/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "amdgpu.h" #include "amdgpu_smu.h" #include "smu_internal.h" #include "soc15_common.h" #include "smu_v12_0_ppsmc.h" #include "smu12_driver_if.h" #include "smu_v12_0.h" #include "renoir_ppt.h" #define CLK_MAP(clk, index) \ [SMU_##clk] = {1, (index)} #define MSG_MAP(msg, index) \ [SMU_MSG_##msg] = {1, (index)} #define TAB_MAP_VALID(tab) \ [SMU_TABLE_##tab] = {1, TABLE_##tab} #define TAB_MAP_INVALID(tab) \ [SMU_TABLE_##tab] = {0, TABLE_##tab} static struct smu_12_0_cmn2aisc_mapping renoir_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage, PPSMC_MSG_TestMessage), MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion), MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion), MSG_MAP(PowerUpGfx, PPSMC_MSG_PowerUpGfx), MSG_MAP(AllowGfxOff, PPSMC_MSG_EnableGfxOff), MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisableGfxOff), MSG_MAP(PowerDownIspByTile, PPSMC_MSG_PowerDownIspByTile), MSG_MAP(PowerUpIspByTile, PPSMC_MSG_PowerUpIspByTile), MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn), MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn), MSG_MAP(PowerDownSdma, PPSMC_MSG_PowerDownSdma), MSG_MAP(PowerUpSdma, PPSMC_MSG_PowerUpSdma), MSG_MAP(SetHardMinIspclkByFreq, PPSMC_MSG_SetHardMinIspclkByFreq), MSG_MAP(SetHardMinVcn, PPSMC_MSG_SetHardMinVcn), MSG_MAP(Spare1, PPSMC_MSG_spare1), MSG_MAP(Spare2, PPSMC_MSG_spare2), MSG_MAP(SetAllowFclkSwitch, PPSMC_MSG_SetAllowFclkSwitch), MSG_MAP(SetMinVideoGfxclkFreq, PPSMC_MSG_SetMinVideoGfxclkFreq), MSG_MAP(ActiveProcessNotify, PPSMC_MSG_ActiveProcessNotify), MSG_MAP(SetCustomPolicy, PPSMC_MSG_SetCustomPolicy), MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps), MSG_MAP(NumOfDisplays, PPSMC_MSG_SetDisplayCount), MSG_MAP(QueryPowerLimit, PPSMC_MSG_QueryPowerLimit), MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh), MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow), MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram), MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu), MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDeviceDriverReset), MSG_MAP(SetGfxclkOverdriveByFreqVid, PPSMC_MSG_SetGfxclkOverdriveByFreqVid), MSG_MAP(SetHardMinDcfclkByFreq, PPSMC_MSG_SetHardMinDcfclkByFreq), MSG_MAP(SetHardMinSocclkByFreq, PPSMC_MSG_SetHardMinSocclkByFreq), MSG_MAP(ControlIgpuATS, PPSMC_MSG_ControlIgpuATS), MSG_MAP(SetMinVideoFclkFreq, PPSMC_MSG_SetMinVideoFclkFreq), MSG_MAP(SetMinDeepSleepDcfclk, PPSMC_MSG_SetMinDeepSleepDcfclk), MSG_MAP(ForcePowerDownGfx, PPSMC_MSG_ForcePowerDownGfx), MSG_MAP(SetPhyclkVoltageByFreq, PPSMC_MSG_SetPhyclkVoltageByFreq), MSG_MAP(SetDppclkVoltageByFreq, PPSMC_MSG_SetDppclkVoltageByFreq), MSG_MAP(SetSoftMinVcn, PPSMC_MSG_SetSoftMinVcn), MSG_MAP(EnablePostCode, PPSMC_MSG_EnablePostCode), MSG_MAP(GetGfxclkFrequency, PPSMC_MSG_GetGfxclkFrequency), MSG_MAP(GetFclkFrequency, PPSMC_MSG_GetFclkFrequency), MSG_MAP(GetMinGfxclkFrequency, PPSMC_MSG_GetMinGfxclkFrequency), MSG_MAP(GetMaxGfxclkFrequency, PPSMC_MSG_GetMaxGfxclkFrequency), MSG_MAP(SoftReset, PPSMC_MSG_SoftReset), MSG_MAP(SetGfxCGPG, PPSMC_MSG_SetGfxCGPG), MSG_MAP(SetSoftMaxGfxClk, PPSMC_MSG_SetSoftMaxGfxClk), MSG_MAP(SetHardMinGfxClk, PPSMC_MSG_SetHardMinGfxClk), MSG_MAP(SetSoftMaxSocclkByFreq, PPSMC_MSG_SetSoftMaxSocclkByFreq), MSG_MAP(SetSoftMaxFclkByFreq, PPSMC_MSG_SetSoftMaxFclkByFreq), MSG_MAP(SetSoftMaxVcn, PPSMC_MSG_SetSoftMaxVcn), MSG_MAP(PowerGateMmHub, PPSMC_MSG_PowerGateMmHub), MSG_MAP(UpdatePmeRestore, PPSMC_MSG_UpdatePmeRestore), MSG_MAP(GpuChangeState, PPSMC_MSG_GpuChangeState), MSG_MAP(SetPowerLimitPercentage, PPSMC_MSG_SetPowerLimitPercentage), MSG_MAP(ForceGfxContentSave, PPSMC_MSG_ForceGfxContentSave), MSG_MAP(EnableTmdp48MHzRefclkPwrDown, PPSMC_MSG_EnableTmdp48MHzRefclkPwrDown), MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg), MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg), MSG_MAP(PowerGateAtHub, PPSMC_MSG_PowerGateAtHub), MSG_MAP(SetSoftMinJpeg, PPSMC_MSG_SetSoftMinJpeg), MSG_MAP(SetHardMinFclkByFreq, PPSMC_MSG_SetHardMinFclkByFreq), }; static struct smu_12_0_cmn2aisc_mapping renoir_clk_map[SMU_CLK_COUNT] = { CLK_MAP(GFXCLK, CLOCK_GFXCLK), CLK_MAP(SCLK, CLOCK_GFXCLK), CLK_MAP(SOCCLK, CLOCK_SOCCLK), CLK_MAP(UCLK, CLOCK_UMCCLK), CLK_MAP(MCLK, CLOCK_UMCCLK), }; static struct smu_12_0_cmn2aisc_mapping renoir_table_map[SMU_TABLE_COUNT] = { TAB_MAP_VALID(WATERMARKS), TAB_MAP_INVALID(CUSTOM_DPM), TAB_MAP_VALID(DPMCLOCKS), TAB_MAP_VALID(SMU_METRICS), }; static int renoir_get_smu_msg_index(struct smu_context *smc, uint32_t index) { struct smu_12_0_cmn2aisc_mapping mapping; if (index >= SMU_MSG_MAX_COUNT) return -EINVAL; mapping = renoir_message_map[index]; if (!(mapping.valid_mapping)) return -EINVAL; return mapping.map_to; } static int renoir_get_smu_clk_index(struct smu_context *smc, uint32_t index) { struct smu_12_0_cmn2aisc_mapping mapping; if (index >= SMU_CLK_COUNT) return -EINVAL; mapping = renoir_clk_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int renoir_get_smu_table_index(struct smu_context *smc, uint32_t index) { struct smu_12_0_cmn2aisc_mapping mapping; if (index >= SMU_TABLE_COUNT) return -EINVAL; mapping = renoir_table_map[index]; if (!(mapping.valid_mapping)) return -EINVAL; return mapping.map_to; } static int renoir_get_metrics_table(struct smu_context *smu, SmuMetrics_t *metrics_table) { struct smu_table_context *smu_table= &smu->smu_table; int ret = 0; mutex_lock(&smu->metrics_lock); if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + msecs_to_jiffies(100))) { ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0, (void *)smu_table->metrics_table, false); if (ret) { pr_info("Failed to export SMU metrics table!\n"); mutex_unlock(&smu->metrics_lock); return ret; } smu_table->metrics_time = jiffies; } memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t)); mutex_unlock(&smu->metrics_lock); return ret; } static int renoir_tables_init(struct smu_context *smu, struct smu_table *tables) { struct smu_table_context *smu_table = &smu->smu_table; SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL); if (!smu_table->clocks_table) return -ENOMEM; smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL); if (!smu_table->metrics_table) return -ENOMEM; smu_table->metrics_time = 0; smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL); if (!smu_table->watermarks_table) return -ENOMEM; return 0; } /** * This interface just for getting uclk ultimate freq and should't introduce * other likewise function result in overmuch callback. */ static int renoir_get_dpm_clk_limited(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t dpm_level, uint32_t *freq) { DpmClocks_t *clk_table = smu->smu_table.clocks_table; if (!clk_table || clk_type >= SMU_CLK_COUNT) return -EINVAL; GET_DPM_CUR_FREQ(clk_table, clk_type, dpm_level, *freq); return 0; } static int renoir_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { int i, size = 0, ret = 0; uint32_t cur_value = 0, value = 0, count = 0, min = 0, max = 0; DpmClocks_t *clk_table = smu->smu_table.clocks_table; SmuMetrics_t metrics; if (!clk_table || clk_type >= SMU_CLK_COUNT) return -EINVAL; memset(&metrics, 0, sizeof(metrics)); ret = renoir_get_metrics_table(smu, &metrics); if (ret) return ret; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: /* retirve table returned paramters unit is MHz */ cur_value = metrics.ClockFrequency[CLOCK_GFXCLK]; ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min, &max, false); if (!ret) { /* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */ if (cur_value == max) i = 2; else if (cur_value == min) i = 0; else i = 1; size += sprintf(buf + size, "0: %uMhz %s\n", min, i == 0 ? "*" : ""); size += sprintf(buf + size, "1: %uMhz %s\n", i == 1 ? cur_value : RENOIR_UMD_PSTATE_GFXCLK, i == 1 ? "*" : ""); size += sprintf(buf + size, "2: %uMhz %s\n", max, i == 2 ? "*" : ""); } return size; case SMU_SOCCLK: count = NUM_SOCCLK_DPM_LEVELS; cur_value = metrics.ClockFrequency[CLOCK_SOCCLK]; break; case SMU_MCLK: count = NUM_MEMCLK_DPM_LEVELS; cur_value = metrics.ClockFrequency[CLOCK_UMCCLK]; break; case SMU_DCEFCLK: count = NUM_DCFCLK_DPM_LEVELS; cur_value = metrics.ClockFrequency[CLOCK_DCFCLK]; break; case SMU_FCLK: count = NUM_FCLK_DPM_LEVELS; cur_value = metrics.ClockFrequency[CLOCK_FCLK]; break; default: return -EINVAL; } for (i = 0; i < count; i++) { GET_DPM_CUR_FREQ(clk_table, clk_type, i, value); size += sprintf(buf + size, "%d: %uMhz %s\n", i, value, cur_value == value ? "*" : ""); } return size; } static enum amd_pm_state_type renoir_get_current_power_state(struct smu_context *smu) { enum amd_pm_state_type pm_type; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!smu_dpm_ctx->dpm_context || !smu_dpm_ctx->dpm_current_power_state) return -EINVAL; switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) { case SMU_STATE_UI_LABEL_BATTERY: pm_type = POWER_STATE_TYPE_BATTERY; break; case SMU_STATE_UI_LABEL_BALLANCED: pm_type = POWER_STATE_TYPE_BALANCED; break; case SMU_STATE_UI_LABEL_PERFORMANCE: pm_type = POWER_STATE_TYPE_PERFORMANCE; break; default: if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT) pm_type = POWER_STATE_TYPE_INTERNAL_BOOT; else pm_type = POWER_STATE_TYPE_DEFAULT; break; } return pm_type; } static int renoir_dpm_set_uvd_enable(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; if (enable) { /* vcn dpm on is a prerequisite for vcn power gate messages */ if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0, NULL); if (ret) return ret; } power_gate->vcn_gated = false; } else { if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_send_smc_msg(smu, SMU_MSG_PowerDownVcn, NULL); if (ret) return ret; } power_gate->vcn_gated = true; } return ret; } static int renoir_dpm_set_jpeg_enable(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; if (enable) { if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0, NULL); if (ret) return ret; } power_gate->jpeg_gated = false; } else { if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0, NULL); if (ret) return ret; } power_gate->jpeg_gated = true; } return ret; } static int renoir_get_current_clk_freq_by_table(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { int ret = 0, clk_id = 0; SmuMetrics_t metrics; ret = renoir_get_metrics_table(smu, &metrics); if (ret) return ret; clk_id = smu_clk_get_index(smu, clk_type); if (clk_id < 0) return clk_id; *value = metrics.ClockFrequency[clk_id]; return ret; } static int renoir_force_dpm_limit_value(struct smu_context *smu, bool highest) { int ret = 0, i = 0; uint32_t min_freq, max_freq, force_freq; enum smu_clk_type clk_type; enum smu_clk_type clks[] = { SMU_GFXCLK, SMU_MCLK, SMU_SOCCLK, }; for (i = 0; i < ARRAY_SIZE(clks); i++) { clk_type = clks[i]; ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false); if (ret) return ret; force_freq = highest ? max_freq : min_freq; ret = smu_set_soft_freq_range(smu, clk_type, force_freq, force_freq, false); if (ret) return ret; } return ret; } static int renoir_unforce_dpm_levels(struct smu_context *smu) { int ret = 0, i = 0; uint32_t min_freq, max_freq; enum smu_clk_type clk_type; struct clk_feature_map { enum smu_clk_type clk_type; uint32_t feature; } clk_feature_map[] = { {SMU_GFXCLK, SMU_FEATURE_DPM_GFXCLK_BIT}, {SMU_MCLK, SMU_FEATURE_DPM_UCLK_BIT}, {SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT}, }; for (i = 0; i < ARRAY_SIZE(clk_feature_map); i++) { if (!smu_feature_is_enabled(smu, clk_feature_map[i].feature)) continue; clk_type = clk_feature_map[i].clk_type; ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false); if (ret) return ret; ret = smu_set_soft_freq_range(smu, clk_type, min_freq, max_freq, false); if (ret) return ret; } return ret; } static int renoir_get_gpu_temperature(struct smu_context *smu, uint32_t *value) { int ret = 0; SmuMetrics_t metrics; if (!value) return -EINVAL; ret = renoir_get_metrics_table(smu, &metrics); if (ret) return ret; *value = (metrics.GfxTemperature / 100) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static int renoir_get_current_activity_percent(struct smu_context *smu, enum amd_pp_sensors sensor, uint32_t *value) { int ret = 0; SmuMetrics_t metrics; if (!value) return -EINVAL; ret = renoir_get_metrics_table(smu, &metrics); if (ret) return ret; switch (sensor) { case AMDGPU_PP_SENSOR_GPU_LOAD: *value = metrics.AverageGfxActivity / 100; break; default: pr_err("Invalid sensor for retrieving clock activity\n"); return -EINVAL; } return 0; } static int renoir_get_workload_type(struct smu_context *smu, uint32_t profile) { uint32_t pplib_workload = 0; switch (profile) { case PP_SMC_POWER_PROFILE_FULLSCREEN3D: pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT; break; case PP_SMC_POWER_PROFILE_CUSTOM: pplib_workload = WORKLOAD_PPLIB_COUNT; break; case PP_SMC_POWER_PROFILE_VIDEO: pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT; break; case PP_SMC_POWER_PROFILE_VR: pplib_workload = WORKLOAD_PPLIB_VR_BIT; break; case PP_SMC_POWER_PROFILE_COMPUTE: pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT; break; default: return -EINVAL; } return pplib_workload; } static int renoir_get_profiling_clk_mask(struct smu_context *smu, enum amd_dpm_forced_level level, uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) { if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { if (sclk_mask) *sclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { if (mclk_mask) *mclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { if(sclk_mask) /* The sclk as gfxclk and has three level about max/min/current */ *sclk_mask = 3 - 1; if(mclk_mask) *mclk_mask = NUM_MEMCLK_DPM_LEVELS - 1; if(soc_mask) *soc_mask = NUM_SOCCLK_DPM_LEVELS - 1; } return 0; } /** * This interface get dpm clock table for dc */ static int renoir_get_dpm_clock_table(struct smu_context *smu, struct dpm_clocks *clock_table) { DpmClocks_t *table = smu->smu_table.clocks_table; int i; if (!clock_table || !table) return -EINVAL; for (i = 0; i < NUM_DCFCLK_DPM_LEVELS; i++) { clock_table->DcfClocks[i].Freq = table->DcfClocks[i].Freq; clock_table->DcfClocks[i].Vol = table->DcfClocks[i].Vol; } for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) { clock_table->SocClocks[i].Freq = table->SocClocks[i].Freq; clock_table->SocClocks[i].Vol = table->SocClocks[i].Vol; } for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) { clock_table->FClocks[i].Freq = table->FClocks[i].Freq; clock_table->FClocks[i].Vol = table->FClocks[i].Vol; } for (i = 0; i< NUM_MEMCLK_DPM_LEVELS; i++) { clock_table->MemClocks[i].Freq = table->MemClocks[i].Freq; clock_table->MemClocks[i].Vol = table->MemClocks[i].Vol; } return 0; } static int renoir_force_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { int ret = 0 ; uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0; DpmClocks_t *clk_table = smu->smu_table.clocks_table; soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: if (soft_min_level > 2 || soft_max_level > 2) { pr_info("Currently sclk only support 3 levels on APU\n"); return -EINVAL; } ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min_freq, &max_freq, false); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk, soft_max_level == 0 ? min_freq : soft_max_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : max_freq, NULL); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk, soft_min_level == 2 ? max_freq : soft_min_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : min_freq, NULL); if (ret) return ret; break; case SMU_SOCCLK: GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq); GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, max_freq, NULL); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, min_freq, NULL); if (ret) return ret; break; case SMU_MCLK: case SMU_FCLK: GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq); GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, max_freq, NULL); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, min_freq, NULL); if (ret) return ret; break; default: break; } return ret; } static int renoir_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) { int workload_type, ret; uint32_t profile_mode = input[size]; if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { pr_err("Invalid power profile mode %d\n", smu->power_profile_mode); return -EINVAL; } /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_workload_get_type(smu, smu->power_profile_mode); if (workload_type < 0) { /* * TODO: If some case need switch to powersave/default power mode * then can consider enter WORKLOAD_COMPUTE/WORKLOAD_CUSTOM for power saving. */ pr_err_once("Unsupported power profile mode %d on RENOIR\n",smu->power_profile_mode); return -EINVAL; } ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask, 1 << workload_type, NULL); if (ret) { pr_err_once("Fail to set workload type %d\n", workload_type); return ret; } smu->power_profile_mode = profile_mode; return 0; } static int renoir_set_peak_clock_by_device(struct smu_context *smu) { int ret = 0; uint32_t sclk_freq = 0, uclk_freq = 0; ret = smu_get_dpm_freq_range(smu, SMU_SCLK, NULL, &sclk_freq, false); if (ret) return ret; ret = smu_set_soft_freq_range(smu, SMU_SCLK, sclk_freq, sclk_freq, false); if (ret) return ret; ret = smu_get_dpm_freq_range(smu, SMU_UCLK, NULL, &uclk_freq, false); if (ret) return ret; ret = smu_set_soft_freq_range(smu, SMU_UCLK, uclk_freq, uclk_freq, false); if (ret) return ret; return ret; } static int renoir_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { int ret = 0; uint32_t sclk_mask, mclk_mask, soc_mask; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = smu_force_dpm_limit_value(smu, true); break; case AMD_DPM_FORCED_LEVEL_LOW: ret = smu_force_dpm_limit_value(smu, false); break; case AMD_DPM_FORCED_LEVEL_AUTO: case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: ret = smu_unforce_dpm_levels(smu); break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: ret = smu_get_profiling_clk_mask(smu, level, &sclk_mask, &mclk_mask, &soc_mask); if (ret) return ret; smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false); smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false); smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false); break; case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = renoir_set_peak_clock_by_device(smu); break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } return ret; } /* save watermark settings into pplib smu structure, * also pass data to smu controller */ static int renoir_set_watermarks_table( struct smu_context *smu, void *watermarks, struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges) { int i; int ret = 0; Watermarks_t *table = watermarks; if (!table || !clock_ranges) return -EINVAL; if (clock_ranges->num_wm_dmif_sets > 4 || clock_ranges->num_wm_mcif_sets > 4) return -EINVAL; /* save into smu->smu_table.tables[SMU_TABLE_WATERMARKS]->cpu_addr*/ for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) { table->WatermarkRow[WM_DCFCLK][i].MinClock = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz)); table->WatermarkRow[WM_DCFCLK][i].MaxClock = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz)); table->WatermarkRow[WM_DCFCLK][i].MinMclk = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz)); table->WatermarkRow[WM_DCFCLK][i].MaxMclk = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz)); table->WatermarkRow[WM_DCFCLK][i].WmSetting = (uint8_t) clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id; } for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) { table->WatermarkRow[WM_SOCCLK][i].MinClock = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz)); table->WatermarkRow[WM_SOCCLK][i].MaxClock = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz)); table->WatermarkRow[WM_SOCCLK][i].MinMclk = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz)); table->WatermarkRow[WM_SOCCLK][i].MaxMclk = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz)); table->WatermarkRow[WM_SOCCLK][i].WmSetting = (uint8_t) clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id; } smu->watermarks_bitmap |= WATERMARKS_EXIST; /* pass data to smu controller */ if (!(smu->watermarks_bitmap & WATERMARKS_LOADED)) { ret = smu_write_watermarks_table(smu); if (ret) { pr_err("Failed to update WMTABLE!"); return ret; } smu->watermarks_bitmap |= WATERMARKS_LOADED; } return 0; } static int renoir_get_power_profile_mode(struct smu_context *smu, char *buf) { static const char *profile_name[] = { "BOOTUP_DEFAULT", "3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM"}; uint32_t i, size = 0; int16_t workload_type = 0; if (!smu->pm_enabled || !buf) return -EINVAL; for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { /* * Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT * Not all profile modes are supported on arcturus. */ workload_type = smu_workload_get_type(smu, i); if (workload_type < 0) continue; size += sprintf(buf + size, "%2d %14s%s\n", i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); } return size; } static int renoir_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; if (!data || !size) return -EINVAL; mutex_lock(&smu->sensor_lock); switch (sensor) { case AMDGPU_PP_SENSOR_GPU_LOAD: ret = renoir_get_current_activity_percent(smu, sensor, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_TEMP: ret = renoir_get_gpu_temperature(smu, (uint32_t *)data); *size = 4; break; default: ret = smu_v12_0_read_sensor(smu, sensor, data, size); } mutex_unlock(&smu->sensor_lock); return ret; } static const struct pptable_funcs renoir_ppt_funcs = { .get_smu_msg_index = renoir_get_smu_msg_index, .get_smu_clk_index = renoir_get_smu_clk_index, .get_smu_table_index = renoir_get_smu_table_index, .tables_init = renoir_tables_init, .set_power_state = NULL, .get_dpm_clk_limited = renoir_get_dpm_clk_limited, .print_clk_levels = renoir_print_clk_levels, .get_current_power_state = renoir_get_current_power_state, .dpm_set_uvd_enable = renoir_dpm_set_uvd_enable, .dpm_set_jpeg_enable = renoir_dpm_set_jpeg_enable, .get_current_clk_freq_by_table = renoir_get_current_clk_freq_by_table, .force_dpm_limit_value = renoir_force_dpm_limit_value, .unforce_dpm_levels = renoir_unforce_dpm_levels, .get_workload_type = renoir_get_workload_type, .get_profiling_clk_mask = renoir_get_profiling_clk_mask, .force_clk_levels = renoir_force_clk_levels, .set_power_profile_mode = renoir_set_power_profile_mode, .set_performance_level = renoir_set_performance_level, .get_dpm_clock_table = renoir_get_dpm_clock_table, .set_watermarks_table = renoir_set_watermarks_table, .get_power_profile_mode = renoir_get_power_profile_mode, .read_sensor = renoir_read_sensor, .check_fw_status = smu_v12_0_check_fw_status, .check_fw_version = smu_v12_0_check_fw_version, .powergate_sdma = smu_v12_0_powergate_sdma, .powergate_vcn = smu_v12_0_powergate_vcn, .powergate_jpeg = smu_v12_0_powergate_jpeg, .send_smc_msg_with_param = smu_v12_0_send_msg_with_param, .set_gfx_cgpg = smu_v12_0_set_gfx_cgpg, .gfx_off_control = smu_v12_0_gfx_off_control, .init_smc_tables = smu_v12_0_init_smc_tables, .fini_smc_tables = smu_v12_0_fini_smc_tables, .populate_smc_tables = smu_v12_0_populate_smc_tables, .get_enabled_mask = smu_v12_0_get_enabled_mask, .get_current_clk_freq = smu_v12_0_get_current_clk_freq, .get_dpm_ultimate_freq = smu_v12_0_get_dpm_ultimate_freq, .mode2_reset = smu_v12_0_mode2_reset, .set_soft_freq_limited_range = smu_v12_0_set_soft_freq_limited_range, .set_driver_table_location = smu_v12_0_set_driver_table_location, }; void renoir_set_ppt_funcs(struct smu_context *smu) { smu->ppt_funcs = &renoir_ppt_funcs; smu->smc_if_version = SMU12_DRIVER_IF_VERSION; smu->is_apu = true; }