) { return hw->queues; } static inline int ieee80211_num_queues(struct ieee80211_hw *hw) { return hw->queues + hw->ampdu_queues; } static inline struct ieee80211_rate * ieee80211_get_tx_rate(const struct ieee80211_hw *hw, const struct ieee80211_tx_info *c) { if (WARN_ON(c->control.rates[0].idx < 0)) return NULL; return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx]; } static inline struct ieee80211_rate * ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw, const struct ieee80211_tx_info *c) { if (c->control.rts_cts_rate_idx < 0) return NULL; return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx]; } static inline struct ieee80211_rate * ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw, const struct ieee80211_tx_info *c, int idx) { if (c->control.rates[idx + 1].idx < 0) return NULL; return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx]; } /** * DOC: Hardware crypto acceleration * * mac80211 is capable of taking advantage of many hardware * acceleration designs for encryption and decryption operations. * * The set_key() callback in the &struct ieee80211_ops for a given * device is called to enable hardware acceleration of encryption and * decryption. The callback takes a @sta parameter that will be NULL * for default keys or keys used for transmission only, or point to * the station information for the peer for individual keys. * Multiple transmission keys with the same key index may be used when * VLANs are configured for an access point. * * When transmitting, the TX control data will use the @hw_key_idx * selected by the driver by modifying the &struct ieee80211_key_conf * pointed to by the @key parameter to the set_key() function. * * The set_key() call for the %SET_KEY command should return 0 if * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be * added; if you return 0 then hw_key_idx must be assigned to the * hardware key index, you are free to use the full u8 range. * * When the cmd is %DISABLE_KEY then it must succeed. * * Note that it is permissible to not decrypt a frame even if a key * for it has been uploaded to hardware, the stack will not make any * decision based on whether a key has been uploaded or not but rather * based on the receive flags. * * The &struct ieee80211_key_conf structure pointed to by the @key * parameter is guaranteed to be valid until another call to set_key() * removes it, but it can only be used as a cookie to differentiate * keys. * * In TKIP some HW need to be provided a phase 1 key, for RX decryption * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key * handler. * The update_tkip_key() call updates the driver with the new phase 1 key. * This happens everytime the iv16 wraps around (every 65536 packets). The * set_key() call will happen only once for each key (unless the AP did * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is * provided by update_tkip_key only. The trigger that makes mac80211 call this * handler is software decryption with wrap around of iv16. */ /** * DOC: Powersave support * * mac80211 has support for various powersave implementations. * * First, it can support hardware that handles all powersaving by * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS * hardware flag. In that case, it will be told about the desired * powersave mode depending on the association status, and the driver * must take care of sending nullfunc frames when necessary, i.e. when * entering and leaving powersave mode. The driver is required to look at * the AID in beacons and signal to the AP that it woke up when it finds * traffic directed to it. This mode supports dynamic PS by simply * enabling/disabling PS. * * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS * flag to indicate that it can support dynamic PS mode itself (see below). * * Other hardware designs cannot send nullfunc frames by themselves and also * need software support for parsing the TIM bitmap. This is also supported * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still * required to pass up beacons. Additionally, in this case, mac80211 will * wake up the hardware when multicast traffic is announced in the beacon. * * FIXME: I don't think we can be fast enough in software when we want to * receive multicast traffic? * * Dynamic powersave mode is an extension to normal powersave mode in which * the hardware stays awake for a user-specified period of time after sending * a frame so that reply frames need not be buffered and therefore delayed * to the next wakeup. This can either be supported by hardware, in which case * the driver needs to look at the @dynamic_ps_timeout hardware configuration * value, or by the stack if all nullfunc handling is in the stack. */ /** * DOC: Frame filtering * * mac80211 requires to see many management frames for proper * operation, and users may want to see many more frames when * in monitor mode. However, for best CPU usage and power consumption, * having as few frames as possible percolate through the stack is * desirable. Hence, the hardware should filter as much as possible. * * To achieve this, mac80211 uses filter flags (see below) to tell * the driver's configure_filter() function which frames should be * passed to mac80211 and which should be filtered out. * * The configure_filter() callback is invoked with the parameters * @mc_count and @mc_list for the combined multicast address list * of all virtual interfaces, @changed_flags telling which flags * were changed and @total_flags with the new flag states. * * If your device has no multicast address filters your driver will * need to check both the %FIF_ALLMULTI flag and the @mc_count * parameter to see whether multicast frames should be accepted * or dropped. * * All unsupported flags in @total_flags must be cleared. * Hardware does not support a flag if it is incapable of _passing_ * the frame to the stack. Otherwise the driver must ignore * the flag, but not clear it. * You must _only_ clear the flag (announce no support for the * flag to mac80211) if you are not able to pass the packet type * to the stack (so the hardware always filters it). * So for example, you should clear @FIF_CONTROL, if your hardware * always filters control frames. If your hardware always passes * control frames to the kernel and is incapable of filtering them, * you do _not_ clear the @FIF_CONTROL flag. * This rule applies to all other FIF flags as well. */ /** * enum ieee80211_filter_flags - hardware filter flags * * These flags determine what the filter in hardware should be * programmed to let through and what should not be passed to the * stack. It is always safe to pass more frames than requested, * but this has negative impact on power consumption. * * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, * think of the BSS as your network segment and then this corresponds * to the regular ethernet device promiscuous mode. * * @FIF_ALLMULTI: pass all multicast frames, this is used if requested * by the user or if the hardware is not capable of filtering by * multicast address. * * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the * %RX_FLAG_FAILED_FCS_CRC for them) * * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set * the %RX_FLAG_FAILED_PLCP_CRC for them * * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate * to the hardware that it should not filter beacons or probe responses * by BSSID. Filtering them can greatly reduce the amount of processing * mac80211 needs to do and the amount of CPU wakeups, so you should * honour this flag if possible. * * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then * only those addressed to this station * * @FIF_OTHER_BSS: pass frames destined to other BSSes */ enum ieee80211_filter_flags { FIF_PROMISC_IN_BSS = 1<<0, FIF_ALLMULTI = 1<<1, FIF_FCSFAIL = 1<<2, FIF_PLCPFAIL = 1<<3, FIF_BCN_PRBRESP_PROMISC = 1<<4, FIF_CONTROL = 1<<5, FIF_OTHER_BSS = 1<<6, }; /** * enum ieee80211_ampdu_mlme_action - A-MPDU actions * * These flags are used with the ampdu_action() callback in * &struct ieee80211_ops to indicate which action is needed. * @IEEE80211_AMPDU_RX_START: start Rx aggregation * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation * @IEEE80211_AMPDU_TX_START: start Tx aggregation * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation * @IEEE80211_AMPDU_TX_RESUME: resume TX aggregation */ enum ieee80211_ampdu_mlme_action { IEEE80211_AMPDU_RX_START, IEEE80211_AMPDU_RX_STOP, IEEE80211_AMPDU_TX_START, IEEE80211_AMPDU_TX_STOP, IEEE80211_AMPDU_TX_RESUME, }; /** * struct ieee80211_ops - callbacks from mac80211 to the driver * * This structure contains various callbacks that the driver may * handle or, in some cases, must handle, for example to configure * the hardware to a new channel or to transmit a frame. * * @tx: Handler that 802.11 module calls for each transmitted frame. * skb contains the buffer starting from the IEEE 802.11 header. * The low-level driver should send the frame out based on * configuration in the TX control data. This handler should, * preferably, never fail and stop queues appropriately, more * importantly, however, it must never fail for A-MPDU-queues. * This function should return NETDEV_TX_OK except in very * limited cases. * Must be implemented and atomic. * * @start: Called before the first netdevice attached to the hardware * is enabled. This should turn on the hardware and must turn on * frame reception (for possibly enabled monitor interfaces.) * Returns negative error codes, these may be seen in userspace, * or zero. * When the device is started it should not have a MAC address * to avoid acknowledging frames before a non-monitor device * is added. * Must be implemented. * * @stop: Called after last netdevice attached to the hardware * is disabled. This should turn off the hardware (at least * it must turn off frame reception.) * May be called right after add_interface if that rejects * an interface. * Must be implemented. * * @add_interface: Called when a netdevice attached to the hardware is * enabled. Because it is not called for monitor mode devices, @start * and @stop must be implemented. * The driver should perform any initialization it needs before * the device can be enabled. The initial configuration for the * interface is given in the conf parameter. * The callback may refuse to add an interface by returning a * negative error code (which will be seen in userspace.) * Must be implemented. * * @remove_interface: Notifies a driver that an interface is going down. * The @stop callback is called after this if it is the last interface * and no monitor interfaces are present. * When all interfaces are removed, the MAC address in the hardware * must be cleared so the device no longer acknowledges packets, * the mac_addr member of the conf structure is, however, set to the * MAC address of the device going away. * Hence, this callback must be implemented. * * @config: Handler for configuration requests. IEEE 802.11 code calls this * function to change hardware configuration, e.g., channel. * This function should never fail but returns a negative error code * if it does. * * @config_interface: Handler for configuration requests related to interfaces * (e.g. BSSID changes.) * Returns a negative error code which will be seen in userspace. * * @bss_info_changed: Handler for configuration requests related to BSS * parameters that may vary during BSS's lifespan, and may affect low * level driver (e.g. assoc/disassoc status, erp parameters). * This function should not be used if no BSS has been set, unless * for association indication. The @changed parameter indicates which * of the bss parameters has changed when a call is made. * * @configure_filter: Configure the device's RX filter. * See the section "Frame filtering" for more information. * This callback must be implemented and atomic. * * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit * must be set or cleared for a given STA. Must be atomic. * * @set_key: See the section "Hardware crypto acceleration" * This callback can sleep, and is only called between add_interface * and remove_interface calls, i.e. while the given virtual interface * is enabled. * Returns a negative error code if the key can't be added. * * @update_tkip_key: See the section "Hardware crypto acceleration" * This callback will be called in the context of Rx. Called for drivers * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. * * @hw_scan: Ask the hardware to service the scan request, no need to start * the scan state machine in stack. The scan must honour the channel * configuration done by the regulatory agent in the wiphy's registered * bands. When the scan finishes, ieee80211_scan_completed() must be * called; note that it also must be called when the scan cannot finish * because the hardware is turned off! Anything else is a bug! * Returns a negative error code which will be seen in userspace. * * @get_stats: Return low-level statistics. * Returns zero if statistics are available. * * @get_tkip_seq: If your device implements TKIP encryption in hardware this * callback should be provided to read the TKIP transmit IVs (both IV32 * and IV16) for the given key from hardware. * * @set_rts_threshold: Configuration of RTS threshold (if device needs it) * * @sta_notify: Notifies low level driver about addition, removal or power * state transition of an associated station, AP, IBSS/WDS/mesh peer etc. * Must be atomic. * * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), * bursting) for a hardware TX queue. * Returns a negative error code on failure. * * @get_tx_stats: Get statistics of the current TX queue status. This is used * to get number of currently queued packets (queue length), maximum queue * size (limit), and total number of packets sent using each TX queue * (count). The 'stats' pointer points to an array that has hw->queues + * hw->ampdu_queues items. * * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, * this is only used for IBSS mode debugging and, as such, is not a * required function. Must be atomic. * * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize * with other STAs in the IBSS. This is only used in IBSS mode. This * function is optional if the firmware/hardware takes full care of * TSF synchronization. * * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. * This is needed only for IBSS mode and the result of this function is * used to determine whether to reply to Probe Requests. * Returns non-zero if this device sent the last beacon. * * @ampdu_action: Perform a certain A-MPDU action * The RA/TID combination determines the destination and TID we want * the ampdu action to be performed for. The action is defined through * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn) * is the first frame we expect to perform the action on. Notice * that TX/RX_STOP can pass NULL for this parameter. * Returns a negative error code on failure. */ struct ieee80211_ops { int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb); int (*start)(struct ieee80211_hw *hw); void (*stop)(struct ieee80211_hw *hw); int (*add_interface)(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf); void (*remove_interface)(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf); int (*config)(struct ieee80211_hw *hw, u32 changed); int (*config_interface)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_if_conf *conf); void (*bss_info_changed)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u32 changed); void (*configure_filter)(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, int mc_count, struct dev_addr_list *mc_list); int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set); int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key); void (*update_tkip_key)(struct ieee80211_hw *hw, struct ieee80211_key_conf *conf, const u8 *address, u32 iv32, u16 *phase1key); int (*hw_scan)(struct ieee80211_hw *hw, u8 *ssid, size_t len); int (*get_stats)(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats); void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32, u16 *iv16); int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum sta_notify_cmd, struct ieee80211_sta *sta); int (*conf_tx)(struct ieee80211_hw *hw, u16 queue, const struct ieee80211_tx_queue_params *params); int (*get_tx_stats)(struct ieee80211_hw *hw, struct ieee80211_tx_queue_stats *stats); u64 (*get_tsf)(struct ieee80211_hw *hw); void (*reset_tsf)(struct ieee80211_hw *hw); int (*tx_last_beacon)(struct ieee80211_hw *hw); int (*ampdu_action)(struct ieee80211_hw *hw, enum ieee80211_ampdu_mlme_action action, struct ieee80211_sta *sta, u16 tid, u16 *ssn); }; /** * ieee80211_alloc_hw - Allocate a new hardware device * * This must be called once for each hardware device. The returned pointer * must be used to refer to this device when calling other functions. * mac80211 allocates a private data area for the driver pointed to by * @priv in &struct ieee80211_hw, the size of this area is given as * @priv_data_len. * * @priv_data_len: length of private data * @ops: callbacks for this device */ struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, const struct ieee80211_ops *ops); /** * ieee80211_register_hw - Register hardware device * * You must call this function before any other functions in * mac80211. Note that before a hardware can be registered, you * need to fill the contained wiphy's information. * * @hw: the device to register as returned by ieee80211_alloc_hw() */ int ieee80211_register_hw(struct ieee80211_hw *hw); #ifdef CONFIG_MAC80211_LEDS extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); #endif /** * ieee80211_get_tx_led_name - get name of TX LED * * mac80211 creates a transmit LED trigger for each wireless hardware * that can be used to drive LEDs if your driver registers a LED device. * This function returns the name (or %NULL if not configured for LEDs) * of the trigger so you can automatically link the LED device. * * @hw: the hardware to get the LED trigger name for */ static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) { #ifdef CONFIG_MAC80211_LEDS return __ieee80211_get_tx_led_name(hw); #else return NULL; #endif } /** * ieee80211_get_rx_led_name - get name of RX LED * * mac80211 creates a receive LED trigger for each wireless hardware * that can be used to drive LEDs if your driver registers a LED device. * This function returns the name (or %NULL if not configured for LEDs) * of the trigger so you can automatically link the LED device. * * @hw: the hardware to get the LED trigger name for */ static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) { #ifdef CONFIG_MAC80211_LEDS return __ieee80211_get_rx_led_name(hw); #else return NULL; #endif } /** * ieee80211_get_assoc_led_name - get name of association LED * * mac80211 creates a association LED trigger for each wireless hardware * that can be used to drive LEDs if your driver registers a LED device. * This function returns the name (or %NULL if not configured for LEDs) * of the trigger so you can automatically link the LED device. * * @hw: the hardware to get the LED trigger name for */ static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) { #ifdef CONFIG_MAC80211_LEDS return __ieee80211_get_assoc_led_name(hw); #else return NULL; #endif } /** * ieee80211_get_radio_led_name - get name of radio LED * * mac80211 creates a radio change LED trigger for each wireless hardware * that can be used to drive LEDs if your driver registers a LED device. * This function returns the name (or %NULL if not configured for LEDs) * of the trigger so you can automatically link the LED device. * * @hw: the hardware to get the LED trigger name for */ static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) { #ifdef CONFIG_MAC80211_LEDS return __ieee80211_get_radio_led_name(hw); #else return NULL; #endif } /** * ieee80211_unregister_hw - Unregister a hardware device * * This function instructs mac80211 to free allocated resources * and unregister netdevices from the networking subsystem. * * @hw: the hardware to unregister */ void ieee80211_unregister_hw(struct ieee80211_hw *hw); /** * ieee80211_free_hw - free hardware descriptor * * This function frees everything that was allocated, including the * private data for the driver. You must call ieee80211_unregister_hw() * before calling this function. * * @hw: the hardware to free */ void ieee80211_free_hw(struct ieee80211_hw *hw); /* trick to avoid symbol clashes with the ieee80211 subsystem */ void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_rx_status *status); /** * ieee80211_rx - receive frame * * Use this function to hand received frames to mac80211. The receive * buffer in @skb must start with an IEEE 802.11 header or a radiotap * header if %RX_FLAG_RADIOTAP is set in the @status flags. * * This function may not be called in IRQ context. Calls to this function * for a single hardware must be synchronized against each other. Calls * to this function and ieee80211_rx_irqsafe() may not be mixed for a * single hardware. * * @hw: the hardware this frame came in on * @skb: the buffer to receive, owned by mac80211 after this call * @status: status of this frame; the status pointer need not be valid * after this function returns */ static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_rx_status *status) { __ieee80211_rx(hw, skb, status); } /** * ieee80211_rx_irqsafe - receive frame * * Like ieee80211_rx() but can be called in IRQ context * (internally defers to a tasklet.) * * Calls to this function and ieee80211_rx() may not be mixed for a * single hardware. * * @hw: the hardware this frame came in on * @skb: the buffer to receive, owned by mac80211 after this call * @status: status of this frame; the status pointer need not be valid * after this function returns and is not freed by mac80211, * it is recommended that it points to a stack area */ void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_rx_status *status); /** * ieee80211_tx_status - transmit status callback * * Call this function for all transmitted frames after they have been * transmitted. It is permissible to not call this function for * multicast frames but this can affect statistics. * * This function may not be called in IRQ context. Calls to this function * for a single hardware must be synchronized against each other. Calls * to this function and ieee80211_tx_status_irqsafe() may not be mixed * for a single hardware. * * @hw: the hardware the frame was transmitted by * @skb: the frame that was transmitted, owned by mac80211 after this call */ void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb); /** * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback * * Like ieee80211_tx_status() but can be called in IRQ context * (internally defers to a tasklet.) * * Calls to this function and ieee80211_tx_status() may not be mixed for a * single hardware. * * @hw: the hardware the frame was transmitted by * @skb: the frame that was transmitted, owned by mac80211 after this call */ void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb); /** * ieee80211_beacon_get - beacon generation function * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. * * If the beacon frames are generated by the host system (i.e., not in * hardware/firmware), the low-level driver uses this function to receive * the next beacon frame from the 802.11 code. The low-level is responsible * for calling this function before beacon data is needed (e.g., based on * hardware interrupt). Returned skb is used only once and low-level driver * is responsible for freeing it. */ struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif); /** * ieee80211_rts_get - RTS frame generation function * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. * @frame: pointer to the frame that is going to be protected by the RTS. * @frame_len: the frame length (in octets). * @frame_txctl: &struct ieee80211_tx_info of the frame. * @rts: The buffer where to store the RTS frame. * * If the RTS frames are generated by the host system (i.e., not in * hardware/firmware), the low-level driver uses this function to receive * the next RTS frame from the 802.11 code. The low-level is responsible * for calling this function before and RTS frame is needed. */ void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_rts *rts); /** * ieee80211_rts_duration - Get the duration field for an RTS frame * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. * @frame_len: the length of the frame that is going to be protected by the RTS. * @frame_txctl: &struct ieee80211_tx_info of the frame. * * If the RTS is generated in firmware, but the host system must provide * the duration field, the low-level driver uses this function to receive * the duration field value in little-endian byteorder. */ __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, size_t frame_len, const struct ieee80211_tx_info *frame_txctl); /** * ieee80211_ctstoself_get - CTS-to-self frame generation function * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. * @frame: pointer to the frame that is going to be protected by the CTS-to-self. * @frame_len: the frame length (in octets). * @frame_txctl: &struct ieee80211_tx_info of the frame. * @cts: The buffer where to store the CTS-to-self frame. * * If the CTS-to-self frames are generated by the host system (i.e., not in * hardware/firmware), the low-level driver uses this function to receive * the next CTS-to-self frame from the 802.11 code. The low-level is responsible * for calling this function before and CTS-to-self frame is needed. */ void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_cts *cts); /** * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. * @frame_txctl: &struct ieee80211_tx_info of the frame. * * If the CTS-to-self is generated in firmware, but the host system must provide * the duration field, the low-level driver uses this function to receive * the duration field value in little-endian byteorder. */ __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, size_t frame_len, const struct ieee80211_tx_info *frame_txctl); /** * ieee80211_generic_frame_duration - Calculate the duration field for a frame * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. * @frame_len: the length of the frame. * @rate: the rate at which the frame is going to be transmitted. * * Calculate the duration field of some generic frame, given its * length and transmission rate (in 100kbps). */ __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, size_t frame_len, struct ieee80211_rate *rate); /** * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames * @hw: pointer as obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. * * Function for accessing buffered broadcast and multicast frames. If * hardware/firmware does not implement buffering of broadcast/multicast * frames when power saving is used, 802.11 code buffers them in the host * memory. The low-level driver uses this function to fetch next buffered * frame. In most cases, this is used when generating beacon frame. This * function returns a pointer to the next buffered skb or NULL if no more * buffered frames are available. * * Note: buffered frames are returned only after DTIM beacon frame was * generated with ieee80211_beacon_get() and the low-level driver must thus * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns * NULL if the previous generated beacon was not DTIM, so the low-level driver * does not need to check for DTIM beacons separately and should be able to * use common code for all beacons. */ struct sk_buff * ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif); /** * ieee80211_get_hdrlen_from_skb - get header length from data * * Given an skb with a raw 802.11 header at the data pointer this function * returns the 802.11 header length in bytes (not including encryption * headers). If the data in the sk_buff is too short to contain a valid 802.11 * header the function returns 0. * * @skb: the frame */ unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); /** * ieee80211_hdrlen - get header length in bytes from frame control * @fc: frame control field in little-endian format */ unsigned int ieee80211_hdrlen(__le16 fc); /** * ieee80211_get_tkip_key - get a TKIP rc4 for skb * * This function computes a TKIP rc4 key for an skb. It computes * a phase 1 key if needed (iv16 wraps around). This function is to * be used by drivers which can do HW encryption but need to compute * to phase 1/2 key in SW. * * @keyconf: the parameter passed with the set key * @skb: the skb for which the key is needed * @type: TBD * @key: a buffer to which the key will be written */ void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf, struct sk_buff *skb, enum ieee80211_tkip_key_type type, u8 *key); /** * ieee80211_wake_queue - wake specific queue * @hw: pointer as obtained from ieee80211_alloc_hw(). * @queue: queue number (counted from zero). * * Drivers should use this function instead of netif_wake_queue. */ void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); /** * ieee80211_stop_queue - stop specific queue * @hw: pointer as obtained from ieee80211_alloc_hw(). * @queue: queue number (counted from zero). * * Drivers should use this function instead of netif_stop_queue. */ void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); /** * ieee80211_queue_stopped - test status of the queue * @hw: pointer as obtained from ieee80211_alloc_hw(). * @queue: queue number (counted from zero). * * Drivers should use this function instead of netif_stop_queue. */ int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue); /** * ieee80211_stop_queues - stop all queues * @hw: pointer as obtained from ieee80211_alloc_hw(). * * Drivers should use this function instead of netif_stop_queue. */ void ieee80211_stop_queues(struct ieee80211_hw *hw); /** * ieee80211_wake_queues - wake all queues * @hw: pointer as obtained from ieee80211_alloc_hw(). * * Drivers should use this function instead of netif_wake_queue. */ void ieee80211_wake_queues(struct ieee80211_hw *hw); /** * ieee80211_scan_completed - completed hardware scan * * When hardware scan offload is used (i.e. the hw_scan() callback is * assigned) this function needs to be called by the driver to notify * mac80211 that the scan finished. * * @hw: the hardware that finished the scan */ void ieee80211_scan_completed(struct ieee80211_hw *hw); /** * ieee80211_iterate_active_interfaces - iterate active interfaces * * This function iterates over the interfaces associated with a given * hardware that are currently active and calls the callback for them. * This function allows the iterator function to sleep, when the iterator * function is atomic @ieee80211_iterate_active_interfaces_atomic can * be used. * * @hw: the hardware struct of which the interfaces should be iterated over * @iterator: the iterator function to call * @data: first argument of the iterator function */ void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data); /** * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces * * This function iterates over the interfaces associated with a given * hardware that are currently active and calls the callback for them. * This function requires the iterator callback function to be atomic, * if that is not desired, use @ieee80211_iterate_active_interfaces instead. * * @hw: the hardware struct of which the interfaces should be iterated over * @iterator: the iterator function to call, cannot sleep * @data: first argument of the iterator function */ void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data); /** * ieee80211_start_tx_ba_session - Start a tx Block Ack session. * @hw: pointer as obtained from ieee80211_alloc_hw(). * @ra: receiver address of the BA session recipient * @tid: the TID to BA on. * * Return: success if addBA request was sent, failure otherwise * * Although mac80211/low level driver/user space application can estimate * the need to start aggregation on a certain RA/TID, the session level * will be managed by the mac80211. */ int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid); /** * ieee80211_start_tx_ba_cb - low level driver ready to aggregate. * @hw: pointer as obtained from ieee80211_alloc_hw(). * @ra: receiver address of the BA session recipient. * @tid: the TID to BA on. * * This function must be called by low level driver once it has * finished with preparations for the BA session. */ void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid); /** * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate. * @hw: pointer as obtained from ieee80211_alloc_hw(). * @ra: receiver address of the BA session recipient. * @tid: the TID to BA on. * * This function must be called by low level driver once it has * finished with preparations for the BA session. * This version of the function is IRQ-safe. */ void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra, u16 tid); /** * ieee80211_stop_tx_ba_session - Stop a Block Ack session. * @hw: pointer as obtained from ieee80211_alloc_hw(). * @ra: receiver address of the BA session recipient * @tid: the TID to stop BA. * @initiator: if indicates initiator DELBA frame will be sent. * * Return: error if no sta with matching da found, success otherwise * * Although mac80211/low level driver/user space application can estimate * the need to stop aggregation on a certain RA/TID, the session level * will be managed by the mac80211. */ int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid, enum ieee80211_back_parties initiator); /** * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate. * @hw: pointer as obtained from ieee80211_alloc_hw(). * @ra: receiver address of the BA session recipient. * @tid: the desired TID to BA on. * * This function must be called by low level driver once it has * finished with preparations for the BA session tear down. */ void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid); /** * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate. * @hw: pointer as obtained from ieee80211_alloc_hw(). * @ra: receiver address of the BA session recipient. * @tid: the desired TID to BA on. * * This function must be called by low level driver once it has * finished with preparations for the BA session tear down. * This version of the function is IRQ-safe. */ void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra, u16 tid); /** * ieee80211_find_sta - find a station * * @hw: pointer as obtained from ieee80211_alloc_hw() * @addr: station's address * * This function must be called under RCU lock and the * resulting pointer is only valid under RCU lock as well. */ struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw, const u8 *addr); /* Rate control API */ /** * struct ieee80211_tx_rate_control - rate control information for/from RC algo * * @hw: The hardware the algorithm is invoked for. * @sband: The band this frame is being transmitted on. * @bss_conf: the current BSS configuration * @reported_rate: The rate control algorithm can fill this in to indicate * which rate should be reported to userspace as the current rate and * used for rate calculations in the mesh network. * @rts: whether RTS will be used for this frame because it is longer than the * RTS threshold * @short_preamble: whether mac80211 will request short-preamble transmission * if the selected rate supports it * @max_rate_idx: user-requested maximum rate (not MCS for now) * @skb: the skb that will be transmitted, the control information in it needs * to be filled in */ struct ieee80211_tx_rate_control { struct ieee80211_hw *hw; struct ieee80211_supported_band *sband; struct ieee80211_bss_conf *bss_conf; struct sk_buff *skb; struct ieee80211_tx_rate reported_rate; bool rts, short_preamble; u8 max_rate_idx; }; struct rate_control_ops { struct module *module; const char *name; void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir); void (*free)(void *priv); void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp); void (*rate_init)(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta); void (*free_sta)(void *priv, struct ieee80211_sta *sta, void *priv_sta); void (*tx_status)(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta, struct sk_buff *skb); void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta, struct ieee80211_tx_rate_control *txrc); void (*add_sta_debugfs)(void *priv, void *priv_sta, struct dentry *dir); void (*remove_sta_debugfs)(void *priv, void *priv_sta); }; static inline int rate_supported(struct ieee80211_sta *sta, enum ieee80211_band band, int index) { return (sta == NULL || sta->supp_rates[band] & BIT(index)); } static inline s8 rate_lowest_index(struct ieee80211_supported_band *sband, struct ieee80211_sta *sta) { int i; for (i = 0; i < sband->n_bitrates; i++) if (rate_supported(sta, sband->band, i)) return i; /* warn when we cannot find a rate. */ WARN_ON(1); return 0; } int ieee80211_rate_control_register(struct rate_control_ops *ops); void ieee80211_rate_control_unregister(struct rate_control_ops *ops); static inline bool conf_is_ht20(struct ieee80211_conf *conf) { return conf->channel_type == NL80211_CHAN_HT20; } static inline bool conf_is_ht40_minus(struct ieee80211_conf *conf) { return conf->channel_type == NL80211_CHAN_HT40MINUS; } static inline bool conf_is_ht40_plus(struct ieee80211_conf *conf) { return conf->channel_type == NL80211_CHAN_HT40PLUS; } static inline bool conf_is_ht40(struct ieee80211_conf *conf) { return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf); } static inline bool conf_is_ht(struct ieee80211_conf *conf) { return conf->channel_type != NL80211_CHAN_NO_HT; } #endif /* MAC80211_H */