/* * Copyright (c) 2004 Topspin Communications. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core_priv.h" #include "restrack.h" MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("core kernel InfiniBand API"); MODULE_LICENSE("Dual BSD/GPL"); struct workqueue_struct *ib_comp_wq; struct workqueue_struct *ib_comp_unbound_wq; struct workqueue_struct *ib_wq; EXPORT_SYMBOL_GPL(ib_wq); /* * Each of the three rwsem locks (devices, clients, client_data) protects the * xarray of the same name. Specifically it allows the caller to assert that * the MARK will/will not be changing under the lock, and for devices and * clients, that the value in the xarray is still a valid pointer. Change of * the MARK is linked to the object state, so holding the lock and testing the * MARK also asserts that the contained object is in a certain state. * * This is used to build a two stage register/unregister flow where objects * can continue to be in the xarray even though they are still in progress to * register/unregister. * * The xarray itself provides additional locking, and restartable iteration, * which is also relied on. * * Locks should not be nested, with the exception of client_data, which is * allowed to nest under the read side of the other two locks. * * The devices_rwsem also protects the device name list, any change or * assignment of device name must also hold the write side to guarantee unique * names. */ /* * devices contains devices that have had their names assigned. The * devices may not be registered. Users that care about the registration * status need to call ib_device_try_get() on the device to ensure it is * registered, and keep it registered, for the required duration. * */ static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC); static DECLARE_RWSEM(devices_rwsem); #define DEVICE_REGISTERED XA_MARK_1 static LIST_HEAD(client_list); #define CLIENT_REGISTERED XA_MARK_1 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC); static DECLARE_RWSEM(clients_rwsem); /* * If client_data is registered then the corresponding client must also still * be registered. */ #define CLIENT_DATA_REGISTERED XA_MARK_1 /** * struct rdma_dev_net - rdma net namespace metadata for a net * @net: Pointer to owner net namespace * @id: xarray id to identify the net namespace. */ struct rdma_dev_net { possible_net_t net; u32 id; }; static unsigned int rdma_dev_net_id; /* * A list of net namespaces is maintained in an xarray. This is necessary * because we can't get the locking right using the existing net ns list. We * would require a init_net callback after the list is updated. */ static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC); /* * rwsem to protect accessing the rdma_nets xarray entries. */ static DECLARE_RWSEM(rdma_nets_rwsem); bool ib_devices_shared_netns = true; module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444); MODULE_PARM_DESC(netns_mode, "Share device among net namespaces; default=1 (shared)"); /** * rdma_dev_access_netns() - Return whether a rdma device can be accessed * from a specified net namespace or not. * @device: Pointer to rdma device which needs to be checked * @net: Pointer to net namesapce for which access to be checked * * rdma_dev_access_netns() - Return whether a rdma device can be accessed * from a specified net namespace or not. When * rdma device is in shared mode, it ignores the * net namespace. When rdma device is exclusive * to a net namespace, rdma device net namespace is * checked against the specified one. */ bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net) { return (ib_devices_shared_netns || net_eq(read_pnet(&dev->coredev.rdma_net), net)); } EXPORT_SYMBOL(rdma_dev_access_netns); /* * xarray has this behavior where it won't iterate over NULL values stored in * allocated arrays. So we need our own iterator to see all values stored in * the array. This does the same thing as xa_for_each except that it also * returns NULL valued entries if the array is allocating. Simplified to only * work on simple xarrays. */ static void *xan_find_marked(struct xarray *xa, unsigned long *indexp, xa_mark_t filter) { XA_STATE(xas, xa, *indexp); void *entry; rcu_read_lock(); do { entry = xas_find_marked(&xas, ULONG_MAX, filter); if (xa_is_zero(entry)) break; } while (xas_retry(&xas, entry)); rcu_read_unlock(); if (entry) { *indexp = xas.xa_index; if (xa_is_zero(entry)) return NULL; return entry; } return XA_ERROR(-ENOENT); } #define xan_for_each_marked(xa, index, entry, filter) \ for (index = 0, entry = xan_find_marked(xa, &(index), filter); \ !xa_is_err(entry); \ (index)++, entry = xan_find_marked(xa, &(index), filter)) /* RCU hash table mapping netdevice pointers to struct ib_port_data */ static DEFINE_SPINLOCK(ndev_hash_lock); static DECLARE_HASHTABLE(ndev_hash, 5); static void free_netdevs(struct ib_device *ib_dev); static void ib_unregister_work(struct work_struct *work); static void __ib_unregister_device(struct ib_device *device); static int ib_security_change(struct notifier_block *nb, unsigned long event, void *lsm_data); static void ib_policy_change_task(struct work_struct *work); static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); static struct notifier_block ibdev_lsm_nb = { .notifier_call = ib_security_change, }; /* Pointer to the RCU head at the start of the ib_port_data array */ struct ib_port_data_rcu { struct rcu_head rcu_head; struct ib_port_data pdata[]; }; static int ib_device_check_mandatory(struct ib_device *device) { #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x } static const struct { size_t offset; char *name; } mandatory_table[] = { IB_MANDATORY_FUNC(query_device), IB_MANDATORY_FUNC(query_port), IB_MANDATORY_FUNC(query_pkey), IB_MANDATORY_FUNC(alloc_pd), IB_MANDATORY_FUNC(dealloc_pd), IB_MANDATORY_FUNC(create_qp), IB_MANDATORY_FUNC(modify_qp), IB_MANDATORY_FUNC(destroy_qp), IB_MANDATORY_FUNC(post_send), IB_MANDATORY_FUNC(post_recv), IB_MANDATORY_FUNC(create_cq), IB_MANDATORY_FUNC(destroy_cq), IB_MANDATORY_FUNC(poll_cq), IB_MANDATORY_FUNC(req_notify_cq), IB_MANDATORY_FUNC(get_dma_mr), IB_MANDATORY_FUNC(dereg_mr), IB_MANDATORY_FUNC(get_port_immutable) }; int i; device->kverbs_provider = true; for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { if (!*(void **) ((void *) &device->ops + mandatory_table[i].offset)) { device->kverbs_provider = false; break; } } return 0; } /* * Caller must perform ib_device_put() to return the device reference count * when ib_device_get_by_index() returns valid device pointer. */ struct ib_device *ib_device_get_by_index(const struct net *net, u32 index) { struct ib_device *device; down_read(&devices_rwsem); device = xa_load(&devices, index); if (device) { if (!rdma_dev_access_netns(device, net)) { device = NULL; goto out; } if (!ib_device_try_get(device)) device = NULL; } out: up_read(&devices_rwsem); return device; } /** * ib_device_put - Release IB device reference * @device: device whose reference to be released * * ib_device_put() releases reference to the IB device to allow it to be * unregistered and eventually free. */ void ib_device_put(struct ib_device *device) { if (refcount_dec_and_test(&device->refcount)) complete(&device->unreg_completion); } EXPORT_SYMBOL(ib_device_put); static struct ib_device *__ib_device_get_by_name(const char *name) { struct ib_device *device; unsigned long index; xa_for_each (&devices, index, device) if (!strcmp(name, dev_name(&device->dev))) return device; return NULL; } /** * ib_device_get_by_name - Find an IB device by name * @name: The name to look for * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) * * Find and hold an ib_device by its name. The caller must call * ib_device_put() on the returned pointer. */ struct ib_device *ib_device_get_by_name(const char *name, enum rdma_driver_id driver_id) { struct ib_device *device; down_read(&devices_rwsem); device = __ib_device_get_by_name(name); if (device && driver_id != RDMA_DRIVER_UNKNOWN && device->driver_id != driver_id) device = NULL; if (device) { if (!ib_device_try_get(device)) device = NULL; } up_read(&devices_rwsem); return device; } EXPORT_SYMBOL(ib_device_get_by_name); static int rename_compat_devs(struct ib_device *device) { struct ib_core_device *cdev; unsigned long index; int ret = 0; mutex_lock(&device->compat_devs_mutex); xa_for_each (&device->compat_devs, index, cdev) { ret = device_rename(&cdev->dev, dev_name(&device->dev)); if (ret) { dev_warn(&cdev->dev, "Fail to rename compatdev to new name %s\n", dev_name(&device->dev)); break; } } mutex_unlock(&device->compat_devs_mutex); return ret; } int ib_device_rename(struct ib_device *ibdev, const char *name) { int ret; down_write(&devices_rwsem); if (!strcmp(name, dev_name(&ibdev->dev))) { ret = 0; goto out; } if (__ib_device_get_by_name(name)) { ret = -EEXIST; goto out; } ret = device_rename(&ibdev->dev, name); if (ret) goto out; strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX); ret = rename_compat_devs(ibdev); out: up_write(&devices_rwsem); return ret; } static int alloc_name(struct ib_device *ibdev, const char *name) { struct ib_device *device; unsigned long index; struct ida inuse; int rc; int i; lockdep_assert_held_exclusive(&devices_rwsem); ida_init(&inuse); xa_for_each (&devices, index, device) { char buf[IB_DEVICE_NAME_MAX]; if (sscanf(dev_name(&device->dev), name, &i) != 1) continue; if (i < 0 || i >= INT_MAX) continue; snprintf(buf, sizeof buf, name, i); if (strcmp(buf, dev_name(&device->dev)) != 0) continue; rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL); if (rc < 0) goto out; } rc = ida_alloc(&inuse, GFP_KERNEL); if (rc < 0) goto out; rc = dev_set_name(&ibdev->dev, name, rc); out: ida_destroy(&inuse); return rc; } static void ib_device_release(struct device *device) { struct ib_device *dev = container_of(device, struct ib_device, dev); free_netdevs(dev); WARN_ON(refcount_read(&dev->refcount)); ib_cache_release_one(dev); ib_security_release_port_pkey_list(dev); xa_destroy(&dev->compat_devs); xa_destroy(&dev->client_data); if (dev->port_data) kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu, pdata[0]), rcu_head); kfree_rcu(dev, rcu_head); } static int ib_device_uevent(struct device *device, struct kobj_uevent_env *env) { if (add_uevent_var(env, "NAME=%s", dev_name(device))) return -ENOMEM; /* * It would be nice to pass the node GUID with the event... */ return 0; } static const void *net_namespace(struct device *d) { struct ib_core_device *coredev = container_of(d, struct ib_core_device, dev); return read_pnet(&coredev->rdma_net); } static struct class ib_class = { .name = "infiniband", .dev_release = ib_device_release, .dev_uevent = ib_device_uevent, .ns_type = &net_ns_type_operations, .namespace = net_namespace, }; static void rdma_init_coredev(struct ib_core_device *coredev, struct ib_device *dev, struct net *net) { /* This BUILD_BUG_ON is intended to catch layout change * of union of ib_core_device and device. * dev must be the first element as ib_core and providers * driver uses it. Adding anything in ib_core_device before * device will break this assumption. */ BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) != offsetof(struct ib_device, dev)); coredev->dev.class = &ib_class; coredev->dev.groups = dev->groups; device_initialize(&coredev->dev); coredev->owner = dev; INIT_LIST_HEAD(&coredev->port_list); write_pnet(&coredev->rdma_net, net); } /** * _ib_alloc_device - allocate an IB device struct * @size:size of structure to allocate * * Low-level drivers should use ib_alloc_device() to allocate &struct * ib_device. @size is the size of the structure to be allocated, * including any private data used by the low-level driver. * ib_dealloc_device() must be used to free structures allocated with * ib_alloc_device(). */ struct ib_device *_ib_alloc_device(size_t size) { struct ib_device *device; if (WARN_ON(size < sizeof(struct ib_device))) return NULL; device = kzalloc(size, GFP_KERNEL); if (!device) return NULL; if (rdma_restrack_init(device)) { kfree(device); return NULL; } device->groups[0] = &ib_dev_attr_group; rdma_init_coredev(&device->coredev, device, &init_net); INIT_LIST_HEAD(&device->event_handler_list); spin_lock_init(&device->event_handler_lock); mutex_init(&device->unregistration_lock); /* * client_data needs to be alloc because we don't want our mark to be * destroyed if the user stores NULL in the client data. */ xa_init_flags(&device->client_data, XA_FLAGS_ALLOC); init_rwsem(&device->client_data_rwsem); xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC); mutex_init(&device->compat_devs_mutex); init_completion(&device->unreg_completion); INIT_WORK(&device->unregistration_work, ib_unregister_work); return device; } EXPORT_SYMBOL(_ib_alloc_device); /** * ib_dealloc_device - free an IB device struct * @device:structure to free * * Free a structure allocated with ib_alloc_device(). */ void ib_dealloc_device(struct ib_device *device) { if (device->ops.dealloc_driver) device->ops.dealloc_driver(device); /* * ib_unregister_driver() requires all devices to remain in the xarray * while their ops are callable. The last op we call is dealloc_driver * above. This is needed to create a fence on op callbacks prior to * allowing the driver module to unload. */ down_write(&devices_rwsem); if (xa_load(&devices, device->index) == device) xa_erase(&devices, device->index); up_write(&devices_rwsem); /* Expedite releasing netdev references */ free_netdevs(device); WARN_ON(!xa_empty(&device->compat_devs)); WARN_ON(!xa_empty(&device->client_data)); WARN_ON(refcount_read(&device->refcount)); rdma_restrack_clean(device); /* Balances with device_initialize */ put_device(&device->dev); } EXPORT_SYMBOL(ib_dealloc_device); /* * add_client_context() and remove_client_context() must be safe against * parallel calls on the same device - registration/unregistration of both the * device and client can be occurring in parallel. * * The routines need to be a fence, any caller must not return until the add * or remove is fully completed. */ static int add_client_context(struct ib_device *device, struct ib_client *client) { int ret = 0; if (!device->kverbs_provider && !client->no_kverbs_req) return 0; down_write(&device->client_data_rwsem); /* * Another caller to add_client_context got here first and has already * completely initialized context. */ if (xa_get_mark(&device->client_data, client->client_id, CLIENT_DATA_REGISTERED)) goto out; ret = xa_err(xa_store(&device->client_data, client->client_id, NULL, GFP_KERNEL)); if (ret) goto out; downgrade_write(&device->client_data_rwsem); if (client->add) client->add(device); /* Readers shall not see a client until add has been completed */ xa_set_mark(&device->client_data, client->client_id, CLIENT_DATA_REGISTERED); up_read(&device->client_data_rwsem); return 0; out: up_write(&device->client_data_rwsem); return ret; } static void remove_client_context(struct ib_device *device, unsigned int client_id) { struct ib_client *client; void *client_data; down_write(&device->client_data_rwsem); if (!xa_get_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED)) { up_write(&device->client_data_rwsem); return; } client_data = xa_load(&device->client_data, client_id); xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED); client = xa_load(&clients, client_id); downgrade_write(&device->client_data_rwsem); /* * Notice we cannot be holding any exclusive locks when calling the * remove callback as the remove callback can recurse back into any * public functions in this module and thus try for any locks those * functions take. * * For this reason clients and drivers should not call the * unregistration functions will holdling any locks. * * It tempting to drop the client_data_rwsem too, but this is required * to ensure that unregister_client does not return until all clients * are completely unregistered, which is required to avoid module * unloading races. */ if (client->remove) client->remove(device, client_data); xa_erase(&device->client_data, client_id); up_read(&device->client_data_rwsem); } static int alloc_port_data(struct ib_device *device) { struct ib_port_data_rcu *pdata_rcu; unsigned int port; if (device->port_data) return 0; /* This can only be called once the physical port range is defined */ if (WARN_ON(!device->phys_port_cnt)) return -EINVAL; /* * device->port_data is indexed directly by the port number to make * access to this data as efficient as possible. * * Therefore port_data is declared as a 1 based array with potential * empty slots at the beginning. */ pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata, rdma_end_port(device) + 1), GFP_KERNEL); if (!pdata_rcu) return -ENOMEM; /* * The rcu_head is put in front of the port data array and the stored * pointer is adjusted since we never need to see that member until * kfree_rcu. */ device->port_data = pdata_rcu->pdata; rdma_for_each_port (device, port) { struct ib_port_data *pdata = &device->port_data[port]; pdata->ib_dev = device; spin_lock_init(&pdata->pkey_list_lock); INIT_LIST_HEAD(&pdata->pkey_list); spin_lock_init(&pdata->netdev_lock); INIT_HLIST_NODE(&pdata->ndev_hash_link); } return 0; } static int verify_immutable(const struct ib_device *dev, u8 port) { return WARN_ON(!rdma_cap_ib_mad(dev, port) && rdma_max_mad_size(dev, port) != 0); } static int setup_port_data(struct ib_device *device) { unsigned int port; int ret; ret = alloc_port_data(device); if (ret) return ret; rdma_for_each_port (device, port) { struct ib_port_data *pdata = &device->port_data[port]; ret = device->ops.get_port_immutable(device, port, &pdata->immutable); if (ret) return ret; if (verify_immutable(device, port)) return -EINVAL; } return 0; } void ib_get_device_fw_str(struct ib_device *dev, char *str) { if (dev->ops.get_dev_fw_str) dev->ops.get_dev_fw_str(dev, str); else str[0] = '\0'; } EXPORT_SYMBOL(ib_get_device_fw_str); static void ib_policy_change_task(struct work_struct *work) { struct ib_device *dev; unsigned long index; down_read(&devices_rwsem); xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { unsigned int i; rdma_for_each_port (dev, i) { u64 sp; int ret = ib_get_cached_subnet_prefix(dev, i, &sp); WARN_ONCE(ret, "ib_get_cached_subnet_prefix err: %d, this should never happen here\n", ret); if (!ret) ib_security_cache_change(dev, i, sp); } } up_read(&devices_rwsem); } static int ib_security_change(struct notifier_block *nb, unsigned long event, void *lsm_data) { if (event != LSM_POLICY_CHANGE) return NOTIFY_DONE; schedule_work(&ib_policy_change_work); ib_mad_agent_security_change(); return NOTIFY_OK; } static void compatdev_release(struct device *dev) { struct ib_core_device *cdev = container_of(dev, struct ib_core_device, dev); kfree(cdev); } static int add_one_compat_dev(struct ib_device *device, struct rdma_dev_net *rnet) { struct ib_core_device *cdev; int ret; lockdep_assert_held(&rdma_nets_rwsem); if (!ib_devices_shared_netns) return 0; /* * Create and add compat device in all namespaces other than where it * is currently bound to. */ if (net_eq(read_pnet(&rnet->net), read_pnet(&device->coredev.rdma_net))) return 0; /* * The first of init_net() or ib_register_device() to take the * compat_devs_mutex wins and gets to add the device. Others will wait * for completion here. */ mutex_lock(&device->compat_devs_mutex); cdev = xa_load(&device->compat_devs, rnet->id); if (cdev) { ret = 0; goto done; } ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL); if (ret) goto done; cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); if (!cdev) { ret = -ENOMEM; goto cdev_err; } cdev->dev.parent = device->dev.parent; rdma_init_coredev(cdev, device, read_pnet(&rnet->net)); cdev->dev.release = compatdev_release; dev_set_name(&cdev->dev, "%s", dev_name(&device->dev)); ret = device_add(&cdev->dev); if (ret) goto add_err; ret = ib_setup_port_attrs(cdev, false); if (ret) goto port_err; ret = xa_err(xa_store(&device->compat_devs, rnet->id, cdev, GFP_KERNEL)); if (ret) goto insert_err; mutex_unlock(&device->compat_devs_mutex); return 0; insert_err: ib_free_port_attrs(cdev); port_err: device_del(&cdev->dev); add_err: put_device(&cdev->dev); cdev_err: xa_release(&device->compat_devs, rnet->id); done: mutex_unlock(&device->compat_devs_mutex); return ret; } static void remove_one_compat_dev(struct ib_device *device, u32 id) { struct ib_core_device *cdev; mutex_lock(&device->compat_devs_mutex); cdev = xa_erase(&device->compat_devs, id); mutex_unlock(&device->compat_devs_mutex); if (cdev) { ib_free_port_attrs(cdev); device_del(&cdev->dev); put_device(&cdev->dev); } } static void remove_compat_devs(struct ib_device *device) { struct ib_core_device *cdev; unsigned long index; xa_for_each (&device->compat_devs, index, cdev) remove_one_compat_dev(device, index); } static int add_compat_devs(struct ib_device *device) { struct rdma_dev_net *rnet; unsigned long index; int ret = 0; down_read(&rdma_nets_rwsem); xa_for_each (&rdma_nets, index, rnet) { ret = add_one_compat_dev(device, rnet); if (ret) break; } up_read(&rdma_nets_rwsem); return ret; } static void remove_all_compat_devs(void) { struct ib_compat_device *cdev; struct ib_device *dev; unsigned long index; down_read(&devices_rwsem); xa_for_each (&devices, index, dev) { unsigned long c_index = 0; /* Hold nets_rwsem so that any other thread modifying this * system param can sync with this thread. */ down_read(&rdma_nets_rwsem); xa_for_each (&dev->compat_devs, c_index, cdev) remove_one_compat_dev(dev, c_index); up_read(&rdma_nets_rwsem); } up_read(&devices_rwsem); } static int add_all_compat_devs(void) { struct rdma_dev_net *rnet; struct ib_device *dev; unsigned long index; int ret = 0; down_read(&devices_rwsem); xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { unsigned long net_index = 0; /* Hold nets_rwsem so that any other thread modifying this * system param can sync with this thread. */ down_read(&rdma_nets_rwsem); xa_for_each (&rdma_nets, net_index, rnet) { ret = add_one_compat_dev(dev, rnet); if (ret) break; } up_read(&rdma_nets_rwsem); } up_read(&devices_rwsem); if (ret) remove_all_compat_devs(); return ret; } int rdma_compatdev_set(u8 enable) { struct rdma_dev_net *rnet; unsigned long index; int ret = 0; down_write(&rdma_nets_rwsem); if (ib_devices_shared_netns == enable) { up_write(&rdma_nets_rwsem); return 0; } /* enable/disable of compat devices is not supported * when more than default init_net exists. */ xa_for_each (&rdma_nets, index, rnet) { ret++; break; } if (!ret) ib_devices_shared_netns = enable; up_write(&rdma_nets_rwsem); if (ret) return -EBUSY; if (enable) ret = add_all_compat_devs(); else remove_all_compat_devs(); return ret; } static void rdma_dev_exit_net(struct net *net) { struct rdma_dev_net *rnet = net_generic(net, rdma_dev_net_id); struct ib_device *dev; unsigned long index; int ret; down_write(&rdma_nets_rwsem); /* * Prevent the ID from being re-used and hide the id from xa_for_each. */ ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL)); WARN_ON(ret); up_write(&rdma_nets_rwsem); down_read(&devices_rwsem); xa_for_each (&devices, index, dev) { get_device(&dev->dev); /* * Release the devices_rwsem so that pontentially blocking * device_del, doesn't hold the devices_rwsem for too long. */ up_read(&devices_rwsem); remove_one_compat_dev(dev, rnet->id); put_device(&dev->dev); down_read(&devices_rwsem); } up_read(&devices_rwsem); xa_erase(&rdma_nets, rnet->id); } static __net_init int rdma_dev_init_net(struct net *net) { struct rdma_dev_net *rnet = net_generic(net, rdma_dev_net_id); unsigned long index; struct ib_device *dev; int ret; /* No need to create any compat devices in default init_net. */ if (net_eq(net, &init_net)) return 0; write_pnet(&rnet->net, net); ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL); if (ret) return ret; down_read(&devices_rwsem); xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { /* Hold nets_rwsem so that netlink command cannot change * system configuration for device sharing mode. */ down_read(&rdma_nets_rwsem); ret = add_one_compat_dev(dev, rnet); up_read(&rdma_nets_rwsem); if (ret) break; } up_read(&devices_rwsem); if (ret) rdma_dev_exit_net(net); return ret; } /* * Assign the unique string device name and the unique device index. This is * undone by ib_dealloc_device. */ static int assign_name(struct ib_device *device, const char *name) { static u32 last_id; int ret; down_write(&devices_rwsem); /* Assign a unique name to the device */ if (strchr(name, '%')) ret = alloc_name(device, name); else ret = dev_set_name(&device->dev, name); if (ret) goto out; if (__ib_device_get_by_name(dev_name(&device->dev))) { ret = -ENFILE; goto out; } strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX); ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b, &last_id, GFP_KERNEL); if (ret > 0) ret = 0; out: up_write(&devices_rwsem); return ret; } static void setup_dma_device(struct ib_device *device) { struct device *parent = device->dev.parent; WARN_ON_ONCE(device->dma_device); if (device->dev.dma_ops) { /* * The caller provided custom DMA operations. Copy the * DMA-related fields that are used by e.g. dma_alloc_coherent() * into device->dev. */ device->dma_device = &device->dev; if (!device->dev.dma_mask) { if (parent) device->dev.dma_mask = parent->dma_mask; else WARN_ON_ONCE(true); } if (!device->dev.coherent_dma_mask) { if (parent) device->dev.coherent_dma_mask = parent->coherent_dma_mask; else WARN_ON_ONCE(true); } } else { /* * The caller did not provide custom DMA operations. Use the * DMA mapping operations of the parent device. */ WARN_ON_ONCE(!parent); device->dma_device = parent; } /* Setup default max segment size for all IB devices */ dma_set_max_seg_size(device->dma_device, SZ_2G); } /* * setup_device() allocates memory and sets up data that requires calling the * device ops, this is the only reason these actions are not done during * ib_alloc_device. It is undone by ib_dealloc_device(). */ static int setup_device(struct ib_device *device) { struct ib_udata uhw = {.outlen = 0, .inlen = 0}; int ret; setup_dma_device(device); ret = ib_device_check_mandatory(device); if (ret) return ret; ret = setup_port_data(device); if (ret) { dev_warn(&device->dev, "Couldn't create per-port data\n"); return ret; } memset(&device->attrs, 0, sizeof(device->attrs)); ret = device->ops.query_device(device, &device->attrs, &uhw); if (ret) { dev_warn(&device->dev, "Couldn't query the device attributes\n"); return ret; } return 0; } static void disable_device(struct ib_device *device) { struct ib_client *client; WARN_ON(!refcount_read(&device->refcount)); down_write(&devices_rwsem); xa_clear_mark(&devices, device->index, DEVICE_REGISTERED); up_write(&devices_rwsem); down_read(&clients_rwsem); list_for_each_entry_reverse(client, &client_list, list) remove_client_context(device, client->client_id); up_read(&clients_rwsem); /* Pairs with refcount_set in enable_device */ ib_device_put(device); wait_for_completion(&device->unreg_completion); /* * compat devices must be removed after device refcount drops to zero. * Otherwise init_net() may add more compatdevs after removing compat * devices and before device is disabled. */ remove_compat_devs(device); /* Expedite removing unregistered pointers from the hash table */ free_netdevs(device); } /* * An enabled device is visible to all clients and to all the public facing * APIs that return a device pointer. This always returns with a new get, even * if it fails. */ static int enable_device_and_get(struct ib_device *device) { struct ib_client *client; unsigned long index; int ret = 0; /* * One ref belongs to the xa and the other belongs to this * thread. This is needed to guard against parallel unregistration. */ refcount_set(&device->refcount, 2); down_write(&devices_rwsem); xa_set_mark(&devices, device->index, DEVICE_REGISTERED); /* * By using downgrade_write() we ensure that no other thread can clear * DEVICE_REGISTERED while we are completing the client setup. */ downgrade_write(&devices_rwsem); if (device->ops.enable_driver) { ret = device->ops.enable_driver(device); if (ret) goto out; } down_read(&clients_rwsem); xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { ret = add_client_context(device, client); if (ret) break; } up_read(&clients_rwsem); if (!ret) ret = add_compat_devs(device); out: up_read(&devices_rwsem); return ret; } /** * ib_register_device - Register an IB device with IB core * @device:Device to register * * Low-level drivers use ib_register_device() to register their * devices with the IB core. All registered clients will receive a * callback for each device that is added. @device must be allocated * with ib_alloc_device(). * * If the driver uses ops.dealloc_driver and calls any ib_unregister_device() * asynchronously then the device pointer may become freed as soon as this * function returns. */ int ib_register_device(struct ib_device *device, const char *name) { int ret; ret = assign_name(device, name); if (ret) return ret; ret = setup_device(device); if (ret) return ret; ret = ib_cache_setup_one(device); if (ret) { dev_warn(&device->dev, "Couldn't set up InfiniBand P_Key/GID cache\n"); return ret; } ib_device_register_rdmacg(device); ret = device_add(&device->dev); if (ret) goto cg_cleanup; ret = ib_device_register_sysfs(device); if (ret) { dev_warn(&device->dev, "Couldn't register device with driver model\n"); goto dev_cleanup; } ret = enable_device_and_get(device); if (ret) { void (*dealloc_fn)(struct ib_device *); /* * If we hit this error flow then we don't want to * automatically dealloc the device since the caller is * expected to call ib_dealloc_device() after * ib_register_device() fails. This is tricky due to the * possibility for a parallel unregistration along with this * error flow. Since we have a refcount here we know any * parallel flow is stopped in disable_device and will see the * NULL pointers, causing the responsibility to * ib_dealloc_device() to revert back to this thread. */ dealloc_fn = device->ops.dealloc_driver; device->ops.dealloc_driver = NULL; ib_device_put(device); __ib_unregister_device(device); device->ops.dealloc_driver = dealloc_fn; return ret; } ib_device_put(device); return 0; dev_cleanup: device_del(&device->dev); cg_cleanup: ib_device_unregister_rdmacg(device); ib_cache_cleanup_one(device); return ret; } EXPORT_SYMBOL(ib_register_device); /* Callers must hold a get on the device. */ static void __ib_unregister_device(struct ib_device *ib_dev) { /* * We have a registration lock so that all the calls to unregister are * fully fenced, once any unregister returns the device is truely * unregistered even if multiple callers are unregistering it at the * same time. This also interacts with the registration flow and * provides sane semantics if register and unregister are racing. */ mutex_lock(&ib_dev->unregistration_lock); if (!refcount_read(&ib_dev->refcount)) goto out; disable_device(ib_dev); ib_device_unregister_sysfs(ib_dev); device_del(&ib_dev->dev); ib_device_unregister_rdmacg(ib_dev); ib_cache_cleanup_one(ib_dev); /* * Drivers using the new flow may not call ib_dealloc_device except * in error unwind prior to registration success. */ if (ib_dev->ops.dealloc_driver) { WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1); ib_dealloc_device(ib_dev); } out: mutex_unlock(&ib_dev->unregistration_lock); } /** * ib_unregister_device - Unregister an IB device * @device: The device to unregister * * Unregister an IB device. All clients will receive a remove callback. * * Callers should call this routine only once, and protect against races with * registration. Typically it should only be called as part of a remove * callback in an implementation of driver core's struct device_driver and * related. * * If ops.dealloc_driver is used then ib_dev will be freed upon return from * this function. */ void ib_unregister_device(struct ib_device *ib_dev) { get_device(&ib_dev->dev); __ib_unregister_device(ib_dev); put_device(&ib_dev->dev); } EXPORT_SYMBOL(ib_unregister_device); /** * ib_unregister_device_and_put - Unregister a device while holding a 'get' * device: The device to unregister * * This is the same as ib_unregister_device(), except it includes an internal * ib_device_put() that should match a 'get' obtained by the caller. * * It is safe to call this routine concurrently from multiple threads while * holding the 'get'. When the function returns the device is fully * unregistered. * * Drivers using this flow MUST use the driver_unregister callback to clean up * their resources associated with the device and dealloc it. */ void ib_unregister_device_and_put(struct ib_device *ib_dev) { WARN_ON(!ib_dev->ops.dealloc_driver); get_device(&ib_dev->dev); ib_device_put(ib_dev); __ib_unregister_device(ib_dev); put_device(&ib_dev->dev); } EXPORT_SYMBOL(ib_unregister_device_and_put); /** * ib_unregister_driver - Unregister all IB devices for a driver * @driver_id: The driver to unregister * * This implements a fence for device unregistration. It only returns once all * devices associated with the driver_id have fully completed their * unregistration and returned from ib_unregister_device*(). * * If device's are not yet unregistered it goes ahead and starts unregistering * them. * * This does not block creation of new devices with the given driver_id, that * is the responsibility of the caller. */ void ib_unregister_driver(enum rdma_driver_id driver_id) { struct ib_device *ib_dev; unsigned long index; down_read(&devices_rwsem); xa_for_each (&devices, index, ib_dev) { if (ib_dev->driver_id != driver_id) continue; get_device(&ib_dev->dev); up_read(&devices_rwsem); WARN_ON(!ib_dev->ops.dealloc_driver); __ib_unregister_device(ib_dev); put_device(&ib_dev->dev); down_read(&devices_rwsem); } up_read(&devices_rwsem); } EXPORT_SYMBOL(ib_unregister_driver); static void ib_unregister_work(struct work_struct *work) { struct ib_device *ib_dev = container_of(work, struct ib_device, unregistration_work); __ib_unregister_device(ib_dev); put_device(&ib_dev->dev); } /** * ib_unregister_device_queued - Unregister a device using a work queue * device: The device to unregister * * This schedules an asynchronous unregistration using a WQ for the device. A * driver should use this to avoid holding locks while doing unregistration, * such as holding the RTNL lock. * * Drivers using this API must use ib_unregister_driver before module unload * to ensure that all scheduled unregistrations have completed. */ void ib_unregister_device_queued(struct ib_device *ib_dev) { WARN_ON(!refcount_read(&ib_dev->refcount)); WARN_ON(!ib_dev->ops.dealloc_driver); get_device(&ib_dev->dev); if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work)) put_device(&ib_dev->dev); } EXPORT_SYMBOL(ib_unregister_device_queued); static struct pernet_operations rdma_dev_net_ops = { .init = rdma_dev_init_net, .exit = rdma_dev_exit_net, .id = &rdma_dev_net_id, .size = sizeof(struct rdma_dev_net), }; static int assign_client_id(struct ib_client *client) { int ret; down_write(&clients_rwsem); /* * The add/remove callbacks must be called in FIFO/LIFO order. To * achieve this we assign client_ids so they are sorted in * registration order, and retain a linked list we can reverse iterate * to get the LIFO order. The extra linked list can go away if xarray * learns to reverse iterate. */ if (list_empty(&client_list)) { client->client_id = 0; } else { struct ib_client *last; last = list_last_entry(&client_list, struct ib_client, list); client->client_id = last->client_id + 1; } ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL); if (ret) goto out; xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED); list_add_tail(&client->list, &client_list); out: up_write(&clients_rwsem); return ret; } /** * ib_register_client - Register an IB client * @client:Client to register * * Upper level users of the IB drivers can use ib_register_client() to * register callbacks for IB device addition and removal. When an IB * device is added, each registered client's add method will be called * (in the order the clients were registered), and when a device is * removed, each client's remove method will be called (in the reverse * order that clients were registered). In addition, when * ib_register_client() is called, the client will receive an add * callback for all devices already registered. */ int ib_register_client(struct ib_client *client) { struct ib_device *device; unsigned long index; int ret; ret = assign_client_id(client); if (ret) return ret; down_read(&devices_rwsem); xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) { ret = add_client_context(device, client); if (ret) { up_read(&devices_rwsem); ib_unregister_client(client); return ret; } } up_read(&devices_rwsem); return 0; } EXPORT_SYMBOL(ib_register_client); /** * ib_unregister_client - Unregister an IB client * @client:Client to unregister * * Upper level users use ib_unregister_client() to remove their client * registration. When ib_unregister_client() is called, the client * will receive a remove callback for each IB device still registered. * * This is a full fence, once it returns no client callbacks will be called, * or are running in another thread. */ void ib_unregister_client(struct ib_client *client) { struct ib_device *device; unsigned long index; down_write(&clients_rwsem); xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED); up_write(&clients_rwsem); /* * Every device still known must be serialized to make sure we are * done with the client callbacks before we return. */ down_read(&devices_rwsem); xa_for_each (&devices, index, device) remove_client_context(device, client->client_id); up_read(&devices_rwsem); down_write(&clients_rwsem); list_del(&client->list); xa_erase(&clients, client->client_id); up_write(&clients_rwsem); } EXPORT_SYMBOL(ib_unregister_client); /** * ib_set_client_data - Set IB client context * @device:Device to set context for * @client:Client to set context for * @data:Context to set * * ib_set_client_data() sets client context data that can be retrieved with * ib_get_client_data(). This can only be called while the client is * registered to the device, once the ib_client remove() callback returns this * cannot be called. */ void ib_set_client_data(struct ib_device *device, struct ib_client *client, void *data) { void *rc; if (WARN_ON(IS_ERR(data))) data = NULL; rc = xa_store(&device->client_data, client->client_id, data, GFP_KERNEL); WARN_ON(xa_is_err(rc)); } EXPORT_SYMBOL(ib_set_client_data); /** * ib_register_event_handler - Register an IB event handler * @event_handler:Handler to register * * ib_register_event_handler() registers an event handler that will be * called back when asynchronous IB events occur (as defined in * chapter 11 of the InfiniBand Architecture Specification). This * callback may occur in interrupt context. */ void ib_register_event_handler(struct ib_event_handler *event_handler) { unsigned long flags; spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); list_add_tail(&event_handler->list, &event_handler->device->event_handler_list); spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); } EXPORT_SYMBOL(ib_register_event_handler); /** * ib_unregister_event_handler - Unregister an event handler * @event_handler:Handler to unregister * * Unregister an event handler registered with * ib_register_event_handler(). */ void ib_unregister_event_handler(struct ib_event_handler *event_handler) { unsigned long flags; spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); list_del(&event_handler->list); spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); } EXPORT_SYMBOL(ib_unregister_event_handler); /** * ib_dispatch_event - Dispatch an asynchronous event * @event:Event to dispatch * * Low-level drivers must call ib_dispatch_event() to dispatch the * event to all registered event handlers when an asynchronous event * occurs. */ void ib_dispatch_event(struct ib_event *event) { unsigned long flags; struct ib_event_handler *handler; spin_lock_irqsave(&event->device->event_handler_lock, flags); list_for_each_entry(handler, &event->device->event_handler_list, list) handler->handler(handler, event); spin_unlock_irqrestore(&event->device->event_handler_lock, flags); } EXPORT_SYMBOL(ib_dispatch_event); /** * ib_query_port - Query IB port attributes * @device:Device to query * @port_num:Port number to query * @port_attr:Port attributes * * ib_query_port() returns the attributes of a port through the * @port_attr pointer. */ int ib_query_port(struct ib_device *device, u8 port_num, struct ib_port_attr *port_attr) { union ib_gid gid; int err; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; memset(port_attr, 0, sizeof(*port_attr)); err = device->ops.query_port(device, port_num, port_attr); if (err || port_attr->subnet_prefix) return err; if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND) return 0; err = device->ops.query_gid(device, port_num, 0, &gid); if (err) return err; port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix); return 0; } EXPORT_SYMBOL(ib_query_port); static void add_ndev_hash(struct ib_port_data *pdata) { unsigned long flags; might_sleep(); spin_lock_irqsave(&ndev_hash_lock, flags); if (hash_hashed(&pdata->ndev_hash_link)) { hash_del_rcu(&pdata->ndev_hash_link); spin_unlock_irqrestore(&ndev_hash_lock, flags); /* * We cannot do hash_add_rcu after a hash_del_rcu until the * grace period */ synchronize_rcu(); spin_lock_irqsave(&ndev_hash_lock, flags); } if (pdata->netdev) hash_add_rcu(ndev_hash, &pdata->ndev_hash_link, (uintptr_t)pdata->netdev); spin_unlock_irqrestore(&ndev_hash_lock, flags); } /** * ib_device_set_netdev - Associate the ib_dev with an underlying net_device * @ib_dev: Device to modify * @ndev: net_device to affiliate, may be NULL * @port: IB port the net_device is connected to * * Drivers should use this to link the ib_device to a netdev so the netdev * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be * affiliated with any port. * * The caller must ensure that the given ndev is not unregistered or * unregistering, and that either the ib_device is unregistered or * ib_device_set_netdev() is called with NULL when the ndev sends a * NETDEV_UNREGISTER event. */ int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, unsigned int port) { struct net_device *old_ndev; struct ib_port_data *pdata; unsigned long flags; int ret; /* * Drivers wish to call this before ib_register_driver, so we have to * setup the port data early. */ ret = alloc_port_data(ib_dev); if (ret) return ret; if (!rdma_is_port_valid(ib_dev, port)) return -EINVAL; pdata = &ib_dev->port_data[port]; spin_lock_irqsave(&pdata->netdev_lock, flags); old_ndev = rcu_dereference_protected( pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); if (old_ndev == ndev) { spin_unlock_irqrestore(&pdata->netdev_lock, flags); return 0; } if (ndev) dev_hold(ndev); rcu_assign_pointer(pdata->netdev, ndev); spin_unlock_irqrestore(&pdata->netdev_lock, flags); add_ndev_hash(pdata); if (old_ndev) dev_put(old_ndev); return 0; } EXPORT_SYMBOL(ib_device_set_netdev); static void free_netdevs(struct ib_device *ib_dev) { unsigned long flags; unsigned int port; rdma_for_each_port (ib_dev, port) { struct ib_port_data *pdata = &ib_dev->port_data[port]; struct net_device *ndev; spin_lock_irqsave(&pdata->netdev_lock, flags); ndev = rcu_dereference_protected( pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); if (ndev) { spin_lock(&ndev_hash_lock); hash_del_rcu(&pdata->ndev_hash_link); spin_unlock(&ndev_hash_lock); /* * If this is the last dev_put there is still a * synchronize_rcu before the netdev is kfreed, so we * can continue to rely on unlocked pointer * comparisons after the put */ rcu_assign_pointer(pdata->netdev, NULL); dev_put(ndev); } spin_unlock_irqrestore(&pdata->netdev_lock, flags); } } struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, unsigned int port) { struct ib_port_data *pdata; struct net_device *res; if (!rdma_is_port_valid(ib_dev, port)) return NULL; pdata = &ib_dev->port_data[port]; /* * New drivers should use ib_device_set_netdev() not the legacy * get_netdev(). */ if (ib_dev->ops.get_netdev) res = ib_dev->ops.get_netdev(ib_dev, port); else { spin_lock(&pdata->netdev_lock); res = rcu_dereference_protected( pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); if (res) dev_hold(res); spin_unlock(&pdata->netdev_lock); } /* * If we are starting to unregister expedite things by preventing * propagation of an unregistering netdev. */ if (res && res->reg_state != NETREG_REGISTERED) { dev_put(res); return NULL; } return res; } /** * ib_device_get_by_netdev - Find an IB device associated with a netdev * @ndev: netdev to locate * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) * * Find and hold an ib_device that is associated with a netdev via * ib_device_set_netdev(). The caller must call ib_device_put() on the * returned pointer. */ struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, enum rdma_driver_id driver_id) { struct ib_device *res = NULL; struct ib_port_data *cur; rcu_read_lock(); hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link, (uintptr_t)ndev) { if (rcu_access_pointer(cur->netdev) == ndev && (driver_id == RDMA_DRIVER_UNKNOWN || cur->ib_dev->driver_id == driver_id) && ib_device_try_get(cur->ib_dev)) { res = cur->ib_dev; break; } } rcu_read_unlock(); return res; } EXPORT_SYMBOL(ib_device_get_by_netdev); /** * ib_enum_roce_netdev - enumerate all RoCE ports * @ib_dev : IB device we want to query * @filter: Should we call the callback? * @filter_cookie: Cookie passed to filter * @cb: Callback to call for each found RoCE ports * @cookie: Cookie passed back to the callback * * Enumerates all of the physical RoCE ports of ib_dev * which are related to netdevice and calls callback() on each * device for which filter() function returns non zero. */ void ib_enum_roce_netdev(struct ib_device *ib_dev, roce_netdev_filter filter, void *filter_cookie, roce_netdev_callback cb, void *cookie) { unsigned int port; rdma_for_each_port (ib_dev, port) if (rdma_protocol_roce(ib_dev, port)) { struct net_device *idev = ib_device_get_netdev(ib_dev, port); if (filter(ib_dev, port, idev, filter_cookie)) cb(ib_dev, port, idev, cookie); if (idev) dev_put(idev); } } /** * ib_enum_all_roce_netdevs - enumerate all RoCE devices * @filter: Should we call the callback? * @filter_cookie: Cookie passed to filter * @cb: Callback to call for each found RoCE ports * @cookie: Cookie passed back to the callback * * Enumerates all RoCE devices' physical ports which are related * to netdevices and calls callback() on each device for which * filter() function returns non zero. */ void ib_enum_all_roce_netdevs(roce_netdev_filter filter, void *filter_cookie, roce_netdev_callback cb, void *cookie) { struct ib_device *dev; unsigned long index; down_read(&devices_rwsem); xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); up_read(&devices_rwsem); } /** * ib_enum_all_devs - enumerate all ib_devices * @cb: Callback to call for each found ib_device * * Enumerates all ib_devices and calls callback() on each device. */ int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, struct netlink_callback *cb) { unsigned long index; struct ib_device *dev; unsigned int idx = 0; int ret = 0; down_read(&devices_rwsem); xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { if (!rdma_dev_access_netns(dev, sock_net(skb->sk))) continue; ret = nldev_cb(dev, skb, cb, idx); if (ret) break; idx++; } up_read(&devices_rwsem); return ret; } /** * ib_query_pkey - Get P_Key table entry * @device:Device to query * @port_num:Port number to query * @index:P_Key table index to query * @pkey:Returned P_Key * * ib_query_pkey() fetches the specified P_Key table entry. */ int ib_query_pkey(struct ib_device *device, u8 port_num, u16 index, u16 *pkey) { if (!rdma_is_port_valid(device, port_num)) return -EINVAL; return device->ops.query_pkey(device, port_num, index, pkey); } EXPORT_SYMBOL(ib_query_pkey); /** * ib_modify_device - Change IB device attributes * @device:Device to modify * @device_modify_mask:Mask of attributes to change * @device_modify:New attribute values * * ib_modify_device() changes a device's attributes as specified by * the @device_modify_mask and @device_modify structure. */ int ib_modify_device(struct ib_device *device, int device_modify_mask, struct ib_device_modify *device_modify) { if (!device->ops.modify_device) return -ENOSYS; return device->ops.modify_device(device, device_modify_mask, device_modify); } EXPORT_SYMBOL(ib_modify_device); /** * ib_modify_port - Modifies the attributes for the specified port. * @device: The device to modify. * @port_num: The number of the port to modify. * @port_modify_mask: Mask used to specify which attributes of the port * to change. * @port_modify: New attribute values for the port. * * ib_modify_port() changes a port's attributes as specified by the * @port_modify_mask and @port_modify structure. */ int ib_modify_port(struct ib_device *device, u8 port_num, int port_modify_mask, struct ib_port_modify *port_modify) { int rc; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; if (device->ops.modify_port) rc = device->ops.modify_port(device, port_num, port_modify_mask, port_modify); else rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS; return rc; } EXPORT_SYMBOL(ib_modify_port); /** * ib_find_gid - Returns the port number and GID table index where * a specified GID value occurs. Its searches only for IB link layer. * @device: The device to query. * @gid: The GID value to search for. * @port_num: The port number of the device where the GID value was found. * @index: The index into the GID table where the GID was found. This * parameter may be NULL. */ int ib_find_gid(struct ib_device *device, union ib_gid *gid, u8 *port_num, u16 *index) { union ib_gid tmp_gid; unsigned int port; int ret, i; rdma_for_each_port (device, port) { if (!rdma_protocol_ib(device, port)) continue; for (i = 0; i < device->port_data[port].immutable.gid_tbl_len; ++i) { ret = rdma_query_gid(device, port, i, &tmp_gid); if (ret) return ret; if (!memcmp(&tmp_gid, gid, sizeof *gid)) { *port_num = port; if (index) *index = i; return 0; } } } return -ENOENT; } EXPORT_SYMBOL(ib_find_gid); /** * ib_find_pkey - Returns the PKey table index where a specified * PKey value occurs. * @device: The device to query. * @port_num: The port number of the device to search for the PKey. * @pkey: The PKey value to search for. * @index: The index into the PKey table where the PKey was found. */ int ib_find_pkey(struct ib_device *device, u8 port_num, u16 pkey, u16 *index) { int ret, i; u16 tmp_pkey; int partial_ix = -1; for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len; ++i) { ret = ib_query_pkey(device, port_num, i, &tmp_pkey); if (ret) return ret; if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { /* if there is full-member pkey take it.*/ if (tmp_pkey & 0x8000) { *index = i; return 0; } if (partial_ix < 0) partial_ix = i; } } /*no full-member, if exists take the limited*/ if (partial_ix >= 0) { *index = partial_ix; return 0; } return -ENOENT; } EXPORT_SYMBOL(ib_find_pkey); /** * ib_get_net_dev_by_params() - Return the appropriate net_dev * for a received CM request * @dev: An RDMA device on which the request has been received. * @port: Port number on the RDMA device. * @pkey: The Pkey the request came on. * @gid: A GID that the net_dev uses to communicate. * @addr: Contains the IP address that the request specified as its * destination. * */ struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, u16 pkey, const union ib_gid *gid, const struct sockaddr *addr) { struct net_device *net_dev = NULL; unsigned long index; void *client_data; if (!rdma_protocol_ib(dev, port)) return NULL; /* * Holding the read side guarantees that the client will not become * unregistered while we are calling get_net_dev_by_params() */ down_read(&dev->client_data_rwsem); xan_for_each_marked (&dev->client_data, index, client_data, CLIENT_DATA_REGISTERED) { struct ib_client *client = xa_load(&clients, index); if (!client || !client->get_net_dev_by_params) continue; net_dev = client->get_net_dev_by_params(dev, port, pkey, gid, addr, client_data); if (net_dev) break; } up_read(&dev->client_data_rwsem); return net_dev; } EXPORT_SYMBOL(ib_get_net_dev_by_params); void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops) { struct ib_device_ops *dev_ops = &dev->ops; #define SET_DEVICE_OP(ptr, name) \ do { \ if (ops->name) \ if (!((ptr)->name)) \ (ptr)->name = ops->name; \ } while (0) #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name) SET_DEVICE_OP(dev_ops, add_gid); SET_DEVICE_OP(dev_ops, advise_mr); SET_DEVICE_OP(dev_ops, alloc_dm); SET_DEVICE_OP(dev_ops, alloc_fmr); SET_DEVICE_OP(dev_ops, alloc_hw_stats); SET_DEVICE_OP(dev_ops, alloc_mr); SET_DEVICE_OP(dev_ops, alloc_mw); SET_DEVICE_OP(dev_ops, alloc_pd); SET_DEVICE_OP(dev_ops, alloc_rdma_netdev); SET_DEVICE_OP(dev_ops, alloc_ucontext); SET_DEVICE_OP(dev_ops, alloc_xrcd); SET_DEVICE_OP(dev_ops, attach_mcast); SET_DEVICE_OP(dev_ops, check_mr_status); SET_DEVICE_OP(dev_ops, create_ah); SET_DEVICE_OP(dev_ops, create_counters); SET_DEVICE_OP(dev_ops, create_cq); SET_DEVICE_OP(dev_ops, create_flow); SET_DEVICE_OP(dev_ops, create_flow_action_esp); SET_DEVICE_OP(dev_ops, create_qp); SET_DEVICE_OP(dev_ops, create_rwq_ind_table); SET_DEVICE_OP(dev_ops, create_srq); SET_DEVICE_OP(dev_ops, create_wq); SET_DEVICE_OP(dev_ops, dealloc_dm); SET_DEVICE_OP(dev_ops, dealloc_driver); SET_DEVICE_OP(dev_ops, dealloc_fmr); SET_DEVICE_OP(dev_ops, dealloc_mw); SET_DEVICE_OP(dev_ops, dealloc_pd); SET_DEVICE_OP(dev_ops, dealloc_ucontext); SET_DEVICE_OP(dev_ops, dealloc_xrcd); SET_DEVICE_OP(dev_ops, del_gid); SET_DEVICE_OP(dev_ops, dereg_mr); SET_DEVICE_OP(dev_ops, destroy_ah); SET_DEVICE_OP(dev_ops, destroy_counters); SET_DEVICE_OP(dev_ops, destroy_cq); SET_DEVICE_OP(dev_ops, destroy_flow); SET_DEVICE_OP(dev_ops, destroy_flow_action); SET_DEVICE_OP(dev_ops, destroy_qp); SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table); SET_DEVICE_OP(dev_ops, destroy_srq); SET_DEVICE_OP(dev_ops, destroy_wq); SET_DEVICE_OP(dev_ops, detach_mcast); SET_DEVICE_OP(dev_ops, disassociate_ucontext); SET_DEVICE_OP(dev_ops, drain_rq); SET_DEVICE_OP(dev_ops, drain_sq); SET_DEVICE_OP(dev_ops, enable_driver); SET_DEVICE_OP(dev_ops, fill_res_entry); SET_DEVICE_OP(dev_ops, get_dev_fw_str); SET_DEVICE_OP(dev_ops, get_dma_mr); SET_DEVICE_OP(dev_ops, get_hw_stats); SET_DEVICE_OP(dev_ops, get_link_layer); SET_DEVICE_OP(dev_ops, get_netdev); SET_DEVICE_OP(dev_ops, get_port_immutable); SET_DEVICE_OP(dev_ops, get_vector_affinity); SET_DEVICE_OP(dev_ops, get_vf_config); SET_DEVICE_OP(dev_ops, get_vf_stats); SET_DEVICE_OP(dev_ops, init_port); SET_DEVICE_OP(dev_ops, map_mr_sg); SET_DEVICE_OP(dev_ops, map_phys_fmr); SET_DEVICE_OP(dev_ops, mmap); SET_DEVICE_OP(dev_ops, modify_ah); SET_DEVICE_OP(dev_ops, modify_cq); SET_DEVICE_OP(dev_ops, modify_device); SET_DEVICE_OP(dev_ops, modify_flow_action_esp); SET_DEVICE_OP(dev_ops, modify_port); SET_DEVICE_OP(dev_ops, modify_qp); SET_DEVICE_OP(dev_ops, modify_srq); SET_DEVICE_OP(dev_ops, modify_wq); SET_DEVICE_OP(dev_ops, peek_cq); SET_DEVICE_OP(dev_ops, poll_cq); SET_DEVICE_OP(dev_ops, post_recv); SET_DEVICE_OP(dev_ops, post_send); SET_DEVICE_OP(dev_ops, post_srq_recv); SET_DEVICE_OP(dev_ops, process_mad); SET_DEVICE_OP(dev_ops, query_ah); SET_DEVICE_OP(dev_ops, query_device); SET_DEVICE_OP(dev_ops, query_gid); SET_DEVICE_OP(dev_ops, query_pkey); SET_DEVICE_OP(dev_ops, query_port); SET_DEVICE_OP(dev_ops, query_qp); SET_DEVICE_OP(dev_ops, query_srq); SET_DEVICE_OP(dev_ops, rdma_netdev_get_params); SET_DEVICE_OP(dev_ops, read_counters); SET_DEVICE_OP(dev_ops, reg_dm_mr); SET_DEVICE_OP(dev_ops, reg_user_mr); SET_DEVICE_OP(dev_ops, req_ncomp_notif); SET_DEVICE_OP(dev_ops, req_notify_cq); SET_DEVICE_OP(dev_ops, rereg_user_mr); SET_DEVICE_OP(dev_ops, resize_cq); SET_DEVICE_OP(dev_ops, set_vf_guid); SET_DEVICE_OP(dev_ops, set_vf_link_state); SET_DEVICE_OP(dev_ops, unmap_fmr); SET_OBJ_SIZE(dev_ops, ib_ah); SET_OBJ_SIZE(dev_ops, ib_pd); SET_OBJ_SIZE(dev_ops, ib_srq); SET_OBJ_SIZE(dev_ops, ib_ucontext); } EXPORT_SYMBOL(ib_set_device_ops); static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { [RDMA_NL_LS_OP_RESOLVE] = { .doit = ib_nl_handle_resolve_resp, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NL_LS_OP_SET_TIMEOUT] = { .doit = ib_nl_handle_set_timeout, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NL_LS_OP_IP_RESOLVE] = { .doit = ib_nl_handle_ip_res_resp, .flags = RDMA_NL_ADMIN_PERM, }, }; static int __init ib_core_init(void) { int ret; ib_wq = alloc_workqueue("infiniband", 0, 0); if (!ib_wq) return -ENOMEM; ib_comp_wq = alloc_workqueue("ib-comp-wq", WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); if (!ib_comp_wq) { ret = -ENOMEM; goto err; } ib_comp_unbound_wq = alloc_workqueue("ib-comp-unb-wq", WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE); if (!ib_comp_unbound_wq) { ret = -ENOMEM; goto err_comp; } ret = class_register(&ib_class); if (ret) { pr_warn("Couldn't create InfiniBand device class\n"); goto err_comp_unbound; } ret = rdma_nl_init(); if (ret) { pr_warn("Couldn't init IB netlink interface: err %d\n", ret); goto err_sysfs; } ret = addr_init(); if (ret) { pr_warn("Could't init IB address resolution\n"); goto err_ibnl; } ret = ib_mad_init(); if (ret) { pr_warn("Couldn't init IB MAD\n"); goto err_addr; } ret = ib_sa_init(); if (ret) { pr_warn("Couldn't init SA\n"); goto err_mad; } ret = register_lsm_notifier(&ibdev_lsm_nb); if (ret) { pr_warn("Couldn't register LSM notifier. ret %d\n", ret); goto err_sa; } ret = register_pernet_device(&rdma_dev_net_ops); if (ret) { pr_warn("Couldn't init compat dev. ret %d\n", ret); goto err_compat; } nldev_init(); rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); roce_gid_mgmt_init(); return 0; err_compat: unregister_lsm_notifier(&ibdev_lsm_nb); err_sa: ib_sa_cleanup(); err_mad: ib_mad_cleanup(); err_addr: addr_cleanup(); err_ibnl: rdma_nl_exit(); err_sysfs: class_unregister(&ib_class); err_comp_unbound: destroy_workqueue(ib_comp_unbound_wq); err_comp: destroy_workqueue(ib_comp_wq); err: destroy_workqueue(ib_wq); return ret; } static void __exit ib_core_cleanup(void) { roce_gid_mgmt_cleanup(); nldev_exit(); rdma_nl_unregister(RDMA_NL_LS); unregister_pernet_device(&rdma_dev_net_ops); unregister_lsm_notifier(&ibdev_lsm_nb); ib_sa_cleanup(); ib_mad_cleanup(); addr_cleanup(); rdma_nl_exit(); class_unregister(&ib_class); destroy_workqueue(ib_comp_unbound_wq); destroy_workqueue(ib_comp_wq); /* Make sure that any pending umem accounting work is done. */ destroy_workqueue(ib_wq); flush_workqueue(system_unbound_wq); WARN_ON(!xa_empty(&clients)); WARN_ON(!xa_empty(&devices)); } MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); /* ib core relies on netdev stack to first register net_ns_type_operations * ns kobject type before ib_core initialization. */ fs_initcall(ib_core_init); module_exit(ib_core_cleanup);