#include #include #include #include #include #include #include #include #include #include #include #include #include DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0, }; /* * Smarter SMP flushing macros. * c/o Linus Torvalds. * * These mean you can really definitely utterly forget about * writing to user space from interrupts. (Its not allowed anyway). * * Optimizations Manfred Spraul * * More scalable flush, from Andi Kleen * * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi */ struct flush_tlb_info { struct mm_struct *flush_mm; unsigned long flush_start; unsigned long flush_end; }; /* * We cannot call mmdrop() because we are in interrupt context, * instead update mm->cpu_vm_mask. */ void leave_mm(int cpu) { struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm); if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) BUG(); if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) { cpumask_clear_cpu(cpu, mm_cpumask(active_mm)); load_cr3(swapper_pg_dir); trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); } } EXPORT_SYMBOL_GPL(leave_mm); /* * The flush IPI assumes that a thread switch happens in this order: * [cpu0: the cpu that switches] * 1) switch_mm() either 1a) or 1b) * 1a) thread switch to a different mm * 1a1) set cpu_tlbstate to TLBSTATE_OK * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm * if cpu0 was in lazy tlb mode. * 1a2) update cpu active_mm * Now cpu0 accepts tlb flushes for the new mm. * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask); * Now the other cpus will send tlb flush ipis. * 1a4) change cr3. * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask); * Stop ipi delivery for the old mm. This is not synchronized with * the other cpus, but flush_tlb_func ignore flush ipis for the wrong * mm, and in the worst case we perform a superfluous tlb flush. * 1b) thread switch without mm change * cpu active_mm is correct, cpu0 already handles flush ipis. * 1b1) set cpu_tlbstate to TLBSTATE_OK * 1b2) test_and_set the cpu bit in cpu_vm_mask. * Atomically set the bit [other cpus will start sending flush ipis], * and test the bit. * 1b3) if the bit was 0: leave_mm was called, flush the tlb. * 2) switch %%esp, ie current * * The interrupt must handle 2 special cases: * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. * - the cpu performs speculative tlb reads, i.e. even if the cpu only * runs in kernel space, the cpu could load tlb entries for user space * pages. * * The good news is that cpu_tlbstate is local to each cpu, no * write/read ordering problems. */ /* * TLB flush funcation: * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. * 2) Leave the mm if we are in the lazy tlb mode. */ static void flush_tlb_func(void *info) { struct flush_tlb_info *f = info; inc_irq_stat(irq_tlb_count); if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm)) return; if (!f->flush_end) f->flush_end = f->flush_start + PAGE_SIZE; count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) { if (f->flush_end == TLB_FLUSH_ALL) { local_flush_tlb(); trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL); } else { unsigned long addr; unsigned long nr_pages = f->flush_end - f->flush_start / PAGE_SIZE; addr = f->flush_start; while (addr < f->flush_end) { __flush_tlb_single(addr); addr += PAGE_SIZE; } trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages); } } else leave_mm(smp_processor_id()); } void native_flush_tlb_others(const struct cpumask *cpumask, struct mm_struct *mm, unsigned long start, unsigned long end) { struct flush_tlb_info info; info.flush_mm = mm; info.flush_start = start; info.flush_end = end; count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); if (is_uv_system()) { unsigned int cpu; cpu = smp_processor_id(); cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu); if (cpumask) smp_call_function_many(cpumask, flush_tlb_func, &info, 1); return; } smp_call_function_many(cpumask, flush_tlb_func, &info, 1); } void flush_tlb_current_task(void) { struct mm_struct *mm = current->mm; preempt_disable(); count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); local_flush_tlb(); trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL); if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL); preempt_enable(); } /* in units of pages */ unsigned long tlb_single_page_flush_ceiling = 1; void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long vmflag) { unsigned long addr; /* do a global flush by default */ unsigned long base_pages_to_flush = TLB_FLUSH_ALL; preempt_disable(); if (current->active_mm != mm) goto out; if (!current->mm) { leave_mm(smp_processor_id()); goto out; } if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB)) base_pages_to_flush = (end - start) >> PAGE_SHIFT; if (base_pages_to_flush > tlb_single_page_flush_ceiling) { base_pages_to_flush = TLB_FLUSH_ALL; count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); local_flush_tlb(); } else { /* flush range by one by one 'invlpg' */ for (addr = start; addr < end; addr += PAGE_SIZE) { count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); __flush_tlb_single(addr); } } trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush); out: if (base_pages_to_flush == TLB_FLUSH_ALL) { start = 0UL; end = TLB_FLUSH_ALL; } if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) flush_tlb_others(mm_cpumask(mm), mm, start, end); preempt_enable(); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long start) { struct mm_struct *mm = vma->vm_mm; preempt_disable(); if (current->active_mm == mm) { if (current->mm) __flush_tlb_one(start); else leave_mm(smp_processor_id()); } if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) flush_tlb_others(mm_cpumask(mm), mm, start, 0UL); preempt_enable(); } static void do_flush_tlb_all(void *info) { count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); __flush_tlb_all(); if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY) leave_mm(smp_processor_id()); } void flush_tlb_all(void) { count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); on_each_cpu(do_flush_tlb_all, NULL, 1); } static void do_kernel_range_flush(void *info) { struct flush_tlb_info *f = info; unsigned long addr; /* flush range by one by one 'invlpg' */ for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE) __flush_tlb_single(addr); } void flush_tlb_kernel_range(unsigned long start, unsigned long end) { /* Balance as user space task's flush, a bit conservative */ if (end == TLB_FLUSH_ALL || (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) { on_each_cpu(do_flush_tlb_all, NULL, 1); } else { struct flush_tlb_info info; info.flush_start = start; info.flush_end = end; on_each_cpu(do_kernel_range_flush, &info, 1); } } static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; unsigned int len; len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); return simple_read_from_buffer(user_buf, count, ppos, buf, len); } static ssize_t tlbflush_write_file(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; ssize_t len; int ceiling; len = min(count, sizeof(buf) - 1); if (copy_from_user(buf, user_buf, len)) return -EFAULT; buf[len] = '\0'; if (kstrtoint(buf, 0, &ceiling)) return -EINVAL; if (ceiling < 0) return -EINVAL; tlb_single_page_flush_ceiling = ceiling; return count; } static const struct file_operations fops_tlbflush = { .read = tlbflush_read_file, .write = tlbflush_write_file, .llseek = default_llseek, }; static int __init create_tlb_single_page_flush_ceiling(void) { debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, arch_debugfs_dir, NULL, &fops_tlbflush); return 0; } late_initcall(create_tlb_single_page_flush_ceiling);