/* * This file is part of the Chelsio T6 Crypto driver for Linux. * * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Written and Maintained by: * Manoj Malviya (manojmalviya@chelsio.com) * Atul Gupta (atul.gupta@chelsio.com) * Jitendra Lulla (jlulla@chelsio.com) * Yeshaswi M R Gowda (yeshaswi@chelsio.com) * Harsh Jain (harsh@chelsio.com) */ #define pr_fmt(fmt) "chcr:" fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include "t4fw_api.h" #include "t4_msg.h" #include "chcr_core.h" #include "chcr_algo.h" #include "chcr_crypto.h" static inline struct ablk_ctx *ABLK_CTX(struct chcr_context *ctx) { return ctx->crypto_ctx->ablkctx; } static inline struct hmac_ctx *HMAC_CTX(struct chcr_context *ctx) { return ctx->crypto_ctx->hmacctx; } static inline struct uld_ctx *ULD_CTX(struct chcr_context *ctx) { return ctx->dev->u_ctx; } static inline int is_ofld_imm(const struct sk_buff *skb) { return (skb->len <= CRYPTO_MAX_IMM_TX_PKT_LEN); } /* * sgl_len - calculates the size of an SGL of the given capacity * @n: the number of SGL entries * Calculates the number of flits needed for a scatter/gather list that * can hold the given number of entries. */ static inline unsigned int sgl_len(unsigned int n) { n--; return (3 * n) / 2 + (n & 1) + 2; } /* * chcr_handle_resp - Unmap the DMA buffers associated with the request * @req: crypto request */ int chcr_handle_resp(struct crypto_async_request *req, unsigned char *input, int error_status) { struct crypto_tfm *tfm = req->tfm; struct chcr_context *ctx = crypto_tfm_ctx(tfm); struct uld_ctx *u_ctx = ULD_CTX(ctx); struct chcr_req_ctx ctx_req; struct cpl_fw6_pld *fw6_pld; unsigned int digestsize, updated_digestsize; switch (tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_BLKCIPHER: ctx_req.req.ablk_req = (struct ablkcipher_request *)req; ctx_req.ctx.ablk_ctx = ablkcipher_request_ctx(ctx_req.req.ablk_req); if (!error_status) { fw6_pld = (struct cpl_fw6_pld *)input; memcpy(ctx_req.req.ablk_req->info, &fw6_pld->data[2], AES_BLOCK_SIZE); } dma_unmap_sg(&u_ctx->lldi.pdev->dev, ctx_req.req.ablk_req->dst, ABLK_CTX(ctx)->dst_nents, DMA_FROM_DEVICE); if (ctx_req.ctx.ablk_ctx->skb) { kfree_skb(ctx_req.ctx.ablk_ctx->skb); ctx_req.ctx.ablk_ctx->skb = NULL; } break; case CRYPTO_ALG_TYPE_AHASH: ctx_req.req.ahash_req = (struct ahash_request *)req; ctx_req.ctx.ahash_ctx = ahash_request_ctx(ctx_req.req.ahash_req); digestsize = crypto_ahash_digestsize(crypto_ahash_reqtfm( ctx_req.req.ahash_req)); updated_digestsize = digestsize; if (digestsize == SHA224_DIGEST_SIZE) updated_digestsize = SHA256_DIGEST_SIZE; else if (digestsize == SHA384_DIGEST_SIZE) updated_digestsize = SHA512_DIGEST_SIZE; if (ctx_req.ctx.ahash_ctx->skb) ctx_req.ctx.ahash_ctx->skb = NULL; if (ctx_req.ctx.ahash_ctx->result == 1) { ctx_req.ctx.ahash_ctx->result = 0; memcpy(ctx_req.req.ahash_req->result, input + sizeof(struct cpl_fw6_pld), digestsize); } else { memcpy(ctx_req.ctx.ahash_ctx->partial_hash, input + sizeof(struct cpl_fw6_pld), updated_digestsize); } kfree(ctx_req.ctx.ahash_ctx->dummy_payload_ptr); ctx_req.ctx.ahash_ctx->dummy_payload_ptr = NULL; break; } return 0; } /* * calc_tx_flits_ofld - calculate # of flits for an offload packet * @skb: the packet * Returns the number of flits needed for the given offload packet. * These packets are already fully constructed and no additional headers * will be added. */ static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) { unsigned int flits, cnt; if (is_ofld_imm(skb)) return DIV_ROUND_UP(skb->len, 8); flits = skb_transport_offset(skb) / 8; /* headers */ cnt = skb_shinfo(skb)->nr_frags; if (skb_tail_pointer(skb) != skb_transport_header(skb)) cnt++; return flits + sgl_len(cnt); } static inline void get_aes_decrypt_key(unsigned char *dec_key, const unsigned char *key, unsigned int keylength) { u32 temp; u32 w_ring[MAX_NK]; int i, j, k; u8 nr, nk; switch (keylength) { case AES_KEYLENGTH_128BIT: nk = KEYLENGTH_4BYTES; nr = NUMBER_OF_ROUNDS_10; break; case AES_KEYLENGTH_192BIT: nk = KEYLENGTH_6BYTES; nr = NUMBER_OF_ROUNDS_12; break; case AES_KEYLENGTH_256BIT: nk = KEYLENGTH_8BYTES; nr = NUMBER_OF_ROUNDS_14; break; default: return; } for (i = 0; i < nk; i++) w_ring[i] = be32_to_cpu(*(u32 *)&key[4 * i]); i = 0; temp = w_ring[nk - 1]; while (i + nk < (nr + 1) * 4) { if (!(i % nk)) { /* RotWord(temp) */ temp = (temp << 8) | (temp >> 24); temp = aes_ks_subword(temp); temp ^= round_constant[i / nk]; } else if (nk == 8 && (i % 4 == 0)) { temp = aes_ks_subword(temp); } w_ring[i % nk] ^= temp; temp = w_ring[i % nk]; i++; } i--; for (k = 0, j = i % nk; k < nk; k++) { *((u32 *)dec_key + k) = htonl(w_ring[j]); j--; if (j < 0) j += nk; } } static struct shash_desc *chcr_alloc_shash(unsigned int ds) { struct crypto_shash *base_hash = NULL; struct shash_desc *desc; switch (ds) { case SHA1_DIGEST_SIZE: base_hash = crypto_alloc_shash("sha1-generic", 0, 0); break; case SHA224_DIGEST_SIZE: base_hash = crypto_alloc_shash("sha224-generic", 0, 0); break; case SHA256_DIGEST_SIZE: base_hash = crypto_alloc_shash("sha256-generic", 0, 0); break; case SHA384_DIGEST_SIZE: base_hash = crypto_alloc_shash("sha384-generic", 0, 0); break; case SHA512_DIGEST_SIZE: base_hash = crypto_alloc_shash("sha512-generic", 0, 0); break; } if (IS_ERR(base_hash)) { pr_err("Can not allocate sha-generic algo.\n"); return (void *)base_hash; } desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(base_hash), GFP_KERNEL); if (!desc) return ERR_PTR(-ENOMEM); desc->tfm = base_hash; desc->flags = crypto_shash_get_flags(base_hash); return desc; } static int chcr_compute_partial_hash(struct shash_desc *desc, char *iopad, char *result_hash, int digest_size) { struct sha1_state sha1_st; struct sha256_state sha256_st; struct sha512_state sha512_st; int error; if (digest_size == SHA1_DIGEST_SIZE) { error = crypto_shash_init(desc) ?: crypto_shash_update(desc, iopad, SHA1_BLOCK_SIZE) ?: crypto_shash_export(desc, (void *)&sha1_st); memcpy(result_hash, sha1_st.state, SHA1_DIGEST_SIZE); } else if (digest_size == SHA224_DIGEST_SIZE) { error = crypto_shash_init(desc) ?: crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?: crypto_shash_export(desc, (void *)&sha256_st); memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE); } else if (digest_size == SHA256_DIGEST_SIZE) { error = crypto_shash_init(desc) ?: crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?: crypto_shash_export(desc, (void *)&sha256_st); memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE); } else if (digest_size == SHA384_DIGEST_SIZE) { error = crypto_shash_init(desc) ?: crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?: crypto_shash_export(desc, (void *)&sha512_st); memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE); } else if (digest_size == SHA512_DIGEST_SIZE) { error = crypto_shash_init(desc) ?: crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?: crypto_shash_export(desc, (void *)&sha512_st); memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE); } else { error = -EINVAL; pr_err("Unknown digest size %d\n", digest_size); } return error; } static void chcr_change_order(char *buf, int ds) { int i; if (ds == SHA512_DIGEST_SIZE) { for (i = 0; i < (ds / sizeof(u64)); i++) *((__be64 *)buf + i) = cpu_to_be64(*((u64 *)buf + i)); } else { for (i = 0; i < (ds / sizeof(u32)); i++) *((__be32 *)buf + i) = cpu_to_be32(*((u32 *)buf + i)); } } static inline int is_hmac(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct chcr_alg_template *chcr_crypto_alg = container_of(__crypto_ahash_alg(alg), struct chcr_alg_template, alg.hash); if ((chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK) == CRYPTO_ALG_SUB_TYPE_HASH_HMAC) return 1; return 0; } static inline unsigned int ch_nents(struct scatterlist *sg, unsigned int *total_size) { unsigned int nents; for (nents = 0, *total_size = 0; sg; sg = sg_next(sg)) { nents++; *total_size += sg->length; } return nents; } static void write_phys_cpl(struct cpl_rx_phys_dsgl *phys_cpl, struct scatterlist *sg, struct phys_sge_parm *sg_param) { struct phys_sge_pairs *to; unsigned int out_buf_size = sg_param->obsize; unsigned int nents = sg_param->nents, i, j, tot_len = 0; phys_cpl->op_to_tid = htonl(CPL_RX_PHYS_DSGL_OPCODE_V(CPL_RX_PHYS_DSGL) | CPL_RX_PHYS_DSGL_ISRDMA_V(0)); phys_cpl->pcirlxorder_to_noofsgentr = htonl(CPL_RX_PHYS_DSGL_PCIRLXORDER_V(0) | CPL_RX_PHYS_DSGL_PCINOSNOOP_V(0) | CPL_RX_PHYS_DSGL_PCITPHNTENB_V(0) | CPL_RX_PHYS_DSGL_PCITPHNT_V(0) | CPL_RX_PHYS_DSGL_DCAID_V(0) | CPL_RX_PHYS_DSGL_NOOFSGENTR_V(nents)); phys_cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR; phys_cpl->rss_hdr_int.qid = htons(sg_param->qid); phys_cpl->rss_hdr_int.hash_val = 0; to = (struct phys_sge_pairs *)((unsigned char *)phys_cpl + sizeof(struct cpl_rx_phys_dsgl)); for (i = 0; nents; to++) { for (j = i; (nents && (j < (8 + i))); j++, nents--) { to->len[j] = htons(sg->length); to->addr[j] = cpu_to_be64(sg_dma_address(sg)); if (out_buf_size) { if (tot_len + sg_dma_len(sg) >= out_buf_size) { to->len[j] = htons(out_buf_size - tot_len); return; } tot_len += sg_dma_len(sg); } sg = sg_next(sg); } } } static inline unsigned int map_writesg_phys_cpl(struct device *dev, struct cpl_rx_phys_dsgl *phys_cpl, struct scatterlist *sg, struct phys_sge_parm *sg_param) { if (!sg || !sg_param->nents) return 0; sg_param->nents = dma_map_sg(dev, sg, sg_param->nents, DMA_FROM_DEVICE); if (sg_param->nents == 0) { pr_err("CHCR : DMA mapping failed\n"); return -EINVAL; } write_phys_cpl(phys_cpl, sg, sg_param); return 0; } static inline int get_cryptoalg_subtype(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct chcr_alg_template *chcr_crypto_alg = container_of(alg, struct chcr_alg_template, alg.crypto); return chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK; } static inline void write_buffer_to_skb(struct sk_buff *skb, unsigned int *frags, char *bfr, u8 bfr_len) { skb->len += bfr_len; skb->data_len += bfr_len; skb->truesize += bfr_len; get_page(virt_to_page(bfr)); skb_fill_page_desc(skb, *frags, virt_to_page(bfr), offset_in_page(bfr), bfr_len); (*frags)++; } static inline void write_sg_to_skb(struct sk_buff *skb, unsigned int *frags, struct scatterlist *sg, unsigned int count) { struct page *spage; unsigned int page_len; skb->len += count; skb->data_len += count; skb->truesize += count; while (count > 0) { if (sg && (!(sg->length))) break; spage = sg_page(sg); get_page(spage); page_len = min(sg->length, count); skb_fill_page_desc(skb, *frags, spage, sg->offset, page_len); (*frags)++; count -= page_len; sg = sg_next(sg); } } static int generate_copy_rrkey(struct ablk_ctx *ablkctx, struct _key_ctx *key_ctx) { if (ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) { get_aes_decrypt_key(key_ctx->key, ablkctx->key, ablkctx->enckey_len << 3); memset(key_ctx->key + ablkctx->enckey_len, 0, CHCR_AES_MAX_KEY_LEN - ablkctx->enckey_len); } else { memcpy(key_ctx->key, ablkctx->key + (ablkctx->enckey_len >> 1), ablkctx->enckey_len >> 1); get_aes_decrypt_key(key_ctx->key + (ablkctx->enckey_len >> 1), ablkctx->key, ablkctx->enckey_len << 2); } return 0; } static inline void create_wreq(struct chcr_context *ctx, struct chcr_wr *chcr_req, void *req, struct sk_buff *skb, int kctx_len, int hash_sz, unsigned int phys_dsgl) { struct uld_ctx *u_ctx = ULD_CTX(ctx); int iv_loc = IV_DSGL; int qid = u_ctx->lldi.rxq_ids[ctx->tx_channel_id]; unsigned int immdatalen = 0, nr_frags = 0; if (is_ofld_imm(skb)) { immdatalen = skb->data_len; iv_loc = IV_IMMEDIATE; } else { nr_frags = skb_shinfo(skb)->nr_frags; } chcr_req->wreq.op_to_cctx_size = FILL_WR_OP_CCTX_SIZE(immdatalen, ((sizeof(chcr_req->key_ctx) + kctx_len) >> 4)); chcr_req->wreq.pld_size_hash_size = htonl(FW_CRYPTO_LOOKASIDE_WR_PLD_SIZE_V(sgl_lengths[nr_frags]) | FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE_V(hash_sz)); chcr_req->wreq.len16_pkd = htonl(FW_CRYPTO_LOOKASIDE_WR_LEN16_V(DIV_ROUND_UP( (calc_tx_flits_ofld(skb) * 8), 16))); chcr_req->wreq.cookie = cpu_to_be64((uintptr_t)req); chcr_req->wreq.rx_chid_to_rx_q_id = FILL_WR_RX_Q_ID(ctx->dev->tx_channel_id, qid, (hash_sz) ? IV_NOP : iv_loc); chcr_req->ulptx.cmd_dest = FILL_ULPTX_CMD_DEST(ctx->dev->tx_channel_id); chcr_req->ulptx.len = htonl((DIV_ROUND_UP((calc_tx_flits_ofld(skb) * 8), 16) - ((sizeof(chcr_req->wreq)) >> 4))); chcr_req->sc_imm.cmd_more = FILL_CMD_MORE(immdatalen); chcr_req->sc_imm.len = cpu_to_be32(sizeof(struct cpl_tx_sec_pdu) + sizeof(chcr_req->key_ctx) + kctx_len + ((hash_sz) ? DUMMY_BYTES : (sizeof(struct cpl_rx_phys_dsgl) + phys_dsgl)) + immdatalen); } /** * create_cipher_wr - form the WR for cipher operations * @req: cipher req. * @ctx: crypto driver context of the request. * @qid: ingress qid where response of this WR should be received. * @op_type: encryption or decryption */ static struct sk_buff *create_cipher_wr(struct ablkcipher_request *req, unsigned short qid, unsigned short op_type) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm); struct uld_ctx *u_ctx = ULD_CTX(ctx); struct ablk_ctx *ablkctx = ABLK_CTX(ctx); struct sk_buff *skb = NULL; struct chcr_wr *chcr_req; struct cpl_rx_phys_dsgl *phys_cpl; struct chcr_blkcipher_req_ctx *req_ctx = ablkcipher_request_ctx(req); struct phys_sge_parm sg_param; unsigned int frags = 0, transhdr_len, phys_dsgl, dst_bufsize = 0; unsigned int ivsize = crypto_ablkcipher_ivsize(tfm), kctx_len; gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; if (!req->info) return ERR_PTR(-EINVAL); ablkctx->dst_nents = ch_nents(req->dst, &dst_bufsize); ablkctx->enc = op_type; if ((ablkctx->enckey_len == 0) || (ivsize > AES_BLOCK_SIZE) || (req->nbytes <= 0) || (req->nbytes % AES_BLOCK_SIZE)) { pr_err("AES: Invalid value of Key Len %d nbytes %d IV Len %d\n", ablkctx->enckey_len, req->nbytes, ivsize); return ERR_PTR(-EINVAL); } phys_dsgl = get_space_for_phys_dsgl(ablkctx->dst_nents); kctx_len = (DIV_ROUND_UP(ablkctx->enckey_len, 16) * 16); transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, phys_dsgl); skb = alloc_skb((transhdr_len + sizeof(struct sge_opaque_hdr)), flags); if (!skb) return ERR_PTR(-ENOMEM); skb_reserve(skb, sizeof(struct sge_opaque_hdr)); chcr_req = (struct chcr_wr *)__skb_put(skb, transhdr_len); memset(chcr_req, 0, transhdr_len); chcr_req->sec_cpl.op_ivinsrtofst = FILL_SEC_CPL_OP_IVINSR(ctx->dev->tx_channel_id, 2, 1); chcr_req->sec_cpl.pldlen = htonl(ivsize + req->nbytes); chcr_req->sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, ivsize + 1, 0); chcr_req->sec_cpl.cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(0, 0, 0, 0); chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(op_type, 0, ablkctx->ciph_mode, 0, 0, ivsize >> 1); chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 0, 0, 1, phys_dsgl); chcr_req->key_ctx.ctx_hdr = ablkctx->key_ctx_hdr; if (op_type == CHCR_DECRYPT_OP) { generate_copy_rrkey(ablkctx, &chcr_req->key_ctx); } else { if (ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) { memcpy(chcr_req->key_ctx.key, ablkctx->key, ablkctx->enckey_len); } else { memcpy(chcr_req->key_ctx.key, ablkctx->key + (ablkctx->enckey_len >> 1), ablkctx->enckey_len >> 1); memcpy(chcr_req->key_ctx.key + (ablkctx->enckey_len >> 1), ablkctx->key, ablkctx->enckey_len >> 1); } } phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len); sg_param.nents = ablkctx->dst_nents; sg_param.obsize = req->nbytes; sg_param.qid = qid; sg_param.align = 1; if (map_writesg_phys_cpl(&u_ctx->lldi.pdev->dev, phys_cpl, req->dst, &sg_param)) goto map_fail1; skb_set_transport_header(skb, transhdr_len); memcpy(ablkctx->iv, req->info, ivsize); write_buffer_to_skb(skb, &frags, ablkctx->iv, ivsize); write_sg_to_skb(skb, &frags, req->src, req->nbytes); create_wreq(ctx, chcr_req, req, skb, kctx_len, 0, phys_dsgl); req_ctx->skb = skb; skb_get(skb); return skb; map_fail1: kfree_skb(skb); return ERR_PTR(-ENOMEM); } static int chcr_aes_cbc_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm); struct ablk_ctx *ablkctx = ABLK_CTX(ctx); struct ablkcipher_alg *alg = crypto_ablkcipher_alg(tfm); unsigned int ck_size, context_size; u16 alignment = 0; if ((keylen < alg->min_keysize) || (keylen > alg->max_keysize)) goto badkey_err; memcpy(ablkctx->key, key, keylen); ablkctx->enckey_len = keylen; if (keylen == AES_KEYSIZE_128) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; } else if (keylen == AES_KEYSIZE_192) { alignment = 8; ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192; } else if (keylen == AES_KEYSIZE_256) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; } else { goto badkey_err; } context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + keylen + alignment) >> 4; ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY, 0, 0, context_size); ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CBC; return 0; badkey_err: crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); ablkctx->enckey_len = 0; return -EINVAL; } static int cxgb4_is_crypto_q_full(struct net_device *dev, unsigned int idx) { int ret = 0; struct sge_ofld_txq *q; struct adapter *adap = netdev2adap(dev); local_bh_disable(); q = &adap->sge.ofldtxq[idx]; spin_lock(&q->sendq.lock); if (q->full) ret = -1; spin_unlock(&q->sendq.lock); local_bh_enable(); return ret; } static int chcr_aes_encrypt(struct ablkcipher_request *req) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm); struct uld_ctx *u_ctx = ULD_CTX(ctx); struct sk_buff *skb; if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0], ctx->tx_channel_id))) { if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) return -EBUSY; } skb = create_cipher_wr(req, u_ctx->lldi.rxq_ids[ctx->tx_channel_id], CHCR_ENCRYPT_OP); if (IS_ERR(skb)) { pr_err("chcr : %s : Failed to form WR. No memory\n", __func__); return PTR_ERR(skb); } skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id); chcr_send_wr(skb); return -EINPROGRESS; } static int chcr_aes_decrypt(struct ablkcipher_request *req) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm); struct uld_ctx *u_ctx = ULD_CTX(ctx); struct sk_buff *skb; if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0], ctx->tx_channel_id))) { if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) return -EBUSY; } skb = create_cipher_wr(req, u_ctx->lldi.rxq_ids[0], CHCR_DECRYPT_OP); if (IS_ERR(skb)) { pr_err("chcr : %s : Failed to form WR. No memory\n", __func__); return PTR_ERR(skb); } skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id); chcr_send_wr(skb); return -EINPROGRESS; } static int chcr_device_init(struct chcr_context *ctx) { struct uld_ctx *u_ctx; unsigned int id; int err = 0, rxq_perchan, rxq_idx; id = smp_processor_id(); if (!ctx->dev) { err = assign_chcr_device(&ctx->dev); if (err) { pr_err("chcr device assignment fails\n"); goto out; } u_ctx = ULD_CTX(ctx); rxq_perchan = u_ctx->lldi.nrxq / u_ctx->lldi.nchan; ctx->dev->tx_channel_id = 0; rxq_idx = ctx->dev->tx_channel_id * rxq_perchan; rxq_idx += id % rxq_perchan; spin_lock(&ctx->dev->lock_chcr_dev); ctx->tx_channel_id = rxq_idx; spin_unlock(&ctx->dev->lock_chcr_dev); } out: return err; } static int chcr_cra_init(struct crypto_tfm *tfm) { tfm->crt_ablkcipher.reqsize = sizeof(struct chcr_blkcipher_req_ctx); return chcr_device_init(crypto_tfm_ctx(tfm)); } static int get_alg_config(struct algo_param *params, unsigned int auth_size) { switch (auth_size) { case SHA1_DIGEST_SIZE: params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160; params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA1; params->result_size = SHA1_DIGEST_SIZE; break; case SHA224_DIGEST_SIZE: params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA224; params->result_size = SHA256_DIGEST_SIZE; break; case SHA256_DIGEST_SIZE: params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA256; params->result_size = SHA256_DIGEST_SIZE; break; case SHA384_DIGEST_SIZE: params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512; params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_384; params->result_size = SHA512_DIGEST_SIZE; break; case SHA512_DIGEST_SIZE: params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512; params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_512; params->result_size = SHA512_DIGEST_SIZE; break; default: pr_err("chcr : ERROR, unsupported digest size\n"); return -EINVAL; } return 0; } /** * create_hash_wr - Create hash work request * @req - Cipher req base */ static struct sk_buff *create_hash_wr(struct ahash_request *req, struct hash_wr_param *param) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct hmac_ctx *hmacctx = HMAC_CTX(ctx); struct sk_buff *skb = NULL; struct chcr_wr *chcr_req; unsigned int frags = 0, transhdr_len, iopad_alignment = 0; unsigned int digestsize = crypto_ahash_digestsize(tfm); unsigned int kctx_len = 0; u8 hash_size_in_response = 0; gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; iopad_alignment = KEYCTX_ALIGN_PAD(digestsize); kctx_len = param->alg_prm.result_size + iopad_alignment; if (param->opad_needed) kctx_len += param->alg_prm.result_size + iopad_alignment; if (req_ctx->result) hash_size_in_response = digestsize; else hash_size_in_response = param->alg_prm.result_size; transhdr_len = HASH_TRANSHDR_SIZE(kctx_len); skb = alloc_skb((transhdr_len + sizeof(struct sge_opaque_hdr)), flags); if (!skb) return skb; skb_reserve(skb, sizeof(struct sge_opaque_hdr)); chcr_req = (struct chcr_wr *)__skb_put(skb, transhdr_len); memset(chcr_req, 0, transhdr_len); chcr_req->sec_cpl.op_ivinsrtofst = FILL_SEC_CPL_OP_IVINSR(ctx->dev->tx_channel_id, 2, 0); chcr_req->sec_cpl.pldlen = htonl(param->bfr_len + param->sg_len); chcr_req->sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, 0, 0); chcr_req->sec_cpl.cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(0, 1, 0, 0); chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(0, 0, 0, param->alg_prm.auth_mode, param->opad_needed, 0); chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(param->last, param->more, 0, 1, 0, 0); memcpy(chcr_req->key_ctx.key, req_ctx->partial_hash, param->alg_prm.result_size); if (param->opad_needed) memcpy(chcr_req->key_ctx.key + ((param->alg_prm.result_size <= 32) ? 32 : CHCR_HASH_MAX_DIGEST_SIZE), hmacctx->opad, param->alg_prm.result_size); chcr_req->key_ctx.ctx_hdr = FILL_KEY_CTX_HDR(CHCR_KEYCTX_NO_KEY, param->alg_prm.mk_size, 0, param->opad_needed, ((kctx_len + sizeof(chcr_req->key_ctx)) >> 4)); chcr_req->sec_cpl.scmd1 = cpu_to_be64((u64)param->scmd1); skb_set_transport_header(skb, transhdr_len); if (param->bfr_len != 0) write_buffer_to_skb(skb, &frags, req_ctx->bfr, param->bfr_len); if (param->sg_len != 0) write_sg_to_skb(skb, &frags, req->src, param->sg_len); create_wreq(ctx, chcr_req, req, skb, kctx_len, hash_size_in_response, 0); req_ctx->skb = skb; skb_get(skb); return skb; } static int chcr_ahash_update(struct ahash_request *req) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req); struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm)); struct uld_ctx *u_ctx = NULL; struct sk_buff *skb; u8 remainder = 0, bs; unsigned int nbytes = req->nbytes; struct hash_wr_param params; bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm)); u_ctx = ULD_CTX(ctx); if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0], ctx->tx_channel_id))) { if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) return -EBUSY; } if (nbytes + req_ctx->bfr_len >= bs) { remainder = (nbytes + req_ctx->bfr_len) % bs; nbytes = nbytes + req_ctx->bfr_len - remainder; } else { sg_pcopy_to_buffer(req->src, sg_nents(req->src), req_ctx->bfr + req_ctx->bfr_len, nbytes, 0); req_ctx->bfr_len += nbytes; return 0; } params.opad_needed = 0; params.more = 1; params.last = 0; params.scmd1 = 0; get_alg_config(¶ms.alg_prm, crypto_ahash_digestsize(rtfm)); req_ctx->result = 0; req_ctx->data_len += params.sg_len + params.bfr_len; skb = create_hash_wr(req, ¶ms); req_ctx->bfr_len = remainder; if (remainder) sg_pcopy_to_buffer(req->src, sg_nents(req->src), req_ctx->bfr, remainder, req->nbytes - remainder); skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id); chcr_send_wr(skb); return -EINPROGRESS; } static void create_last_hash_block(char *bfr_ptr, unsigned int bs, u64 scmd1) { memset(bfr_ptr, 0, bs); *bfr_ptr = 0x80; if (bs == 64) *(__be64 *)(bfr_ptr + 56) = cpu_to_be64(scmd1 << 3); else *(__be64 *)(bfr_ptr + 120) = cpu_to_be64(scmd1 << 3); } static int chcr_ahash_final(struct ahash_request *req) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req); struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm)); struct hash_wr_param params; struct sk_buff *skb; struct uld_ctx *u_ctx = NULL; u8 bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm)); u_ctx = ULD_CTX(ctx); if (is_hmac(crypto_ahash_tfm(rtfm))) params.opad_needed = 1; else params.opad_needed = 0; params.sg_len = 0; get_alg_config(¶ms.alg_prm, crypto_ahash_digestsize(rtfm)); req_ctx->result = 1; params.bfr_len = req_ctx->bfr_len; req_ctx->data_len += params.bfr_len + params.sg_len; if (req_ctx->bfr && (req_ctx->bfr_len == 0)) { create_last_hash_block(req_ctx->bfr, bs, req_ctx->data_len); params.last = 0; params.more = 1; params.scmd1 = 0; params.bfr_len = bs; } else { params.scmd1 = req_ctx->data_len; params.last = 1; params.more = 0; } skb = create_hash_wr(req, ¶ms); if (IS_ERR(skb)) return PTR_ERR(skb); skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id); chcr_send_wr(skb); return -EINPROGRESS; } static int chcr_ahash_finup(struct ahash_request *req) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req); struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm)); struct uld_ctx *u_ctx = NULL; struct sk_buff *skb; struct hash_wr_param params; u8 bs; bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm)); u_ctx = ULD_CTX(ctx); if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0], ctx->tx_channel_id))) { if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) return -EBUSY; } if (is_hmac(crypto_ahash_tfm(rtfm))) params.opad_needed = 1; else params.opad_needed = 0; params.sg_len = req->nbytes; params.bfr_len = req_ctx->bfr_len; get_alg_config(¶ms.alg_prm, crypto_ahash_digestsize(rtfm)); req_ctx->data_len += params.bfr_len + params.sg_len; req_ctx->result = 1; if (req_ctx->bfr && (req_ctx->bfr_len + req->nbytes) == 0) { create_last_hash_block(req_ctx->bfr, bs, req_ctx->data_len); params.last = 0; params.more = 1; params.scmd1 = 0; params.bfr_len = bs; } else { params.scmd1 = req_ctx->data_len; params.last = 1; params.more = 0; } skb = create_hash_wr(req, ¶ms); if (IS_ERR(skb)) return PTR_ERR(skb); skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id); chcr_send_wr(skb); return -EINPROGRESS; } static int chcr_ahash_digest(struct ahash_request *req) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req); struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm)); struct uld_ctx *u_ctx = NULL; struct sk_buff *skb; struct hash_wr_param params; u8 bs; rtfm->init(req); bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm)); u_ctx = ULD_CTX(ctx); if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0], ctx->tx_channel_id))) { if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) return -EBUSY; } if (is_hmac(crypto_ahash_tfm(rtfm))) params.opad_needed = 1; else params.opad_needed = 0; params.last = 0; params.more = 0; params.sg_len = req->nbytes; params.bfr_len = 0; params.scmd1 = 0; get_alg_config(¶ms.alg_prm, crypto_ahash_digestsize(rtfm)); req_ctx->result = 1; req_ctx->data_len += params.bfr_len + params.sg_len; if (req_ctx->bfr && req->nbytes == 0) { create_last_hash_block(req_ctx->bfr, bs, 0); params.more = 1; params.bfr_len = bs; } skb = create_hash_wr(req, ¶ms); if (IS_ERR(skb)) return PTR_ERR(skb); skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id); chcr_send_wr(skb); return -EINPROGRESS; } static int chcr_ahash_export(struct ahash_request *areq, void *out) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct chcr_ahash_req_ctx *state = out; state->bfr_len = req_ctx->bfr_len; state->data_len = req_ctx->data_len; memcpy(state->bfr, req_ctx->bfr, CHCR_HASH_MAX_BLOCK_SIZE_128); memcpy(state->partial_hash, req_ctx->partial_hash, CHCR_HASH_MAX_DIGEST_SIZE); return 0; } static int chcr_ahash_import(struct ahash_request *areq, const void *in) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct chcr_ahash_req_ctx *state = (struct chcr_ahash_req_ctx *)in; req_ctx->bfr_len = state->bfr_len; req_ctx->data_len = state->data_len; req_ctx->dummy_payload_ptr = NULL; memcpy(req_ctx->bfr, state->bfr, CHCR_HASH_MAX_BLOCK_SIZE_128); memcpy(req_ctx->partial_hash, state->partial_hash, CHCR_HASH_MAX_DIGEST_SIZE); return 0; } static int chcr_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct hmac_ctx *hmacctx = HMAC_CTX(ctx); unsigned int digestsize = crypto_ahash_digestsize(tfm); unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); unsigned int i, err = 0, updated_digestsize; /* * use the key to calculate the ipad and opad. ipad will sent with the * first request's data. opad will be sent with the final hash result * ipad in hmacctx->ipad and opad in hmacctx->opad location */ if (!hmacctx->desc) return -EINVAL; if (keylen > bs) { err = crypto_shash_digest(hmacctx->desc, key, keylen, hmacctx->ipad); if (err) goto out; keylen = digestsize; } else { memcpy(hmacctx->ipad, key, keylen); } memset(hmacctx->ipad + keylen, 0, bs - keylen); memcpy(hmacctx->opad, hmacctx->ipad, bs); for (i = 0; i < bs / sizeof(int); i++) { *((unsigned int *)(&hmacctx->ipad) + i) ^= IPAD_DATA; *((unsigned int *)(&hmacctx->opad) + i) ^= OPAD_DATA; } updated_digestsize = digestsize; if (digestsize == SHA224_DIGEST_SIZE) updated_digestsize = SHA256_DIGEST_SIZE; else if (digestsize == SHA384_DIGEST_SIZE) updated_digestsize = SHA512_DIGEST_SIZE; err = chcr_compute_partial_hash(hmacctx->desc, hmacctx->ipad, hmacctx->ipad, digestsize); if (err) goto out; chcr_change_order(hmacctx->ipad, updated_digestsize); err = chcr_compute_partial_hash(hmacctx->desc, hmacctx->opad, hmacctx->opad, digestsize); if (err) goto out; chcr_change_order(hmacctx->opad, updated_digestsize); out: return err; } static int chcr_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int key_len) { struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm); struct ablk_ctx *ablkctx = ABLK_CTX(ctx); int status = 0; unsigned short context_size = 0; if ((key_len == (AES_KEYSIZE_128 << 1)) || (key_len == (AES_KEYSIZE_256 << 1))) { memcpy(ablkctx->key, key, key_len); ablkctx->enckey_len = key_len; context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + key_len) >> 4; ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR((key_len == AES_KEYSIZE_256) ? CHCR_KEYCTX_CIPHER_KEY_SIZE_128 : CHCR_KEYCTX_CIPHER_KEY_SIZE_256, CHCR_KEYCTX_NO_KEY, 1, 0, context_size); ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_XTS; } else { crypto_tfm_set_flags((struct crypto_tfm *)tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); ablkctx->enckey_len = 0; status = -EINVAL; } return status; } static int chcr_sha_init(struct ahash_request *areq) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); int digestsize = crypto_ahash_digestsize(tfm); req_ctx->data_len = 0; req_ctx->dummy_payload_ptr = NULL; req_ctx->bfr_len = 0; req_ctx->skb = NULL; req_ctx->result = 0; copy_hash_init_values(req_ctx->partial_hash, digestsize); return 0; } static int chcr_sha_cra_init(struct crypto_tfm *tfm) { crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct chcr_ahash_req_ctx)); return chcr_device_init(crypto_tfm_ctx(tfm)); } static int chcr_hmac_init(struct ahash_request *areq) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct crypto_ahash *rtfm = crypto_ahash_reqtfm(areq); struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm)); struct hmac_ctx *hmacctx = HMAC_CTX(ctx); unsigned int digestsize = crypto_ahash_digestsize(rtfm); unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm)); chcr_sha_init(areq); req_ctx->data_len = bs; if (is_hmac(crypto_ahash_tfm(rtfm))) { if (digestsize == SHA224_DIGEST_SIZE) memcpy(req_ctx->partial_hash, hmacctx->ipad, SHA256_DIGEST_SIZE); else if (digestsize == SHA384_DIGEST_SIZE) memcpy(req_ctx->partial_hash, hmacctx->ipad, SHA512_DIGEST_SIZE); else memcpy(req_ctx->partial_hash, hmacctx->ipad, digestsize); } return 0; } static int chcr_hmac_cra_init(struct crypto_tfm *tfm) { struct chcr_context *ctx = crypto_tfm_ctx(tfm); struct hmac_ctx *hmacctx = HMAC_CTX(ctx); unsigned int digestsize = crypto_ahash_digestsize(__crypto_ahash_cast(tfm)); crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct chcr_ahash_req_ctx)); hmacctx->desc = chcr_alloc_shash(digestsize); if (IS_ERR(hmacctx->desc)) return PTR_ERR(hmacctx->desc); return chcr_device_init(crypto_tfm_ctx(tfm)); } static void chcr_free_shash(struct shash_desc *desc) { crypto_free_shash(desc->tfm); kfree(desc); } static void chcr_hmac_cra_exit(struct crypto_tfm *tfm) { struct chcr_context *ctx = crypto_tfm_ctx(tfm); struct hmac_ctx *hmacctx = HMAC_CTX(ctx); if (hmacctx->desc) { chcr_free_shash(hmacctx->desc); hmacctx->desc = NULL; } } static struct chcr_alg_template driver_algs[] = { /* AES-CBC */ { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .is_registered = 0, .alg.crypto = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc(aes-chcr)", .cra_priority = CHCR_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct ablk_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = chcr_cra_init, .cra_exit = NULL, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = chcr_aes_cbc_setkey, .encrypt = chcr_aes_encrypt, .decrypt = chcr_aes_decrypt, } } }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .is_registered = 0, .alg.crypto = { .cra_name = "xts(aes)", .cra_driver_name = "xts(aes-chcr)", .cra_priority = CHCR_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct ablk_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = chcr_cra_init, .cra_exit = NULL, .cra_u = { .ablkcipher = { .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = chcr_aes_xts_setkey, .encrypt = chcr_aes_encrypt, .decrypt = chcr_aes_decrypt, } } } }, /* SHA */ { .type = CRYPTO_ALG_TYPE_AHASH, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "sha1", .cra_driver_name = "sha1-chcr", .cra_blocksize = SHA1_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_AHASH, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA256_DIGEST_SIZE, .halg.base = { .cra_name = "sha256", .cra_driver_name = "sha256-chcr", .cra_blocksize = SHA256_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_AHASH, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA224_DIGEST_SIZE, .halg.base = { .cra_name = "sha224", .cra_driver_name = "sha224-chcr", .cra_blocksize = SHA224_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_AHASH, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA384_DIGEST_SIZE, .halg.base = { .cra_name = "sha384", .cra_driver_name = "sha384-chcr", .cra_blocksize = SHA384_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_AHASH, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA512_DIGEST_SIZE, .halg.base = { .cra_name = "sha512", .cra_driver_name = "sha512-chcr", .cra_blocksize = SHA512_BLOCK_SIZE, } } }, /* HMAC */ { .type = CRYPTO_ALG_TYPE_HMAC, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha1)", .cra_driver_name = "hmac(sha1-chcr)", .cra_blocksize = SHA1_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_HMAC, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA224_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha224)", .cra_driver_name = "hmac(sha224-chcr)", .cra_blocksize = SHA224_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_HMAC, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA256_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha256)", .cra_driver_name = "hmac(sha256-chcr)", .cra_blocksize = SHA256_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_HMAC, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA384_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha384)", .cra_driver_name = "hmac(sha384-chcr)", .cra_blocksize = SHA384_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_HMAC, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA512_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha512)", .cra_driver_name = "hmac(sha512-chcr)", .cra_blocksize = SHA512_BLOCK_SIZE, } } }, }; /* * chcr_unregister_alg - Deregister crypto algorithms with * kernel framework. */ static int chcr_unregister_alg(void) { int i; for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_ABLKCIPHER: if (driver_algs[i].is_registered) crypto_unregister_alg( &driver_algs[i].alg.crypto); break; case CRYPTO_ALG_TYPE_AHASH: if (driver_algs[i].is_registered) crypto_unregister_ahash( &driver_algs[i].alg.hash); break; } driver_algs[i].is_registered = 0; } return 0; } #define SZ_AHASH_CTX sizeof(struct chcr_context) #define SZ_AHASH_H_CTX (sizeof(struct chcr_context) + sizeof(struct hmac_ctx)) #define SZ_AHASH_REQ_CTX sizeof(struct chcr_ahash_req_ctx) #define AHASH_CRA_FLAGS (CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC) /* * chcr_register_alg - Register crypto algorithms with kernel framework. */ static int chcr_register_alg(void) { struct crypto_alg ai; struct ahash_alg *a_hash; int err = 0, i; char *name = NULL; for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { if (driver_algs[i].is_registered) continue; switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_ABLKCIPHER: err = crypto_register_alg(&driver_algs[i].alg.crypto); name = driver_algs[i].alg.crypto.cra_driver_name; break; case CRYPTO_ALG_TYPE_AHASH: a_hash = &driver_algs[i].alg.hash; a_hash->update = chcr_ahash_update; a_hash->final = chcr_ahash_final; a_hash->finup = chcr_ahash_finup; a_hash->digest = chcr_ahash_digest; a_hash->export = chcr_ahash_export; a_hash->import = chcr_ahash_import; a_hash->halg.statesize = SZ_AHASH_REQ_CTX; a_hash->halg.base.cra_priority = CHCR_CRA_PRIORITY; a_hash->halg.base.cra_module = THIS_MODULE; a_hash->halg.base.cra_flags = AHASH_CRA_FLAGS; a_hash->halg.base.cra_alignmask = 0; a_hash->halg.base.cra_exit = NULL; a_hash->halg.base.cra_type = &crypto_ahash_type; if (driver_algs[i].type == CRYPTO_ALG_TYPE_HMAC) { a_hash->halg.base.cra_init = chcr_hmac_cra_init; a_hash->halg.base.cra_exit = chcr_hmac_cra_exit; a_hash->init = chcr_hmac_init; a_hash->setkey = chcr_ahash_setkey; a_hash->halg.base.cra_ctxsize = SZ_AHASH_H_CTX; } else { a_hash->init = chcr_sha_init; a_hash->halg.base.cra_ctxsize = SZ_AHASH_CTX; a_hash->halg.base.cra_init = chcr_sha_cra_init; } err = crypto_register_ahash(&driver_algs[i].alg.hash); ai = driver_algs[i].alg.hash.halg.base; name = ai.cra_driver_name; break; } if (err) { pr_err("chcr : %s : Algorithm registration failed\n", name); goto register_err; } else { driver_algs[i].is_registered = 1; } } return 0; register_err: chcr_unregister_alg(); return err; } /* * start_crypto - Register the crypto algorithms. * This should called once when the first device comesup. After this * kernel will start calling driver APIs for crypto operations. */ int start_crypto(void) { return chcr_register_alg(); } /* * stop_crypto - Deregister all the crypto algorithms with kernel. * This should be called once when the last device goes down. After this * kernel will not call the driver API for crypto operations. */ int stop_crypto(void) { chcr_unregister_alg(); return 0; }