// SPDX-License-Identifier: GPL-2.0+ /* * vsp1_entity.c -- R-Car VSP1 Base Entity * * Copyright (C) 2013-2014 Renesas Electronics Corporation * * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) */ #include #include #include #include #include #include "vsp1.h" #include "vsp1_dl.h" #include "vsp1_entity.h" #include "vsp1_pipe.h" #include "vsp1_rwpf.h" void vsp1_entity_route_setup(struct vsp1_entity *entity, struct vsp1_pipeline *pipe, struct vsp1_dl_list *dl) { struct vsp1_entity *source; u32 route; if (entity->type == VSP1_ENTITY_HGO) { u32 smppt; /* * The HGO is a special case, its routing is configured on the * sink pad. */ source = entity->sources[0]; smppt = (pipe->output->entity.index << VI6_DPR_SMPPT_TGW_SHIFT) | (source->route->output << VI6_DPR_SMPPT_PT_SHIFT); vsp1_dl_list_write(dl, VI6_DPR_HGO_SMPPT, smppt); return; } else if (entity->type == VSP1_ENTITY_HGT) { u32 smppt; /* * The HGT is a special case, its routing is configured on the * sink pad. */ source = entity->sources[0]; smppt = (pipe->output->entity.index << VI6_DPR_SMPPT_TGW_SHIFT) | (source->route->output << VI6_DPR_SMPPT_PT_SHIFT); vsp1_dl_list_write(dl, VI6_DPR_HGT_SMPPT, smppt); return; } source = entity; if (source->route->reg == 0) return; route = source->sink->route->inputs[source->sink_pad]; /* * The ILV and BRS share the same data path route. The extra BRSSEL bit * selects between the ILV and BRS. */ if (source->type == VSP1_ENTITY_BRS) route |= VI6_DPR_ROUTE_BRSSEL; vsp1_dl_list_write(dl, source->route->reg, route); } /* ----------------------------------------------------------------------------- * V4L2 Subdevice Operations */ /** * vsp1_entity_get_pad_config - Get the pad configuration for an entity * @entity: the entity * @cfg: the TRY pad configuration * @which: configuration selector (ACTIVE or TRY) * * When called with which set to V4L2_SUBDEV_FORMAT_ACTIVE the caller must hold * the entity lock to access the returned configuration. * * Return the pad configuration requested by the which argument. The TRY * configuration is passed explicitly to the function through the cfg argument * and simply returned when requested. The ACTIVE configuration comes from the * entity structure. */ struct v4l2_subdev_pad_config * vsp1_entity_get_pad_config(struct vsp1_entity *entity, struct v4l2_subdev_pad_config *cfg, enum v4l2_subdev_format_whence which) { switch (which) { case V4L2_SUBDEV_FORMAT_ACTIVE: return entity->config; case V4L2_SUBDEV_FORMAT_TRY: default: return cfg; } } /** * vsp1_entity_get_pad_format - Get a pad format from storage for an entity * @entity: the entity * @cfg: the configuration storage * @pad: the pad number * * Return the format stored in the given configuration for an entity's pad. The * configuration can be an ACTIVE or TRY configuration. */ struct v4l2_mbus_framefmt * vsp1_entity_get_pad_format(struct vsp1_entity *entity, struct v4l2_subdev_pad_config *cfg, unsigned int pad) { return v4l2_subdev_get_try_format(&entity->subdev, cfg, pad); } /** * vsp1_entity_get_pad_selection - Get a pad selection from storage for entity * @entity: the entity * @cfg: the configuration storage * @pad: the pad number * @target: the selection target * * Return the selection rectangle stored in the given configuration for an * entity's pad. The configuration can be an ACTIVE or TRY configuration. The * selection target can be COMPOSE or CROP. */ struct v4l2_rect * vsp1_entity_get_pad_selection(struct vsp1_entity *entity, struct v4l2_subdev_pad_config *cfg, unsigned int pad, unsigned int target) { switch (target) { case V4L2_SEL_TGT_COMPOSE: return v4l2_subdev_get_try_compose(&entity->subdev, cfg, pad); case V4L2_SEL_TGT_CROP: return v4l2_subdev_get_try_crop(&entity->subdev, cfg, pad); default: return NULL; } } /* * vsp1_entity_init_cfg - Initialize formats on all pads * @subdev: V4L2 subdevice * @cfg: V4L2 subdev pad configuration * * Initialize all pad formats with default values in the given pad config. This * function can be used as a handler for the subdev pad::init_cfg operation. */ int vsp1_entity_init_cfg(struct v4l2_subdev *subdev, struct v4l2_subdev_pad_config *cfg) { struct v4l2_subdev_format format; unsigned int pad; for (pad = 0; pad < subdev->entity.num_pads - 1; ++pad) { memset(&format, 0, sizeof(format)); format.pad = pad; format.which = cfg ? V4L2_SUBDEV_FORMAT_TRY : V4L2_SUBDEV_FORMAT_ACTIVE; v4l2_subdev_call(subdev, pad, set_fmt, cfg, &format); } return 0; } /* * vsp1_subdev_get_pad_format - Subdev pad get_fmt handler * @subdev: V4L2 subdevice * @cfg: V4L2 subdev pad configuration * @fmt: V4L2 subdev format * * This function implements the subdev get_fmt pad operation. It can be used as * a direct drop-in for the operation handler. */ int vsp1_subdev_get_pad_format(struct v4l2_subdev *subdev, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *fmt) { struct vsp1_entity *entity = to_vsp1_entity(subdev); struct v4l2_subdev_pad_config *config; config = vsp1_entity_get_pad_config(entity, cfg, fmt->which); if (!config) return -EINVAL; mutex_lock(&entity->lock); fmt->format = *vsp1_entity_get_pad_format(entity, config, fmt->pad); mutex_unlock(&entity->lock); return 0; } /* * vsp1_subdev_enum_mbus_code - Subdev pad enum_mbus_code handler * @subdev: V4L2 subdevice * @cfg: V4L2 subdev pad configuration * @code: Media bus code enumeration * @codes: Array of supported media bus codes * @ncodes: Number of supported media bus codes * * This function implements the subdev enum_mbus_code pad operation for entities * that do not support format conversion. It enumerates the given supported * media bus codes on the sink pad and reports a source pad format identical to * the sink pad. */ int vsp1_subdev_enum_mbus_code(struct v4l2_subdev *subdev, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_mbus_code_enum *code, const unsigned int *codes, unsigned int ncodes) { struct vsp1_entity *entity = to_vsp1_entity(subdev); if (code->pad == 0) { if (code->index >= ncodes) return -EINVAL; code->code = codes[code->index]; } else { struct v4l2_subdev_pad_config *config; struct v4l2_mbus_framefmt *format; /* * The entity can't perform format conversion, the sink format * is always identical to the source format. */ if (code->index) return -EINVAL; config = vsp1_entity_get_pad_config(entity, cfg, code->which); if (!config) return -EINVAL; mutex_lock(&entity->lock); format = vsp1_entity_get_pad_format(entity, config, 0); code->code = format->code; mutex_unlock(&entity->lock); } return 0; } /* * vsp1_subdev_enum_frame_size - Subdev pad enum_frame_size handler * @subdev: V4L2 subdevice * @cfg: V4L2 subdev pad configuration * @fse: Frame size enumeration * @min_width: Minimum image width * @min_height: Minimum image height * @max_width: Maximum image width * @max_height: Maximum image height * * This function implements the subdev enum_frame_size pad operation for * entities that do not support scaling or cropping. It reports the given * minimum and maximum frame width and height on the sink pad, and a fixed * source pad size identical to the sink pad. */ int vsp1_subdev_enum_frame_size(struct v4l2_subdev *subdev, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_frame_size_enum *fse, unsigned int min_width, unsigned int min_height, unsigned int max_width, unsigned int max_height) { struct vsp1_entity *entity = to_vsp1_entity(subdev); struct v4l2_subdev_pad_config *config; struct v4l2_mbus_framefmt *format; int ret = 0; config = vsp1_entity_get_pad_config(entity, cfg, fse->which); if (!config) return -EINVAL; format = vsp1_entity_get_pad_format(entity, config, fse->pad); mutex_lock(&entity->lock); if (fse->index || fse->code != format->code) { ret = -EINVAL; goto done; } if (fse->pad == 0) { fse->min_width = min_width; fse->max_width = max_width; fse->min_height = min_height; fse->max_height = max_height; } else { /* * The size on the source pad are fixed and always identical to * the size on the sink pad. */ fse->min_width = format->width; fse->max_width = format->width; fse->min_height = format->height; fse->max_height = format->height; } done: mutex_unlock(&entity->lock); return ret; } /* * vsp1_subdev_set_pad_format - Subdev pad set_fmt handler * @subdev: V4L2 subdevice * @cfg: V4L2 subdev pad configuration * @fmt: V4L2 subdev format * @codes: Array of supported media bus codes * @ncodes: Number of supported media bus codes * @min_width: Minimum image width * @min_height: Minimum image height * @max_width: Maximum image width * @max_height: Maximum image height * * This function implements the subdev set_fmt pad operation for entities that * do not support scaling or cropping. It defaults to the first supplied media * bus code if the requested code isn't supported, clamps the size to the * supplied minimum and maximum, and propagates the sink pad format to the * source pad. */ int vsp1_subdev_set_pad_format(struct v4l2_subdev *subdev, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *fmt, const unsigned int *codes, unsigned int ncodes, unsigned int min_width, unsigned int min_height, unsigned int max_width, unsigned int max_height) { struct vsp1_entity *entity = to_vsp1_entity(subdev); struct v4l2_subdev_pad_config *config; struct v4l2_mbus_framefmt *format; struct v4l2_rect *selection; unsigned int i; int ret = 0; mutex_lock(&entity->lock); config = vsp1_entity_get_pad_config(entity, cfg, fmt->which); if (!config) { ret = -EINVAL; goto done; } format = vsp1_entity_get_pad_format(entity, config, fmt->pad); if (fmt->pad == entity->source_pad) { /* The output format can't be modified. */ fmt->format = *format; goto done; } /* * Default to the first media bus code if the requested format is not * supported. */ for (i = 0; i < ncodes; ++i) { if (fmt->format.code == codes[i]) break; } format->code = i < ncodes ? codes[i] : codes[0]; format->width = clamp_t(unsigned int, fmt->format.width, min_width, max_width); format->height = clamp_t(unsigned int, fmt->format.height, min_height, max_height); format->field = V4L2_FIELD_NONE; format->colorspace = V4L2_COLORSPACE_SRGB; fmt->format = *format; /* Propagate the format to the source pad. */ format = vsp1_entity_get_pad_format(entity, config, entity->source_pad); *format = fmt->format; /* Reset the crop and compose rectangles */ selection = vsp1_entity_get_pad_selection(entity, config, fmt->pad, V4L2_SEL_TGT_CROP); selection->left = 0; selection->top = 0; selection->width = format->width; selection->height = format->height; selection = vsp1_entity_get_pad_selection(entity, config, fmt->pad, V4L2_SEL_TGT_COMPOSE); selection->left = 0; selection->top = 0; selection->width = format->width; selection->height = format->height; done: mutex_unlock(&entity->lock); return ret; } /* ----------------------------------------------------------------------------- * Media Operations */ static inline struct vsp1_entity * media_entity_to_vsp1_entity(struct media_entity *entity) { return container_of(entity, struct vsp1_entity, subdev.entity); } static int vsp1_entity_link_setup_source(const struct media_pad *source_pad, const struct media_pad *sink_pad, u32 flags) { struct vsp1_entity *source; source = media_entity_to_vsp1_entity(source_pad->entity); if (!source->route) return 0; if (flags & MEDIA_LNK_FL_ENABLED) { struct vsp1_entity *sink = media_entity_to_vsp1_entity(sink_pad->entity); /* * Fan-out is limited to one for the normal data path plus * optional HGO and HGT. We ignore the HGO and HGT here. */ if (sink->type != VSP1_ENTITY_HGO && sink->type != VSP1_ENTITY_HGT) { if (source->sink) return -EBUSY; source->sink = sink; source->sink_pad = sink_pad->index; } } else { source->sink = NULL; source->sink_pad = 0; } return 0; } static int vsp1_entity_link_setup_sink(const struct media_pad *source_pad, const struct media_pad *sink_pad, u32 flags) { struct vsp1_entity *sink; struct vsp1_entity *source; sink = media_entity_to_vsp1_entity(sink_pad->entity); source = media_entity_to_vsp1_entity(source_pad->entity); if (flags & MEDIA_LNK_FL_ENABLED) { /* Fan-in is limited to one. */ if (sink->sources[sink_pad->index]) return -EBUSY; sink->sources[sink_pad->index] = source; } else { sink->sources[sink_pad->index] = NULL; } return 0; } int vsp1_entity_link_setup(struct media_entity *entity, const struct media_pad *local, const struct media_pad *remote, u32 flags) { if (local->flags & MEDIA_PAD_FL_SOURCE) return vsp1_entity_link_setup_source(local, remote, flags); else return vsp1_entity_link_setup_sink(remote, local, flags); } /** * vsp1_entity_remote_pad - Find the pad at the remote end of a link * @pad: Pad at the local end of the link * * Search for a remote pad connected to the given pad by iterating over all * links originating or terminating at that pad until an enabled link is found. * * Our link setup implementation guarantees that the output fan-out will not be * higher than one for the data pipelines, except for the links to the HGO and * HGT that can be enabled in addition to a regular data link. When traversing * outgoing links this function ignores HGO and HGT entities and should thus be * used in place of the generic media_entity_remote_pad() function to traverse * data pipelines. * * Return a pointer to the pad at the remote end of the first found enabled * link, or NULL if no enabled link has been found. */ struct media_pad *vsp1_entity_remote_pad(struct media_pad *pad) { struct media_link *link; list_for_each_entry(link, &pad->entity->links, list) { struct vsp1_entity *entity; if (!(link->flags & MEDIA_LNK_FL_ENABLED)) continue; /* If we're the sink the source will never be an HGO or HGT. */ if (link->sink == pad) return link->source; if (link->source != pad) continue; /* If the sink isn't a subdevice it can't be an HGO or HGT. */ if (!is_media_entity_v4l2_subdev(link->sink->entity)) return link->sink; entity = media_entity_to_vsp1_entity(link->sink->entity); if (entity->type != VSP1_ENTITY_HGO && entity->type != VSP1_ENTITY_HGT) return link->sink; } return NULL; } /* ----------------------------------------------------------------------------- * Initialization */ #define VSP1_ENTITY_ROUTE(ent) \ { VSP1_ENTITY_##ent, 0, VI6_DPR_##ent##_ROUTE, \ { VI6_DPR_NODE_##ent }, VI6_DPR_NODE_##ent } #define VSP1_ENTITY_ROUTE_RPF(idx) \ { VSP1_ENTITY_RPF, idx, VI6_DPR_RPF_ROUTE(idx), \ { 0, }, VI6_DPR_NODE_RPF(idx) } #define VSP1_ENTITY_ROUTE_UDS(idx) \ { VSP1_ENTITY_UDS, idx, VI6_DPR_UDS_ROUTE(idx), \ { VI6_DPR_NODE_UDS(idx) }, VI6_DPR_NODE_UDS(idx) } #define VSP1_ENTITY_ROUTE_UIF(idx) \ { VSP1_ENTITY_UIF, idx, VI6_DPR_UIF_ROUTE(idx), \ { VI6_DPR_NODE_UIF(idx) }, VI6_DPR_NODE_UIF(idx) } #define VSP1_ENTITY_ROUTE_WPF(idx) \ { VSP1_ENTITY_WPF, idx, 0, \ { VI6_DPR_NODE_WPF(idx) }, VI6_DPR_NODE_WPF(idx) } static const struct vsp1_route vsp1_routes[] = { { VSP1_ENTITY_BRS, 0, VI6_DPR_ILV_BRS_ROUTE, { VI6_DPR_NODE_BRS_IN(0), VI6_DPR_NODE_BRS_IN(1) }, 0 }, { VSP1_ENTITY_BRU, 0, VI6_DPR_BRU_ROUTE, { VI6_DPR_NODE_BRU_IN(0), VI6_DPR_NODE_BRU_IN(1), VI6_DPR_NODE_BRU_IN(2), VI6_DPR_NODE_BRU_IN(3), VI6_DPR_NODE_BRU_IN(4) }, VI6_DPR_NODE_BRU_OUT }, VSP1_ENTITY_ROUTE(CLU), { VSP1_ENTITY_HGO, 0, 0, { 0, }, 0 }, { VSP1_ENTITY_HGT, 0, 0, { 0, }, 0 }, VSP1_ENTITY_ROUTE(HSI), VSP1_ENTITY_ROUTE(HST), { VSP1_ENTITY_LIF, 0, 0, { 0, }, 0 }, { VSP1_ENTITY_LIF, 1, 0, { 0, }, 0 }, VSP1_ENTITY_ROUTE(LUT), VSP1_ENTITY_ROUTE_RPF(0), VSP1_ENTITY_ROUTE_RPF(1), VSP1_ENTITY_ROUTE_RPF(2), VSP1_ENTITY_ROUTE_RPF(3), VSP1_ENTITY_ROUTE_RPF(4), VSP1_ENTITY_ROUTE(SRU), VSP1_ENTITY_ROUTE_UDS(0), VSP1_ENTITY_ROUTE_UDS(1), VSP1_ENTITY_ROUTE_UDS(2), VSP1_ENTITY_ROUTE_UIF(0), /* Named UIF4 in the documentation */ VSP1_ENTITY_ROUTE_UIF(1), /* Named UIF5 in the documentation */ VSP1_ENTITY_ROUTE_WPF(0), VSP1_ENTITY_ROUTE_WPF(1), VSP1_ENTITY_ROUTE_WPF(2), VSP1_ENTITY_ROUTE_WPF(3), }; int vsp1_entity_init(struct vsp1_device *vsp1, struct vsp1_entity *entity, const char *name, unsigned int num_pads, const struct v4l2_subdev_ops *ops, u32 function) { struct v4l2_subdev *subdev; unsigned int i; int ret; for (i = 0; i < ARRAY_SIZE(vsp1_routes); ++i) { if (vsp1_routes[i].type == entity->type && vsp1_routes[i].index == entity->index) { entity->route = &vsp1_routes[i]; break; } } if (i == ARRAY_SIZE(vsp1_routes)) return -EINVAL; mutex_init(&entity->lock); entity->vsp1 = vsp1; entity->source_pad = num_pads - 1; /* Allocate and initialize pads. */ entity->pads = devm_kzalloc(vsp1->dev, num_pads * sizeof(*entity->pads), GFP_KERNEL); if (entity->pads == NULL) return -ENOMEM; for (i = 0; i < num_pads - 1; ++i) entity->pads[i].flags = MEDIA_PAD_FL_SINK; entity->sources = devm_kcalloc(vsp1->dev, max(num_pads - 1, 1U), sizeof(*entity->sources), GFP_KERNEL); if (entity->sources == NULL) return -ENOMEM; /* Single-pad entities only have a sink. */ entity->pads[num_pads - 1].flags = num_pads > 1 ? MEDIA_PAD_FL_SOURCE : MEDIA_PAD_FL_SINK; /* Initialize the media entity. */ ret = media_entity_pads_init(&entity->subdev.entity, num_pads, entity->pads); if (ret < 0) return ret; /* Initialize the V4L2 subdev. */ subdev = &entity->subdev; v4l2_subdev_init(subdev, ops); subdev->entity.function = function; subdev->entity.ops = &vsp1->media_ops; subdev->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; snprintf(subdev->name, sizeof(subdev->name), "%s %s", dev_name(vsp1->dev), name); vsp1_entity_init_cfg(subdev, NULL); /* * Allocate the pad configuration to store formats and selection * rectangles. */ entity->config = v4l2_subdev_alloc_pad_config(&entity->subdev); if (entity->config == NULL) { media_entity_cleanup(&entity->subdev.entity); return -ENOMEM; } return 0; } void vsp1_entity_destroy(struct vsp1_entity *entity) { if (entity->ops && entity->ops->destroy) entity->ops->destroy(entity); if (entity->subdev.ctrl_handler) v4l2_ctrl_handler_free(entity->subdev.ctrl_handler); v4l2_subdev_free_pad_config(entity->config); media_entity_cleanup(&entity->subdev.entity); }