/* * intel_hdmi_audio.c - Intel HDMI audio driver * * Copyright (C) 2016 Intel Corp * Authors: Sailaja Bandarupalli * Ramesh Babu K V * Vaibhav Agarwal * Jerome Anand * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * ALSA driver for Intel HDMI audio */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "intel_hdmi_audio.h" /*standard module options for ALSA. This module supports only one card*/ static int hdmi_card_index = SNDRV_DEFAULT_IDX1; static char *hdmi_card_id = SNDRV_DEFAULT_STR1; module_param_named(index, hdmi_card_index, int, 0444); MODULE_PARM_DESC(index, "Index value for INTEL Intel HDMI Audio controller."); module_param_named(id, hdmi_card_id, charp, 0444); MODULE_PARM_DESC(id, "ID string for INTEL Intel HDMI Audio controller."); /* * ELD SA bits in the CEA Speaker Allocation data block */ static const int eld_speaker_allocation_bits[] = { [0] = FL | FR, [1] = LFE, [2] = FC, [3] = RL | RR, [4] = RC, [5] = FLC | FRC, [6] = RLC | RRC, /* the following are not defined in ELD yet */ [7] = 0, }; /* * This is an ordered list! * * The preceding ones have better chances to be selected by * hdmi_channel_allocation(). */ static struct cea_channel_speaker_allocation channel_allocations[] = { /* channel: 7 6 5 4 3 2 1 0 */ { .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } }, /* 2.1 */ { .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } }, /* Dolby Surround */ { .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } }, /* surround40 */ { .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } }, /* surround41 */ { .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } }, /* surround50 */ { .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } }, /* surround51 */ { .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } }, /* 6.1 */ { .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } }, /* surround71 */ { .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } }, { .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } }, { .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } }, { .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } }, { .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } }, { .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } }, { .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } }, { .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } }, { .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } }, { .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } }, { .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } }, { .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } }, { .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } }, { .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } }, { .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } }, { .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } }, { .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } }, { .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } }, { .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } }, { .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } }, { .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } }, { .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } }, { .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } }, { .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } }, }; static const struct channel_map_table map_tables[] = { { SNDRV_CHMAP_FL, 0x00, FL }, { SNDRV_CHMAP_FR, 0x01, FR }, { SNDRV_CHMAP_RL, 0x04, RL }, { SNDRV_CHMAP_RR, 0x05, RR }, { SNDRV_CHMAP_LFE, 0x02, LFE }, { SNDRV_CHMAP_FC, 0x03, FC }, { SNDRV_CHMAP_RLC, 0x06, RLC }, { SNDRV_CHMAP_RRC, 0x07, RRC }, {} /* terminator */ }; /* hardware capability structure */ static const struct snd_pcm_hardware snd_intel_hadstream = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_DOUBLE | SNDRV_PCM_INFO_MMAP| SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH), .formats = (SNDRV_PCM_FMTBIT_S24 | SNDRV_PCM_FMTBIT_U24), .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000, .rate_min = HAD_MIN_RATE, .rate_max = HAD_MAX_RATE, .channels_min = HAD_MIN_CHANNEL, .channels_max = HAD_MAX_CHANNEL, .buffer_bytes_max = HAD_MAX_BUFFER, .period_bytes_min = HAD_MIN_PERIOD_BYTES, .period_bytes_max = HAD_MAX_PERIOD_BYTES, .periods_min = HAD_MIN_PERIODS, .periods_max = HAD_MAX_PERIODS, .fifo_size = HAD_FIFO_SIZE, }; /* Get the active PCM substream; * Call had_substream_put() for unreferecing. * Don't call this inside had_spinlock, as it takes by itself */ static struct snd_pcm_substream * had_substream_get(struct snd_intelhad *intelhaddata) { struct snd_pcm_substream *substream; unsigned long flags; spin_lock_irqsave(&intelhaddata->had_spinlock, flags); substream = intelhaddata->stream_info.substream; if (substream) intelhaddata->stream_info.substream_refcount++; spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); return substream; } /* Unref the active PCM substream; * Don't call this inside had_spinlock, as it takes by itself */ static void had_substream_put(struct snd_intelhad *intelhaddata) { unsigned long flags; spin_lock_irqsave(&intelhaddata->had_spinlock, flags); intelhaddata->stream_info.substream_refcount--; spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); } /* Register access functions */ static inline void mid_hdmi_audio_read(struct snd_intelhad *ctx, u32 reg, u32 *val) { *val = ioread32(ctx->mmio_start + ctx->had_config_offset + reg); } static inline void mid_hdmi_audio_write(struct snd_intelhad *ctx, u32 reg, u32 val) { iowrite32(val, ctx->mmio_start + ctx->had_config_offset + reg); } static int had_read_register(struct snd_intelhad *intelhaddata, u32 offset, u32 *data) { if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) return -ENODEV; mid_hdmi_audio_read(intelhaddata, offset, data); return 0; } static void fixup_dp_config(struct snd_intelhad *intelhaddata, u32 offset, u32 *data) { if (intelhaddata->dp_output) { if (offset == AUD_CONFIG && (*data & AUD_CONFIG_VALID_BIT)) *data |= AUD_CONFIG_DP_MODE | AUD_CONFIG_BLOCK_BIT; } } static int had_write_register(struct snd_intelhad *intelhaddata, u32 offset, u32 data) { if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) return -ENODEV; fixup_dp_config(intelhaddata, offset, &data); mid_hdmi_audio_write(intelhaddata, offset, data); return 0; } static int had_read_modify(struct snd_intelhad *intelhaddata, u32 offset, u32 data, u32 mask) { u32 val_tmp; if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) return -ENODEV; mid_hdmi_audio_read(intelhaddata, offset, &val_tmp); val_tmp &= ~mask; val_tmp |= (data & mask); fixup_dp_config(intelhaddata, offset, &val_tmp); mid_hdmi_audio_write(intelhaddata, offset, val_tmp); return 0; } /* * enable / disable audio configuration * * The had_read_modify() function should not directly be used on VLV2 for * updating AUD_CONFIG register. * This is because: * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the * register. This field should be 1xy binary for configuration with 6 or * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio) * causes the "channels" field to be updated as 0xy binary resulting in * bad audio. The fix is to always write the AUD_CONFIG[6:4] with * appropriate value when doing read-modify of AUD_CONFIG register. */ static void snd_intelhad_enable_audio(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata, bool enable) { union aud_cfg cfg_val = {.cfg_regval = 0}; u8 channels, data, mask; /* * If substream is NULL, there is no active stream. * In this case just set channels to 2 */ channels = substream ? substream->runtime->channels : 2; cfg_val.cfg_regx.num_ch = channels - 2; data = cfg_val.cfg_regval; if (enable) data |= 1; mask = AUD_CONFIG_CH_MASK | 1; dev_dbg(intelhaddata->dev, "%s : data = %x, mask =%x\n", __func__, data, mask); had_read_modify(intelhaddata, AUD_CONFIG, data, mask); } /* enable / disable the audio interface */ static void snd_intelhad_enable_audio_int(struct snd_intelhad *ctx, bool enable) { u32 status_reg; if (enable) { mid_hdmi_audio_read(ctx, AUD_HDMI_STATUS, &status_reg); status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN; mid_hdmi_audio_write(ctx, AUD_HDMI_STATUS, status_reg); mid_hdmi_audio_read(ctx, AUD_HDMI_STATUS, &status_reg); } } static void snd_intelhad_reset_audio(struct snd_intelhad *intelhaddata, u8 reset) { had_write_register(intelhaddata, AUD_HDMI_STATUS, reset); } /* * initialize audio channel status registers * This function is called in the prepare callback */ static int had_prog_status_reg(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { union aud_cfg cfg_val = {.cfg_regval = 0}; union aud_ch_status_0 ch_stat0 = {.status_0_regval = 0}; union aud_ch_status_1 ch_stat1 = {.status_1_regval = 0}; int format; ch_stat0.status_0_regx.lpcm_id = (intelhaddata->aes_bits & IEC958_AES0_NONAUDIO) >> 1; ch_stat0.status_0_regx.clk_acc = (intelhaddata->aes_bits & IEC958_AES3_CON_CLOCK) >> 4; cfg_val.cfg_regx.val_bit = ch_stat0.status_0_regx.lpcm_id; switch (substream->runtime->rate) { case AUD_SAMPLE_RATE_32: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_32KHZ; break; case AUD_SAMPLE_RATE_44_1: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_44KHZ; break; case AUD_SAMPLE_RATE_48: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_48KHZ; break; case AUD_SAMPLE_RATE_88_2: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_88KHZ; break; case AUD_SAMPLE_RATE_96: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_96KHZ; break; case AUD_SAMPLE_RATE_176_4: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_176KHZ; break; case AUD_SAMPLE_RATE_192: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_192KHZ; break; default: /* control should never come here */ return -EINVAL; } had_write_register(intelhaddata, AUD_CH_STATUS_0, ch_stat0.status_0_regval); format = substream->runtime->format; if (format == SNDRV_PCM_FORMAT_S16_LE) { ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_20; ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_16BITS; } else if (format == SNDRV_PCM_FORMAT_S24_LE) { ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_24; ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_24BITS; } else { ch_stat1.status_1_regx.max_wrd_len = 0; ch_stat1.status_1_regx.wrd_len = 0; } had_write_register(intelhaddata, AUD_CH_STATUS_1, ch_stat1.status_1_regval); return 0; } /* * function to initialize audio * registers and buffer confgiuration registers * This function is called in the prepare callback */ static int snd_intelhad_audio_ctrl(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { union aud_cfg cfg_val = {.cfg_regval = 0}; union aud_buf_config buf_cfg = {.buf_cfgval = 0}; u8 channels; had_prog_status_reg(substream, intelhaddata); buf_cfg.buf_cfg_regx.audio_fifo_watermark = FIFO_THRESHOLD; buf_cfg.buf_cfg_regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD; buf_cfg.buf_cfg_regx.aud_delay = 0; had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.buf_cfgval); channels = substream->runtime->channels; cfg_val.cfg_regx.num_ch = channels - 2; if (channels <= 2) cfg_val.cfg_regx.layout = LAYOUT0; else cfg_val.cfg_regx.layout = LAYOUT1; cfg_val.cfg_regx.val_bit = 1; had_write_register(intelhaddata, AUD_CONFIG, cfg_val.cfg_regval); return 0; } /* * Compute derived values in channel_allocations[]. */ static void init_channel_allocations(void) { int i, j; struct cea_channel_speaker_allocation *p; for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { p = channel_allocations + i; p->channels = 0; p->spk_mask = 0; for (j = 0; j < ARRAY_SIZE(p->speakers); j++) if (p->speakers[j]) { p->channels++; p->spk_mask |= p->speakers[j]; } } } /* * The transformation takes two steps: * * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask * spk_mask => (channel_allocations[]) => ai->CA * * TODO: it could select the wrong CA from multiple candidates. */ static int snd_intelhad_channel_allocation(struct snd_intelhad *intelhaddata, int channels) { int i; int ca = 0; int spk_mask = 0; /* * CA defaults to 0 for basic stereo audio */ if (channels <= 2) return 0; /* * expand ELD's speaker allocation mask * * ELD tells the speaker mask in a compact(paired) form, * expand ELD's notions to match the ones used by Audio InfoFrame. */ for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { if (intelhaddata->eld.speaker_allocation_block & (1 << i)) spk_mask |= eld_speaker_allocation_bits[i]; } /* search for the first working match in the CA table */ for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { if (channels == channel_allocations[i].channels && (spk_mask & channel_allocations[i].spk_mask) == channel_allocations[i].spk_mask) { ca = channel_allocations[i].ca_index; break; } } dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels); return ca; } /* from speaker bit mask to ALSA API channel position */ static int spk_to_chmap(int spk) { const struct channel_map_table *t = map_tables; for (; t->map; t++) { if (t->spk_mask == spk) return t->map; } return 0; } static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata) { int i, c; int spk_mask = 0; struct snd_pcm_chmap_elem *chmap; u8 eld_high, eld_high_mask = 0xF0; u8 high_msb; chmap = kzalloc(sizeof(*chmap), GFP_KERNEL); if (!chmap) { intelhaddata->chmap->chmap = NULL; return; } dev_dbg(intelhaddata->dev, "eld.speaker_allocation_block = %x\n", intelhaddata->eld.speaker_allocation_block); /* WA: Fix the max channel supported to 8 */ /* * Sink may support more than 8 channels, if eld_high has more than * one bit set. SOC supports max 8 channels. * Refer eld_speaker_allocation_bits, for sink speaker allocation */ /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */ eld_high = intelhaddata->eld.speaker_allocation_block & eld_high_mask; if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) { /* eld_high & (eld_high-1): if more than 1 bit set */ /* 0x1F: 7 channels */ for (i = 1; i < 4; i++) { high_msb = eld_high & (0x80 >> i); if (high_msb) { intelhaddata->eld.speaker_allocation_block &= high_msb | 0xF; break; } } } for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { if (intelhaddata->eld.speaker_allocation_block & (1 << i)) spk_mask |= eld_speaker_allocation_bits[i]; } for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { if (spk_mask == channel_allocations[i].spk_mask) { for (c = 0; c < channel_allocations[i].channels; c++) { chmap->map[c] = spk_to_chmap( channel_allocations[i].speakers[ (MAX_SPEAKERS - 1) - c]); } chmap->channels = channel_allocations[i].channels; intelhaddata->chmap->chmap = chmap; break; } } if (i >= ARRAY_SIZE(channel_allocations)) { intelhaddata->chmap->chmap = NULL; kfree(chmap); } } /* * ALSA API channel-map control callbacks */ static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); struct snd_intelhad *intelhaddata = info->private_data; if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) return -ENODEV; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = HAD_MAX_CHANNEL; uinfo->value.integer.min = 0; uinfo->value.integer.max = SNDRV_CHMAP_LAST; return 0; } static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); struct snd_intelhad *intelhaddata = info->private_data; int i; const struct snd_pcm_chmap_elem *chmap; if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) return -ENODEV; mutex_lock(&intelhaddata->mutex); if (!intelhaddata->chmap->chmap) { mutex_unlock(&intelhaddata->mutex); return -ENODATA; } chmap = intelhaddata->chmap->chmap; for (i = 0; i < chmap->channels; i++) ucontrol->value.integer.value[i] = chmap->map[i]; mutex_unlock(&intelhaddata->mutex); return 0; } static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata, struct snd_pcm *pcm) { int err; err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, NULL, 0, (unsigned long)intelhaddata, &intelhaddata->chmap); if (err < 0) return err; intelhaddata->chmap->private_data = intelhaddata; intelhaddata->chmap->kctl->info = had_chmap_ctl_info; intelhaddata->chmap->kctl->get = had_chmap_ctl_get; intelhaddata->chmap->chmap = NULL; return 0; } /* * snd_intelhad_prog_dip - to initialize Data Island Packets registers * * @substream:substream for which the prepare function is called * @intelhaddata:substream private data * * This function is called in the prepare callback */ static void snd_intelhad_prog_dip(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { int i; union aud_ctrl_st ctrl_state = {.ctrl_val = 0}; union aud_info_frame2 frame2 = {.fr2_val = 0}; union aud_info_frame3 frame3 = {.fr3_val = 0}; u8 checksum = 0; u32 info_frame; int channels; channels = substream->runtime->channels; had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.ctrl_val); if (intelhaddata->dp_output) { info_frame = DP_INFO_FRAME_WORD1; frame2.fr2_val = 1; } else { info_frame = HDMI_INFO_FRAME_WORD1; frame2.fr2_regx.chnl_cnt = substream->runtime->channels - 1; frame3.fr3_regx.chnl_alloc = snd_intelhad_channel_allocation( intelhaddata, channels); /* Calculte the byte wide checksum for all valid DIP words */ for (i = 0; i < BYTES_PER_WORD; i++) checksum += (info_frame >> i*BITS_PER_BYTE) & MASK_BYTE0; for (i = 0; i < BYTES_PER_WORD; i++) checksum += (frame2.fr2_val >> i*BITS_PER_BYTE) & MASK_BYTE0; for (i = 0; i < BYTES_PER_WORD; i++) checksum += (frame3.fr3_val >> i*BITS_PER_BYTE) & MASK_BYTE0; frame2.fr2_regx.chksum = -(checksum); } had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame); had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.fr2_val); had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.fr3_val); /* program remaining DIP words with zero */ for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++) had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0); ctrl_state.ctrl_regx.dip_freq = 1; ctrl_state.ctrl_regx.dip_en_sta = 1; had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.ctrl_val); } /* * snd_intelhad_prog_buffer - programs buffer address and length registers * @substream: substream for which the prepare function is called * @intelhaddata: substream private data * * This function programs ring buffer address and length into registers. */ static int snd_intelhad_prog_buffer(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata, int start, int end) { u32 ring_buf_addr, ring_buf_size, period_bytes; u8 i, num_periods; ring_buf_addr = substream->runtime->dma_addr; ring_buf_size = snd_pcm_lib_buffer_bytes(substream); intelhaddata->stream_info.ring_buf_size = ring_buf_size; period_bytes = frames_to_bytes(substream->runtime, substream->runtime->period_size); num_periods = substream->runtime->periods; /* * buffer addr should be 64 byte aligned, period bytes * will be used to calculate addr offset */ period_bytes &= ~0x3F; /* Hardware supports MAX_PERIODS buffers */ if (end >= HAD_MAX_PERIODS) return -EINVAL; for (i = start; i <= end; i++) { /* Program the buf registers with addr and len */ intelhaddata->buf_info[i].buf_addr = ring_buf_addr + (i * period_bytes); if (i < num_periods-1) intelhaddata->buf_info[i].buf_size = period_bytes; else intelhaddata->buf_info[i].buf_size = ring_buf_size - (i * period_bytes); had_write_register(intelhaddata, AUD_BUF_A_ADDR + (i * HAD_REG_WIDTH), intelhaddata->buf_info[i].buf_addr | BIT(0) | BIT(1)); had_write_register(intelhaddata, AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH), period_bytes); intelhaddata->buf_info[i].is_valid = true; } dev_dbg(intelhaddata->dev, "%s:buf[%d-%d] addr=%#x and size=%d\n", __func__, start, end, intelhaddata->buf_info[start].buf_addr, intelhaddata->buf_info[start].buf_size); intelhaddata->valid_buf_cnt = num_periods; return 0; } static int snd_intelhad_read_len(struct snd_intelhad *intelhaddata) { int i, retval = 0; u32 len[4]; for (i = 0; i < 4 ; i++) { had_read_register(intelhaddata, AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH), &len[i]); if (!len[i]) retval++; } if (retval != 1) { for (i = 0; i < 4 ; i++) dev_dbg(intelhaddata->dev, "buf[%d] size=%d\n", i, len[i]); } return retval; } static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate) { u32 maud_val; /* Select maud according to DP 1.2 spec */ if (link_rate == DP_2_7_GHZ) { switch (aud_samp_freq) { case AUD_SAMPLE_RATE_32: maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_44_1: maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_48: maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_88_2: maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_96: maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_176_4: maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL; break; case HAD_MAX_RATE: maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL; break; default: maud_val = -EINVAL; break; } } else if (link_rate == DP_1_62_GHZ) { switch (aud_samp_freq) { case AUD_SAMPLE_RATE_32: maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_44_1: maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_48: maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_88_2: maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_96: maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_176_4: maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL; break; case HAD_MAX_RATE: maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL; break; default: maud_val = -EINVAL; break; } } else maud_val = -EINVAL; return maud_val; } /* * snd_intelhad_prog_cts - Program HDMI audio CTS value * * @aud_samp_freq: sampling frequency of audio data * @tmds: sampling frequency of the display data * @n_param: N value, depends on aud_samp_freq * @intelhaddata:substream private data * * Program CTS register based on the audio and display sampling frequency */ static void snd_intelhad_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate, u32 n_param, struct snd_intelhad *intelhaddata) { u32 cts_val; u64 dividend, divisor; if (intelhaddata->dp_output) { /* Substitute cts_val with Maud according to DP 1.2 spec*/ cts_val = had_calculate_maud_value(aud_samp_freq, link_rate); } else { /* Calculate CTS according to HDMI 1.3a spec*/ dividend = (u64)tmds * n_param*1000; divisor = 128 * aud_samp_freq; cts_val = div64_u64(dividend, divisor); } dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n", tmds, n_param, cts_val); had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val)); } static int had_calculate_n_value(u32 aud_samp_freq) { int n_val; /* Select N according to HDMI 1.3a spec*/ switch (aud_samp_freq) { case AUD_SAMPLE_RATE_32: n_val = 4096; break; case AUD_SAMPLE_RATE_44_1: n_val = 6272; break; case AUD_SAMPLE_RATE_48: n_val = 6144; break; case AUD_SAMPLE_RATE_88_2: n_val = 12544; break; case AUD_SAMPLE_RATE_96: n_val = 12288; break; case AUD_SAMPLE_RATE_176_4: n_val = 25088; break; case HAD_MAX_RATE: n_val = 24576; break; default: n_val = -EINVAL; break; } return n_val; } /* * snd_intelhad_prog_n - Program HDMI audio N value * * @aud_samp_freq: sampling frequency of audio data * @n_param: N value, depends on aud_samp_freq * @intelhaddata:substream private data * * This function is called in the prepare callback. * It programs based on the audio and display sampling frequency */ static int snd_intelhad_prog_n(u32 aud_samp_freq, u32 *n_param, struct snd_intelhad *intelhaddata) { int n_val; if (intelhaddata->dp_output) { /* * According to DP specs, Maud and Naud values hold * a relationship, which is stated as: * Maud/Naud = 512 * fs / f_LS_Clk * where, fs is the sampling frequency of the audio stream * and Naud is 32768 for Async clock. */ n_val = DP_NAUD_VAL; } else n_val = had_calculate_n_value(aud_samp_freq); if (n_val < 0) return n_val; had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val)); *n_param = n_val; return 0; } static void snd_intelhad_handle_underrun(struct snd_intelhad *intelhaddata) { u32 hdmi_status = 0, i = 0; /* Handle Underrun interrupt within Audio Unit */ had_write_register(intelhaddata, AUD_CONFIG, 0); /* Reset buffer pointers */ had_write_register(intelhaddata, AUD_HDMI_STATUS, 1); had_write_register(intelhaddata, AUD_HDMI_STATUS, 0); /* * The interrupt status 'sticky' bits might not be cleared by * setting '1' to that bit once... */ do { /* clear bit30, 31 AUD_HDMI_STATUS */ had_read_register(intelhaddata, AUD_HDMI_STATUS, &hdmi_status); dev_dbg(intelhaddata->dev, "HDMI status =0x%x\n", hdmi_status); if (hdmi_status & AUD_CONFIG_MASK_UNDERRUN) { i++; had_write_register(intelhaddata, AUD_HDMI_STATUS, hdmi_status); } else break; } while (i < MAX_CNT); if (i >= MAX_CNT) dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n"); } /* * snd_intelhad_open - stream initializations are done here * @substream:substream for which the stream function is called * * This function is called whenever a PCM stream is opened */ static int snd_intelhad_open(struct snd_pcm_substream *substream) { struct snd_intelhad *intelhaddata; struct snd_pcm_runtime *runtime; struct had_stream_data *had_stream; int retval; intelhaddata = snd_pcm_substream_chip(substream); had_stream = &intelhaddata->stream_data; runtime = substream->runtime; intelhaddata->underrun_count = 0; pm_runtime_get(intelhaddata->dev); if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) { dev_dbg(intelhaddata->dev, "%s: HDMI cable plugged-out\n", __func__); retval = -ENODEV; goto error; } /* set the runtime hw parameter with local snd_pcm_hardware struct */ runtime->hw = snd_intel_hadstream; retval = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (retval < 0) goto error; /* Make sure, that the period size is always aligned * 64byte boundary */ retval = snd_pcm_hw_constraint_step(substream->runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64); if (retval < 0) { dev_dbg(intelhaddata->dev, "%s:step_size=64 failed,err=%d\n", __func__, retval); goto error; } spin_lock_irq(&intelhaddata->had_spinlock); intelhaddata->stream_info.substream = substream; intelhaddata->stream_info.substream_refcount++; spin_unlock_irq(&intelhaddata->had_spinlock); return retval; error: pm_runtime_put(intelhaddata->dev); return retval; } /* * snd_intelhad_close - to free parameteres when stream is stopped * @substream: substream for which the function is called * * This function is called by ALSA framework when stream is stopped */ static int snd_intelhad_close(struct snd_pcm_substream *substream) { struct snd_intelhad *intelhaddata; intelhaddata = snd_pcm_substream_chip(substream); intelhaddata->stream_info.buffer_rendered = 0; spin_lock_irq(&intelhaddata->had_spinlock); intelhaddata->stream_info.substream = NULL; intelhaddata->stream_info.substream_refcount--; while (intelhaddata->stream_info.substream_refcount > 0) { spin_unlock_irq(&intelhaddata->had_spinlock); cpu_relax(); spin_lock_irq(&intelhaddata->had_spinlock); } spin_unlock_irq(&intelhaddata->had_spinlock); /* Check if following drv_status modification is required - VA */ if (intelhaddata->drv_status != HAD_DRV_DISCONNECTED) { intelhaddata->drv_status = HAD_DRV_CONNECTED; dev_dbg(intelhaddata->dev, "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n", __func__, __LINE__); } pm_runtime_put(intelhaddata->dev); return 0; } /* * snd_intelhad_hw_params - to setup the hardware parameters * like allocating the buffers * @substream: substream for which the function is called * @hw_params: hardware parameters * * This function is called by ALSA framework when hardware params are set */ static int snd_intelhad_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_intelhad *intelhaddata; unsigned long addr; int pages, buf_size, retval; if (!hw_params) return -EINVAL; intelhaddata = snd_pcm_substream_chip(substream); buf_size = params_buffer_bytes(hw_params); retval = snd_pcm_lib_malloc_pages(substream, buf_size); if (retval < 0) return retval; dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n", __func__, buf_size); /* mark the pages as uncached region */ addr = (unsigned long) substream->runtime->dma_area; pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE; retval = set_memory_uc(addr, pages); if (retval) { dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n", retval); return retval; } memset(substream->runtime->dma_area, 0, buf_size); return retval; } /* * snd_intelhad_hw_free - to release the resources allocated during * hardware params setup * @substream: substream for which the function is called * * This function is called by ALSA framework before close callback. */ static int snd_intelhad_hw_free(struct snd_pcm_substream *substream) { unsigned long addr; u32 pages; /* mark back the pages as cached/writeback region before the free */ if (substream->runtime->dma_area != NULL) { addr = (unsigned long) substream->runtime->dma_area; pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE; set_memory_wb(addr, pages); return snd_pcm_lib_free_pages(substream); } return 0; } /* * snd_intelhad_pcm_trigger - stream activities are handled here * @substream: substream for which the stream function is called * @cmd: the stream commamd thats requested from upper layer * * This function is called whenever an a stream activity is invoked */ static int snd_intelhad_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { int retval = 0; struct snd_intelhad *intelhaddata; struct had_stream_data *had_stream; intelhaddata = snd_pcm_substream_chip(substream); had_stream = &intelhaddata->stream_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: /* Disable local INTRs till register prgmng is done */ if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) { dev_dbg(intelhaddata->dev, "_START: HDMI cable plugged-out\n"); retval = -ENODEV; break; } had_stream->stream_type = HAD_RUNNING_STREAM; /* Enable Audio */ snd_intelhad_enable_audio_int(intelhaddata, true); snd_intelhad_enable_audio(substream, intelhaddata, true); break; case SNDRV_PCM_TRIGGER_STOP: spin_lock(&intelhaddata->had_spinlock); intelhaddata->curr_buf = 0; /* Stop reporting BUFFER_DONE/UNDERRUN to above layers */ had_stream->stream_type = HAD_INIT; spin_unlock(&intelhaddata->had_spinlock); /* Disable Audio */ snd_intelhad_enable_audio_int(intelhaddata, false); snd_intelhad_enable_audio(substream, intelhaddata, false); /* Reset buffer pointers */ snd_intelhad_reset_audio(intelhaddata, 1); snd_intelhad_reset_audio(intelhaddata, 0); snd_intelhad_enable_audio_int(intelhaddata, false); break; default: retval = -EINVAL; } return retval; } /* * snd_intelhad_pcm_prepare - internal preparation before starting a stream * @substream: substream for which the function is called * * This function is called when a stream is started for internal preparation. */ static int snd_intelhad_pcm_prepare(struct snd_pcm_substream *substream) { int retval; u32 disp_samp_freq, n_param; u32 link_rate = 0; struct snd_intelhad *intelhaddata; struct snd_pcm_runtime *runtime; struct had_stream_data *had_stream; intelhaddata = snd_pcm_substream_chip(substream); runtime = substream->runtime; had_stream = &intelhaddata->stream_data; if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) { dev_dbg(intelhaddata->dev, "%s: HDMI cable plugged-out\n", __func__); retval = -ENODEV; goto prep_end; } dev_dbg(intelhaddata->dev, "period_size=%d\n", (int)frames_to_bytes(runtime, runtime->period_size)); dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods); dev_dbg(intelhaddata->dev, "buffer_size=%d\n", (int)snd_pcm_lib_buffer_bytes(substream)); dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate); dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels); intelhaddata->stream_info.buffer_rendered = 0; /* Get N value in KHz */ disp_samp_freq = intelhaddata->tmds_clock_speed; retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param, intelhaddata); if (retval) { dev_err(intelhaddata->dev, "programming N value failed %#x\n", retval); goto prep_end; } if (intelhaddata->dp_output) link_rate = intelhaddata->link_rate; snd_intelhad_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, n_param, intelhaddata); snd_intelhad_prog_dip(substream, intelhaddata); retval = snd_intelhad_audio_ctrl(substream, intelhaddata); /* Prog buffer address */ retval = snd_intelhad_prog_buffer(substream, intelhaddata, HAD_BUF_TYPE_A, HAD_BUF_TYPE_D); /* * Program channel mapping in following order: * FL, FR, C, LFE, RL, RR */ had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER); prep_end: return retval; } /* * snd_intelhad_pcm_pointer- to send the current buffer pointerprocessed by hw * @substream: substream for which the function is called * * This function is called by ALSA framework to get the current hw buffer ptr * when a period is elapsed */ static snd_pcm_uframes_t snd_intelhad_pcm_pointer( struct snd_pcm_substream *substream) { struct snd_intelhad *intelhaddata; u32 bytes_rendered = 0; u32 t; int buf_id; intelhaddata = snd_pcm_substream_chip(substream); if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) return SNDRV_PCM_POS_XRUN; /* Use a hw register to calculate sub-period position reports. * This makes PulseAudio happier. */ buf_id = intelhaddata->curr_buf % 4; had_read_register(intelhaddata, AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH), &t); if ((t == 0) || (t == ((u32)-1L))) { intelhaddata->underrun_count++; dev_dbg(intelhaddata->dev, "discovered buffer done for buf %d, count = %d\n", buf_id, intelhaddata->underrun_count); if (intelhaddata->underrun_count > (HAD_MIN_PERIODS/2)) { dev_dbg(intelhaddata->dev, "assume audio_codec_reset, underrun = %d - do xrun\n", intelhaddata->underrun_count); intelhaddata->underrun_count = 0; return SNDRV_PCM_POS_XRUN; } } else { /* Reset Counter */ intelhaddata->underrun_count = 0; } t = intelhaddata->buf_info[buf_id].buf_size - t; if (intelhaddata->stream_info.buffer_rendered) div_u64_rem(intelhaddata->stream_info.buffer_rendered, intelhaddata->stream_info.ring_buf_size, &(bytes_rendered)); return bytes_to_frames(substream->runtime, bytes_rendered + t); } /* * snd_intelhad_pcm_mmap- mmaps a kernel buffer to user space for copying data * @substream: substream for which the function is called * @vma: struct instance of memory VMM memory area * * This function is called by OS when a user space component * tries to get mmap memory from driver */ static int snd_intelhad_pcm_mmap(struct snd_pcm_substream *substream, struct vm_area_struct *vma) { vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); return remap_pfn_range(vma, vma->vm_start, substream->dma_buffer.addr >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot); } /* process mode change of the running stream; called in mutex */ static int hdmi_audio_mode_change(struct snd_intelhad *intelhaddata) { struct snd_pcm_substream *substream; int retval = 0; u32 disp_samp_freq, n_param; u32 link_rate = 0; substream = had_substream_get(intelhaddata); if (!substream) return 0; /* Disable Audio */ snd_intelhad_enable_audio(substream, intelhaddata, false); /* Update CTS value */ disp_samp_freq = intelhaddata->tmds_clock_speed; retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param, intelhaddata); if (retval) { dev_err(intelhaddata->dev, "programming N value failed %#x\n", retval); goto out; } if (intelhaddata->dp_output) link_rate = intelhaddata->link_rate; snd_intelhad_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, n_param, intelhaddata); /* Enable Audio */ snd_intelhad_enable_audio(substream, intelhaddata, true); out: had_substream_put(intelhaddata); return retval; } /* * hdmi_lpe_audio_suspend - power management suspend function * @pdev: platform device * * This function is called to suspend the hdmi audio. */ static int hdmi_lpe_audio_suspend(struct platform_device *pdev, pm_message_t state) { struct had_stream_data *had_stream; struct snd_intelhad *intelhaddata = platform_get_drvdata(pdev); had_stream = &intelhaddata->stream_data; if (!pm_runtime_status_suspended(intelhaddata->dev)) { dev_err(intelhaddata->dev, "audio stream is active\n"); return -EAGAIN; } spin_lock_irq(&intelhaddata->had_spinlock); if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) { spin_unlock_irq(&intelhaddata->had_spinlock); dev_dbg(intelhaddata->dev, "had not connected\n"); return 0; } if (intelhaddata->drv_status == HAD_DRV_SUSPENDED) { spin_unlock_irq(&intelhaddata->had_spinlock); dev_dbg(intelhaddata->dev, "had already suspended\n"); return 0; } intelhaddata->drv_status = HAD_DRV_SUSPENDED; dev_dbg(intelhaddata->dev, "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_SUSPENDED\n", __func__, __LINE__); spin_unlock_irq(&intelhaddata->had_spinlock); snd_intelhad_enable_audio_int(intelhaddata, false); return 0; } /* * hdmi_lpe_audio_resume - power management resume function * @pdev: platform device * * This function is called to resume the hdmi audio. */ static int hdmi_lpe_audio_resume(struct platform_device *pdev) { struct snd_intelhad *intelhaddata = platform_get_drvdata(pdev); spin_lock_irq(&intelhaddata->had_spinlock); if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) { spin_unlock_irq(&intelhaddata->had_spinlock); dev_dbg(intelhaddata->dev, "had not connected\n"); return 0; } if (intelhaddata->drv_status != HAD_DRV_SUSPENDED) { spin_unlock_irq(&intelhaddata->had_spinlock); dev_dbg(intelhaddata->dev, "had is not in suspended state\n"); return 0; } intelhaddata->drv_status = HAD_DRV_CONNECTED; dev_dbg(intelhaddata->dev, "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n", __func__, __LINE__); spin_unlock_irq(&intelhaddata->had_spinlock); snd_intelhad_enable_audio_int(intelhaddata, true); return 0; } static inline int had_chk_intrmiss(struct snd_intelhad *intelhaddata, enum intel_had_aud_buf_type buf_id) { int i, intr_count = 0; enum intel_had_aud_buf_type buff_done; u32 buf_size, buf_addr; struct had_stream_data *had_stream; had_stream = &intelhaddata->stream_data; buff_done = buf_id; intr_count = snd_intelhad_read_len(intelhaddata); if (intr_count > 1) { /* In case of active playback */ dev_err(intelhaddata->dev, "Driver detected %d missed buffer done interrupt(s)\n", (intr_count - 1)); if (intr_count > 3) return intr_count; buf_id += (intr_count - 1); /* Reprogram registers*/ for (i = buff_done; i < buf_id; i++) { int j = i % 4; buf_size = intelhaddata->buf_info[j].buf_size; buf_addr = intelhaddata->buf_info[j].buf_addr; had_write_register(intelhaddata, AUD_BUF_A_LENGTH + (j * HAD_REG_WIDTH), buf_size); had_write_register(intelhaddata, AUD_BUF_A_ADDR+(j * HAD_REG_WIDTH), (buf_addr | BIT(0) | BIT(1))); } buf_id = buf_id % 4; intelhaddata->buff_done = buf_id; } return intr_count; } /* called from irq handler */ static int had_process_buffer_done(struct snd_intelhad *intelhaddata) { u32 len = 1; enum intel_had_aud_buf_type buf_id; enum intel_had_aud_buf_type buff_done; struct pcm_stream_info *stream; struct snd_pcm_substream *substream; u32 buf_size; struct had_stream_data *had_stream; int intr_count; unsigned long flags; had_stream = &intelhaddata->stream_data; stream = &intelhaddata->stream_info; intr_count = 1; spin_lock_irqsave(&intelhaddata->had_spinlock, flags); if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) { spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); dev_dbg(intelhaddata->dev, "%s:Device already disconnected\n", __func__); return 0; } buf_id = intelhaddata->curr_buf; intelhaddata->buff_done = buf_id; buff_done = intelhaddata->buff_done; buf_size = intelhaddata->buf_info[buf_id].buf_size; /* Every debug statement has an implication * of ~5msec. Thus, avoid having >3 debug statements * for each buffer_done handling. */ /* Check for any intr_miss in case of active playback */ if (had_stream->stream_type == HAD_RUNNING_STREAM) { intr_count = had_chk_intrmiss(intelhaddata, buf_id); if (!intr_count || (intr_count > 3)) { spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); dev_err(intelhaddata->dev, "HAD SW state in non-recoverable mode\n"); return 0; } buf_id += (intr_count - 1); buf_id = buf_id % 4; } intelhaddata->buf_info[buf_id].is_valid = true; if (intelhaddata->valid_buf_cnt-1 == buf_id) { if (had_stream->stream_type >= HAD_RUNNING_STREAM) intelhaddata->curr_buf = HAD_BUF_TYPE_A; } else intelhaddata->curr_buf = buf_id + 1; spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) { dev_dbg(intelhaddata->dev, "HDMI cable plugged-out\n"); return 0; } /* Reprogram the registers with addr and length */ had_write_register(intelhaddata, AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH), buf_size); had_write_register(intelhaddata, AUD_BUF_A_ADDR + (buf_id * HAD_REG_WIDTH), intelhaddata->buf_info[buf_id].buf_addr | BIT(0) | BIT(1)); had_read_register(intelhaddata, AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH), &len); dev_dbg(intelhaddata->dev, "%s:Enabled buf[%d]\n", __func__, buf_id); /* In case of actual data, * report buffer_done to above ALSA layer */ substream = had_substream_get(intelhaddata); if (substream) { buf_size = intelhaddata->buf_info[buf_id].buf_size; intelhaddata->stream_info.buffer_rendered += (intr_count * buf_size); snd_pcm_period_elapsed(substream); had_substream_put(intelhaddata); } return 0; } /* called from irq handler */ static int had_process_buffer_underrun(struct snd_intelhad *intelhaddata) { enum intel_had_aud_buf_type buf_id; struct pcm_stream_info *stream; struct had_stream_data *had_stream; struct snd_pcm_substream *substream; enum had_status_stream stream_type; unsigned long flags; int drv_status; had_stream = &intelhaddata->stream_data; stream = &intelhaddata->stream_info; spin_lock_irqsave(&intelhaddata->had_spinlock, flags); buf_id = intelhaddata->curr_buf; stream_type = had_stream->stream_type; intelhaddata->buff_done = buf_id; drv_status = intelhaddata->drv_status; if (stream_type == HAD_RUNNING_STREAM) intelhaddata->curr_buf = HAD_BUF_TYPE_A; spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); dev_dbg(intelhaddata->dev, "Enter:%s buf_id=%d, stream_type=%d\n", __func__, buf_id, stream_type); snd_intelhad_handle_underrun(intelhaddata); if (drv_status == HAD_DRV_DISCONNECTED) { dev_dbg(intelhaddata->dev, "%s:Device already disconnected\n", __func__); return 0; } if (stream_type == HAD_RUNNING_STREAM) { /* Report UNDERRUN error to above layers */ substream = had_substream_get(intelhaddata); if (substream) { snd_pcm_stop_xrun(substream); had_substream_put(intelhaddata); } } return 0; } /* process hot plug, called from wq with mutex locked */ static void had_process_hot_plug(struct snd_intelhad *intelhaddata) { enum intel_had_aud_buf_type buf_id; struct snd_pcm_substream *substream; struct had_stream_data *had_stream; had_stream = &intelhaddata->stream_data; spin_lock_irq(&intelhaddata->had_spinlock); if (intelhaddata->drv_status == HAD_DRV_CONNECTED) { dev_dbg(intelhaddata->dev, "Device already connected\n"); spin_unlock_irq(&intelhaddata->had_spinlock); return; } buf_id = intelhaddata->curr_buf; intelhaddata->buff_done = buf_id; intelhaddata->drv_status = HAD_DRV_CONNECTED; dev_dbg(intelhaddata->dev, "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n", __func__, __LINE__); spin_unlock_irq(&intelhaddata->had_spinlock); dev_dbg(intelhaddata->dev, "Processing HOT_PLUG, buf_id = %d\n", buf_id); /* Safety check */ substream = had_substream_get(intelhaddata); if (substream) { dev_dbg(intelhaddata->dev, "Force to stop the active stream by disconnection\n"); /* Set runtime->state to hw_params done */ snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); had_substream_put(intelhaddata); } had_build_channel_allocation_map(intelhaddata); } /* process hot unplug, called from wq with mutex locked */ static void had_process_hot_unplug(struct snd_intelhad *intelhaddata) { enum intel_had_aud_buf_type buf_id; struct had_stream_data *had_stream; struct snd_pcm_substream *substream; had_stream = &intelhaddata->stream_data; buf_id = intelhaddata->curr_buf; substream = had_substream_get(intelhaddata); spin_lock_irq(&intelhaddata->had_spinlock); if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) { dev_dbg(intelhaddata->dev, "Device already disconnected\n"); spin_unlock_irq(&intelhaddata->had_spinlock); goto out; } /* Disable Audio */ snd_intelhad_enable_audio_int(intelhaddata, false); snd_intelhad_enable_audio(substream, intelhaddata, false); intelhaddata->drv_status = HAD_DRV_DISCONNECTED; dev_dbg(intelhaddata->dev, "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n", __func__, __LINE__); had_stream->stream_type = HAD_INIT; spin_unlock_irq(&intelhaddata->had_spinlock); /* Report to above ALSA layer */ if (substream) snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); out: if (substream) had_substream_put(intelhaddata); kfree(intelhaddata->chmap->chmap); intelhaddata->chmap->chmap = NULL; } /* PCM operations structure and the calls back for the same */ static struct snd_pcm_ops snd_intelhad_playback_ops = { .open = snd_intelhad_open, .close = snd_intelhad_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_intelhad_hw_params, .hw_free = snd_intelhad_hw_free, .prepare = snd_intelhad_pcm_prepare, .trigger = snd_intelhad_pcm_trigger, .pointer = snd_intelhad_pcm_pointer, .mmap = snd_intelhad_pcm_mmap, }; static int had_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int had_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); mutex_lock(&intelhaddata->mutex); ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff; ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff; ucontrol->value.iec958.status[2] = (intelhaddata->aes_bits >> 16) & 0xff; ucontrol->value.iec958.status[3] = (intelhaddata->aes_bits >> 24) & 0xff; mutex_unlock(&intelhaddata->mutex); return 0; } static int had_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = 0xff; ucontrol->value.iec958.status[1] = 0xff; ucontrol->value.iec958.status[2] = 0xff; ucontrol->value.iec958.status[3] = 0xff; return 0; } static int had_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { unsigned int val; struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); int changed = 0; val = (ucontrol->value.iec958.status[0] << 0) | (ucontrol->value.iec958.status[1] << 8) | (ucontrol->value.iec958.status[2] << 16) | (ucontrol->value.iec958.status[3] << 24); mutex_lock(&intelhaddata->mutex); if (intelhaddata->aes_bits != val) { intelhaddata->aes_bits = val; changed = 1; } mutex_unlock(&intelhaddata->mutex); return changed; } static struct snd_kcontrol_new had_control_iec958_mask = { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK), .info = had_iec958_info, /* shared */ .get = had_iec958_mask_get, }; static struct snd_kcontrol_new had_control_iec958 = { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .info = had_iec958_info, .get = had_iec958_get, .put = had_iec958_put }; static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id) { struct snd_intelhad *ctx = dev_id; u32 audio_stat, audio_reg; audio_reg = AUD_HDMI_STATUS; mid_hdmi_audio_read(ctx, audio_reg, &audio_stat); if (audio_stat & HDMI_AUDIO_UNDERRUN) { mid_hdmi_audio_write(ctx, audio_reg, HDMI_AUDIO_UNDERRUN); had_process_buffer_underrun(ctx); } if (audio_stat & HDMI_AUDIO_BUFFER_DONE) { mid_hdmi_audio_write(ctx, audio_reg, HDMI_AUDIO_BUFFER_DONE); had_process_buffer_done(ctx); } return IRQ_HANDLED; } static void notify_audio_lpe(struct platform_device *pdev) { struct snd_intelhad *ctx = platform_get_drvdata(pdev); schedule_work(&ctx->hdmi_audio_wq); } static void had_audio_wq(struct work_struct *work) { struct snd_intelhad *ctx = container_of(work, struct snd_intelhad, hdmi_audio_wq); struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data; mutex_lock(&ctx->mutex); if (!pdata->hdmi_connected) { dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG\n", __func__); had_process_hot_unplug(ctx); } else { struct intel_hdmi_lpe_audio_eld *eld = &pdata->eld; dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n", __func__, eld->port_id, pdata->tmds_clock_speed); switch (eld->pipe_id) { case 0: ctx->had_config_offset = AUDIO_HDMI_CONFIG_A; break; case 1: ctx->had_config_offset = AUDIO_HDMI_CONFIG_B; break; case 2: ctx->had_config_offset = AUDIO_HDMI_CONFIG_C; break; default: dev_dbg(ctx->dev, "Invalid pipe %d\n", eld->pipe_id); break; } memcpy(&ctx->eld, eld->eld_data, sizeof(ctx->eld)); ctx->dp_output = pdata->dp_output; ctx->tmds_clock_speed = pdata->tmds_clock_speed; ctx->link_rate = pdata->link_rate; had_process_hot_plug(ctx); /* Process mode change if stream is active */ if (ctx->stream_data.stream_type == HAD_RUNNING_STREAM) hdmi_audio_mode_change(ctx); } mutex_unlock(&ctx->mutex); } /* release resources */ static void hdmi_lpe_audio_free(struct snd_card *card) { struct snd_intelhad *ctx = card->private_data; cancel_work_sync(&ctx->hdmi_audio_wq); if (ctx->mmio_start) iounmap(ctx->mmio_start); if (ctx->irq >= 0) free_irq(ctx->irq, ctx); } /* * hdmi_lpe_audio_probe - start bridge with i915 * * This function is called when the i915 driver creates the * hdmi-lpe-audio platform device. */ static int hdmi_lpe_audio_probe(struct platform_device *pdev) { struct snd_card *card; struct snd_intelhad *ctx; struct snd_pcm *pcm; struct intel_hdmi_lpe_audio_pdata *pdata; int irq; struct resource *res_mmio; int ret; dev_dbg(&pdev->dev, "dma_mask: %p\n", pdev->dev.dma_mask); pdata = pdev->dev.platform_data; if (!pdata) { dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__); return -EINVAL; } /* get resources */ irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "Could not get irq resource\n"); return -ENODEV; } res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res_mmio) { dev_err(&pdev->dev, "Could not get IO_MEM resources\n"); return -ENXIO; } /* create a card instance with ALSA framework */ ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id, THIS_MODULE, sizeof(*ctx), &card); if (ret) return ret; ctx = card->private_data; spin_lock_init(&ctx->had_spinlock); mutex_init(&ctx->mutex); ctx->drv_status = HAD_DRV_DISCONNECTED; ctx->dev = &pdev->dev; ctx->card = card; ctx->aes_bits = SNDRV_PCM_DEFAULT_CON_SPDIF; strcpy(card->driver, INTEL_HAD); strcpy(card->shortname, INTEL_HAD); ctx->irq = -1; ctx->tmds_clock_speed = DIS_SAMPLE_RATE_148_5; INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq); card->private_free = hdmi_lpe_audio_free; /* assume pipe A as default */ ctx->had_config_offset = AUDIO_HDMI_CONFIG_A; platform_set_drvdata(pdev, ctx); dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n", __func__, (unsigned int)res_mmio->start, (unsigned int)res_mmio->end); ctx->mmio_start = ioremap_nocache(res_mmio->start, (size_t)(resource_size(res_mmio))); if (!ctx->mmio_start) { dev_err(&pdev->dev, "Could not get ioremap\n"); ret = -EACCES; goto err; } /* setup interrupt handler */ ret = request_irq(irq, display_pipe_interrupt_handler, 0, pdev->name, ctx); if (ret < 0) { dev_err(&pdev->dev, "request_irq failed\n"); goto err; } ctx->irq = irq; ret = snd_pcm_new(card, INTEL_HAD, PCM_INDEX, MAX_PB_STREAMS, MAX_CAP_STREAMS, &pcm); if (ret) goto err; /* setup private data which can be retrieved when required */ pcm->private_data = ctx; pcm->info_flags = 0; strncpy(pcm->name, card->shortname, strlen(card->shortname)); /* setup the ops for playabck */ snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_intelhad_playback_ops); /* allocate dma pages for ALSA stream operations * memory allocated is based on size, not max value * thus using same argument for max & size */ snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, NULL, HAD_MAX_BUFFER, HAD_MAX_BUFFER); /* IEC958 controls */ ret = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958_mask, ctx)); if (ret < 0) goto err; ret = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958, ctx)); if (ret < 0) goto err; init_channel_allocations(); /* Register channel map controls */ ret = had_register_chmap_ctls(ctx, pcm); if (ret < 0) goto err; ret = snd_card_register(card); if (ret) goto err; spin_lock_irq(&pdata->lpe_audio_slock); pdata->notify_audio_lpe = notify_audio_lpe; pdata->notify_pending = false; spin_unlock_irq(&pdata->lpe_audio_slock); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__); schedule_work(&ctx->hdmi_audio_wq); return 0; err: snd_card_free(card); return ret; } /* * hdmi_lpe_audio_remove - stop bridge with i915 * * This function is called when the platform device is destroyed. */ static int hdmi_lpe_audio_remove(struct platform_device *pdev) { struct snd_intelhad *ctx = platform_get_drvdata(pdev); if (ctx->drv_status != HAD_DRV_DISCONNECTED) snd_intelhad_enable_audio_int(ctx, false); snd_card_free(ctx->card); return 0; } static struct platform_driver hdmi_lpe_audio_driver = { .driver = { .name = "hdmi-lpe-audio", }, .probe = hdmi_lpe_audio_probe, .remove = hdmi_lpe_audio_remove, .suspend = hdmi_lpe_audio_suspend, .resume = hdmi_lpe_audio_resume }; module_platform_driver(hdmi_lpe_audio_driver); MODULE_ALIAS("platform:hdmi_lpe_audio"); MODULE_AUTHOR("Sailaja Bandarupalli "); MODULE_AUTHOR("Ramesh Babu K V "); MODULE_AUTHOR("Vaibhav Agarwal "); MODULE_AUTHOR("Jerome Anand "); MODULE_DESCRIPTION("Intel HDMI Audio driver"); MODULE_LICENSE("GPL v2"); MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");