/* * Copyright (C) 2007 Ben Skeggs. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "drmP.h" #include "drm.h" #include "nouveau_drv.h" #include "nouveau_grctx.h" static int nv40_graph_register(struct drm_device *); struct nouveau_channel * nv40_graph_channel(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; uint32_t inst; int i; inst = nv_rd32(dev, NV40_PGRAPH_CTXCTL_CUR); if (!(inst & NV40_PGRAPH_CTXCTL_CUR_LOADED)) return NULL; inst = (inst & NV40_PGRAPH_CTXCTL_CUR_INSTANCE) << 4; for (i = 0; i < dev_priv->engine.fifo.channels; i++) { struct nouveau_channel *chan = dev_priv->channels.ptr[i]; if (chan && chan->ramin_grctx && chan->ramin_grctx->pinst == inst) return chan; } return NULL; } int nv40_graph_create_context(struct nouveau_channel *chan) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph; struct nouveau_grctx ctx = {}; int ret; ret = nouveau_gpuobj_new(dev, chan, pgraph->grctx_size, 16, NVOBJ_FLAG_ZERO_ALLOC, &chan->ramin_grctx); if (ret) return ret; /* Initialise default context values */ ctx.dev = chan->dev; ctx.mode = NOUVEAU_GRCTX_VALS; ctx.data = chan->ramin_grctx; nv40_grctx_init(&ctx); nv_wo32(chan->ramin_grctx, 0, chan->ramin_grctx->pinst); return 0; } void nv40_graph_destroy_context(struct nouveau_channel *chan) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph; unsigned long flags; spin_lock_irqsave(&dev_priv->context_switch_lock, flags); pgraph->fifo_access(dev, false); /* Unload the context if it's the currently active one */ if (pgraph->channel(dev) == chan) pgraph->unload_context(dev); pgraph->fifo_access(dev, true); spin_unlock_irqrestore(&dev_priv->context_switch_lock, flags); /* Free the context resources */ nouveau_gpuobj_ref(NULL, &chan->ramin_grctx); } static int nv40_graph_transfer_context(struct drm_device *dev, uint32_t inst, int save) { uint32_t old_cp, tv = 1000, tmp; int i; old_cp = nv_rd32(dev, NV20_PGRAPH_CHANNEL_CTX_POINTER); nv_wr32(dev, NV20_PGRAPH_CHANNEL_CTX_POINTER, inst); tmp = nv_rd32(dev, NV40_PGRAPH_CTXCTL_0310); tmp |= save ? NV40_PGRAPH_CTXCTL_0310_XFER_SAVE : NV40_PGRAPH_CTXCTL_0310_XFER_LOAD; nv_wr32(dev, NV40_PGRAPH_CTXCTL_0310, tmp); tmp = nv_rd32(dev, NV40_PGRAPH_CTXCTL_0304); tmp |= NV40_PGRAPH_CTXCTL_0304_XFER_CTX; nv_wr32(dev, NV40_PGRAPH_CTXCTL_0304, tmp); nouveau_wait_for_idle(dev); for (i = 0; i < tv; i++) { if (nv_rd32(dev, NV40_PGRAPH_CTXCTL_030C) == 0) break; } nv_wr32(dev, NV20_PGRAPH_CHANNEL_CTX_POINTER, old_cp); if (i == tv) { uint32_t ucstat = nv_rd32(dev, NV40_PGRAPH_CTXCTL_UCODE_STAT); NV_ERROR(dev, "Failed: Instance=0x%08x Save=%d\n", inst, save); NV_ERROR(dev, "IP: 0x%02x, Opcode: 0x%08x\n", ucstat >> NV40_PGRAPH_CTXCTL_UCODE_STAT_IP_SHIFT, ucstat & NV40_PGRAPH_CTXCTL_UCODE_STAT_OP_MASK); NV_ERROR(dev, "0x40030C = 0x%08x\n", nv_rd32(dev, NV40_PGRAPH_CTXCTL_030C)); return -EBUSY; } return 0; } /* Restore the context for a specific channel into PGRAPH */ int nv40_graph_load_context(struct nouveau_channel *chan) { struct drm_device *dev = chan->dev; uint32_t inst; int ret; if (!chan->ramin_grctx) return -EINVAL; inst = chan->ramin_grctx->pinst >> 4; ret = nv40_graph_transfer_context(dev, inst, 0); if (ret) return ret; /* 0x40032C, no idea of it's exact function. Could simply be a * record of the currently active PGRAPH context. It's currently * unknown as to what bit 24 does. The nv ddx has it set, so we will * set it here too. */ nv_wr32(dev, NV20_PGRAPH_CHANNEL_CTX_POINTER, inst); nv_wr32(dev, NV40_PGRAPH_CTXCTL_CUR, (inst & NV40_PGRAPH_CTXCTL_CUR_INSTANCE) | NV40_PGRAPH_CTXCTL_CUR_LOADED); /* 0x32E0 records the instance address of the active FIFO's PGRAPH * context. If at any time this doesn't match 0x40032C, you will * recieve PGRAPH_INTR_CONTEXT_SWITCH */ nv_wr32(dev, NV40_PFIFO_GRCTX_INSTANCE, inst); return 0; } int nv40_graph_unload_context(struct drm_device *dev) { uint32_t inst; int ret; inst = nv_rd32(dev, NV40_PGRAPH_CTXCTL_CUR); if (!(inst & NV40_PGRAPH_CTXCTL_CUR_LOADED)) return 0; inst &= NV40_PGRAPH_CTXCTL_CUR_INSTANCE; ret = nv40_graph_transfer_context(dev, inst, 1); nv_wr32(dev, NV40_PGRAPH_CTXCTL_CUR, inst); return ret; } void nv40_graph_set_region_tiling(struct drm_device *dev, int i, uint32_t addr, uint32_t size, uint32_t pitch) { struct drm_nouveau_private *dev_priv = dev->dev_private; uint32_t limit = max(1u, addr + size) - 1; if (pitch) addr |= 1; switch (dev_priv->chipset) { case 0x44: case 0x4a: case 0x4e: nv_wr32(dev, NV20_PGRAPH_TSIZE(i), pitch); nv_wr32(dev, NV20_PGRAPH_TLIMIT(i), limit); nv_wr32(dev, NV20_PGRAPH_TILE(i), addr); break; case 0x46: case 0x47: case 0x49: case 0x4b: nv_wr32(dev, NV47_PGRAPH_TSIZE(i), pitch); nv_wr32(dev, NV47_PGRAPH_TLIMIT(i), limit); nv_wr32(dev, NV47_PGRAPH_TILE(i), addr); nv_wr32(dev, NV40_PGRAPH_TSIZE1(i), pitch); nv_wr32(dev, NV40_PGRAPH_TLIMIT1(i), limit); nv_wr32(dev, NV40_PGRAPH_TILE1(i), addr); break; default: nv_wr32(dev, NV20_PGRAPH_TSIZE(i), pitch); nv_wr32(dev, NV20_PGRAPH_TLIMIT(i), limit); nv_wr32(dev, NV20_PGRAPH_TILE(i), addr); nv_wr32(dev, NV40_PGRAPH_TSIZE1(i), pitch); nv_wr32(dev, NV40_PGRAPH_TLIMIT1(i), limit); nv_wr32(dev, NV40_PGRAPH_TILE1(i), addr); break; } } /* * G70 0x47 * G71 0x49 * NV45 0x48 * G72[M] 0x46 * G73 0x4b * C51_G7X 0x4c * C51 0x4e */ int nv40_graph_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = (struct drm_nouveau_private *)dev->dev_private; struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; struct nouveau_grctx ctx = {}; uint32_t vramsz, *cp; int ret, i, j; nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) & ~NV_PMC_ENABLE_PGRAPH); nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) | NV_PMC_ENABLE_PGRAPH); cp = kmalloc(sizeof(*cp) * 256, GFP_KERNEL); if (!cp) return -ENOMEM; ctx.dev = dev; ctx.mode = NOUVEAU_GRCTX_PROG; ctx.data = cp; ctx.ctxprog_max = 256; nv40_grctx_init(&ctx); dev_priv->engine.graph.grctx_size = ctx.ctxvals_pos * 4; nv_wr32(dev, NV40_PGRAPH_CTXCTL_UCODE_INDEX, 0); for (i = 0; i < ctx.ctxprog_len; i++) nv_wr32(dev, NV40_PGRAPH_CTXCTL_UCODE_DATA, cp[i]); kfree(cp); ret = nv40_graph_register(dev); if (ret) return ret; /* No context present currently */ nv_wr32(dev, NV40_PGRAPH_CTXCTL_CUR, 0x00000000); nv_wr32(dev, NV03_PGRAPH_INTR , 0xFFFFFFFF); nv_wr32(dev, NV40_PGRAPH_INTR_EN, 0xFFFFFFFF); nv_wr32(dev, NV04_PGRAPH_DEBUG_0, 0xFFFFFFFF); nv_wr32(dev, NV04_PGRAPH_DEBUG_0, 0x00000000); nv_wr32(dev, NV04_PGRAPH_DEBUG_1, 0x401287c0); nv_wr32(dev, NV04_PGRAPH_DEBUG_3, 0xe0de8055); nv_wr32(dev, NV10_PGRAPH_DEBUG_4, 0x00008000); nv_wr32(dev, NV04_PGRAPH_LIMIT_VIOL_PIX, 0x00be3c5f); nv_wr32(dev, NV10_PGRAPH_CTX_CONTROL, 0x10010100); nv_wr32(dev, NV10_PGRAPH_STATE , 0xFFFFFFFF); j = nv_rd32(dev, 0x1540) & 0xff; if (j) { for (i = 0; !(j & 1); j >>= 1, i++) ; nv_wr32(dev, 0x405000, i); } if (dev_priv->chipset == 0x40) { nv_wr32(dev, 0x4009b0, 0x83280fff); nv_wr32(dev, 0x4009b4, 0x000000a0); } else { nv_wr32(dev, 0x400820, 0x83280eff); nv_wr32(dev, 0x400824, 0x000000a0); } switch (dev_priv->chipset) { case 0x40: case 0x45: nv_wr32(dev, 0x4009b8, 0x0078e366); nv_wr32(dev, 0x4009bc, 0x0000014c); break; case 0x41: case 0x42: /* pciid also 0x00Cx */ /* case 0x0120: XXX (pciid) */ nv_wr32(dev, 0x400828, 0x007596ff); nv_wr32(dev, 0x40082c, 0x00000108); break; case 0x43: nv_wr32(dev, 0x400828, 0x0072cb77); nv_wr32(dev, 0x40082c, 0x00000108); break; case 0x44: case 0x46: /* G72 */ case 0x4a: case 0x4c: /* G7x-based C51 */ case 0x4e: nv_wr32(dev, 0x400860, 0); nv_wr32(dev, 0x400864, 0); break; case 0x47: /* G70 */ case 0x49: /* G71 */ case 0x4b: /* G73 */ nv_wr32(dev, 0x400828, 0x07830610); nv_wr32(dev, 0x40082c, 0x0000016A); break; default: break; } nv_wr32(dev, 0x400b38, 0x2ffff800); nv_wr32(dev, 0x400b3c, 0x00006000); /* Tiling related stuff. */ switch (dev_priv->chipset) { case 0x44: case 0x4a: nv_wr32(dev, 0x400bc4, 0x1003d888); nv_wr32(dev, 0x400bbc, 0xb7a7b500); break; case 0x46: nv_wr32(dev, 0x400bc4, 0x0000e024); nv_wr32(dev, 0x400bbc, 0xb7a7b520); break; case 0x4c: case 0x4e: case 0x67: nv_wr32(dev, 0x400bc4, 0x1003d888); nv_wr32(dev, 0x400bbc, 0xb7a7b540); break; default: break; } /* Turn all the tiling regions off. */ for (i = 0; i < pfb->num_tiles; i++) nv40_graph_set_region_tiling(dev, i, 0, 0, 0); /* begin RAM config */ vramsz = pci_resource_len(dev->pdev, 0) - 1; switch (dev_priv->chipset) { case 0x40: nv_wr32(dev, 0x4009A4, nv_rd32(dev, NV04_PFB_CFG0)); nv_wr32(dev, 0x4009A8, nv_rd32(dev, NV04_PFB_CFG1)); nv_wr32(dev, 0x4069A4, nv_rd32(dev, NV04_PFB_CFG0)); nv_wr32(dev, 0x4069A8, nv_rd32(dev, NV04_PFB_CFG1)); nv_wr32(dev, 0x400820, 0); nv_wr32(dev, 0x400824, 0); nv_wr32(dev, 0x400864, vramsz); nv_wr32(dev, 0x400868, vramsz); break; default: switch (dev_priv->chipset) { case 0x46: case 0x47: case 0x49: case 0x4b: nv_wr32(dev, 0x400DF0, nv_rd32(dev, NV04_PFB_CFG0)); nv_wr32(dev, 0x400DF4, nv_rd32(dev, NV04_PFB_CFG1)); break; default: nv_wr32(dev, 0x4009F0, nv_rd32(dev, NV04_PFB_CFG0)); nv_wr32(dev, 0x4009F4, nv_rd32(dev, NV04_PFB_CFG1)); break; } nv_wr32(dev, 0x4069F0, nv_rd32(dev, NV04_PFB_CFG0)); nv_wr32(dev, 0x4069F4, nv_rd32(dev, NV04_PFB_CFG1)); nv_wr32(dev, 0x400840, 0); nv_wr32(dev, 0x400844, 0); nv_wr32(dev, 0x4008A0, vramsz); nv_wr32(dev, 0x4008A4, vramsz); break; } return 0; } void nv40_graph_takedown(struct drm_device *dev) { } static int nv40_graph_register(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; if (dev_priv->engine.graph.registered) return 0; NVOBJ_CLASS(dev, 0x506e, SW); /* nvsw */ NVOBJ_CLASS(dev, 0x0030, GR); /* null */ NVOBJ_CLASS(dev, 0x0039, GR); /* m2mf */ NVOBJ_CLASS(dev, 0x004a, GR); /* gdirect */ NVOBJ_CLASS(dev, 0x009f, GR); /* imageblit (nv12) */ NVOBJ_CLASS(dev, 0x008a, GR); /* ifc */ NVOBJ_CLASS(dev, 0x0089, GR); /* sifm */ NVOBJ_CLASS(dev, 0x3089, GR); /* sifm (nv40) */ NVOBJ_CLASS(dev, 0x0062, GR); /* surf2d */ NVOBJ_CLASS(dev, 0x3062, GR); /* surf2d (nv40) */ NVOBJ_CLASS(dev, 0x0043, GR); /* rop */ NVOBJ_CLASS(dev, 0x0012, GR); /* beta1 */ NVOBJ_CLASS(dev, 0x0072, GR); /* beta4 */ NVOBJ_CLASS(dev, 0x0019, GR); /* cliprect */ NVOBJ_CLASS(dev, 0x0044, GR); /* pattern */ NVOBJ_CLASS(dev, 0x309e, GR); /* swzsurf */ /* curie */ if (dev_priv->chipset >= 0x60 || 0x00005450 & (1 << (dev_priv->chipset & 0x0f))) NVOBJ_CLASS(dev, 0x4497, GR); else NVOBJ_CLASS(dev, 0x4097, GR); /* nvsw */ NVOBJ_CLASS(dev, 0x506e, SW); NVOBJ_MTHD (dev, 0x506e, 0x0500, nv04_graph_mthd_page_flip); dev_priv->engine.graph.registered = true; return 0; }