// SPDX-License-Identifier: GPL-2.0 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "mm_slot.h" enum scan_result { SCAN_FAIL, SCAN_SUCCEED, SCAN_PMD_NULL, SCAN_PMD_NONE, SCAN_PMD_MAPPED, SCAN_EXCEED_NONE_PTE, SCAN_EXCEED_SWAP_PTE, SCAN_EXCEED_SHARED_PTE, SCAN_PTE_NON_PRESENT, SCAN_PTE_UFFD_WP, SCAN_PTE_MAPPED_HUGEPAGE, SCAN_PAGE_RO, SCAN_LACK_REFERENCED_PAGE, SCAN_PAGE_NULL, SCAN_SCAN_ABORT, SCAN_PAGE_COUNT, SCAN_PAGE_LRU, SCAN_PAGE_LOCK, SCAN_PAGE_ANON, SCAN_PAGE_COMPOUND, SCAN_ANY_PROCESS, SCAN_VMA_NULL, SCAN_VMA_CHECK, SCAN_ADDRESS_RANGE, SCAN_DEL_PAGE_LRU, SCAN_ALLOC_HUGE_PAGE_FAIL, SCAN_CGROUP_CHARGE_FAIL, SCAN_TRUNCATED, SCAN_PAGE_HAS_PRIVATE, }; #define CREATE_TRACE_POINTS #include static struct task_struct *khugepaged_thread __read_mostly; static DEFINE_MUTEX(khugepaged_mutex); /* default scan 8*512 pte (or vmas) every 30 second */ static unsigned int khugepaged_pages_to_scan __read_mostly; static unsigned int khugepaged_pages_collapsed; static unsigned int khugepaged_full_scans; static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; /* during fragmentation poll the hugepage allocator once every minute */ static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; static unsigned long khugepaged_sleep_expire; static DEFINE_SPINLOCK(khugepaged_mm_lock); static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); /* * default collapse hugepages if there is at least one pte mapped like * it would have happened if the vma was large enough during page * fault. * * Note that these are only respected if collapse was initiated by khugepaged. */ static unsigned int khugepaged_max_ptes_none __read_mostly; static unsigned int khugepaged_max_ptes_swap __read_mostly; static unsigned int khugepaged_max_ptes_shared __read_mostly; #define MM_SLOTS_HASH_BITS 10 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); static struct kmem_cache *mm_slot_cache __read_mostly; #define MAX_PTE_MAPPED_THP 8 struct collapse_control { bool is_khugepaged; /* Num pages scanned per node */ u32 node_load[MAX_NUMNODES]; /* nodemask for allocation fallback */ nodemask_t alloc_nmask; }; /** * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned * @slot: hash lookup from mm to mm_slot * @nr_pte_mapped_thp: number of pte mapped THP * @pte_mapped_thp: address array corresponding pte mapped THP */ struct khugepaged_mm_slot { struct mm_slot slot; /* pte-mapped THP in this mm */ int nr_pte_mapped_thp; unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; }; /** * struct khugepaged_scan - cursor for scanning * @mm_head: the head of the mm list to scan * @mm_slot: the current mm_slot we are scanning * @address: the next address inside that to be scanned * * There is only the one khugepaged_scan instance of this cursor structure. */ struct khugepaged_scan { struct list_head mm_head; struct khugepaged_mm_slot *mm_slot; unsigned long address; }; static struct khugepaged_scan khugepaged_scan = { .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), }; #ifdef CONFIG_SYSFS static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); } static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned int msecs; int err; err = kstrtouint(buf, 10, &msecs); if (err) return -EINVAL; khugepaged_scan_sleep_millisecs = msecs; khugepaged_sleep_expire = 0; wake_up_interruptible(&khugepaged_wait); return count; } static struct kobj_attribute scan_sleep_millisecs_attr = __ATTR_RW(scan_sleep_millisecs); static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); } static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned int msecs; int err; err = kstrtouint(buf, 10, &msecs); if (err) return -EINVAL; khugepaged_alloc_sleep_millisecs = msecs; khugepaged_sleep_expire = 0; wake_up_interruptible(&khugepaged_wait); return count; } static struct kobj_attribute alloc_sleep_millisecs_attr = __ATTR_RW(alloc_sleep_millisecs); static ssize_t pages_to_scan_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); } static ssize_t pages_to_scan_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned int pages; int err; err = kstrtouint(buf, 10, &pages); if (err || !pages) return -EINVAL; khugepaged_pages_to_scan = pages; return count; } static struct kobj_attribute pages_to_scan_attr = __ATTR_RW(pages_to_scan); static ssize_t pages_collapsed_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); } static struct kobj_attribute pages_collapsed_attr = __ATTR_RO(pages_collapsed); static ssize_t full_scans_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", khugepaged_full_scans); } static struct kobj_attribute full_scans_attr = __ATTR_RO(full_scans); static ssize_t defrag_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return single_hugepage_flag_show(kobj, attr, buf, TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); } static ssize_t defrag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { return single_hugepage_flag_store(kobj, attr, buf, count, TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); } static struct kobj_attribute khugepaged_defrag_attr = __ATTR_RW(defrag); /* * max_ptes_none controls if khugepaged should collapse hugepages over * any unmapped ptes in turn potentially increasing the memory * footprint of the vmas. When max_ptes_none is 0 khugepaged will not * reduce the available free memory in the system as it * runs. Increasing max_ptes_none will instead potentially reduce the * free memory in the system during the khugepaged scan. */ static ssize_t max_ptes_none_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); } static ssize_t max_ptes_none_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long max_ptes_none; err = kstrtoul(buf, 10, &max_ptes_none); if (err || max_ptes_none > HPAGE_PMD_NR - 1) return -EINVAL; khugepaged_max_ptes_none = max_ptes_none; return count; } static struct kobj_attribute khugepaged_max_ptes_none_attr = __ATTR_RW(max_ptes_none); static ssize_t max_ptes_swap_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); } static ssize_t max_ptes_swap_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long max_ptes_swap; err = kstrtoul(buf, 10, &max_ptes_swap); if (err || max_ptes_swap > HPAGE_PMD_NR - 1) return -EINVAL; khugepaged_max_ptes_swap = max_ptes_swap; return count; } static struct kobj_attribute khugepaged_max_ptes_swap_attr = __ATTR_RW(max_ptes_swap); static ssize_t max_ptes_shared_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); } static ssize_t max_ptes_shared_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long max_ptes_shared; err = kstrtoul(buf, 10, &max_ptes_shared); if (err || max_ptes_shared > HPAGE_PMD_NR - 1) return -EINVAL; khugepaged_max_ptes_shared = max_ptes_shared; return count; } static struct kobj_attribute khugepaged_max_ptes_shared_attr = __ATTR_RW(max_ptes_shared); static struct attribute *khugepaged_attr[] = { &khugepaged_defrag_attr.attr, &khugepaged_max_ptes_none_attr.attr, &khugepaged_max_ptes_swap_attr.attr, &khugepaged_max_ptes_shared_attr.attr, &pages_to_scan_attr.attr, &pages_collapsed_attr.attr, &full_scans_attr.attr, &scan_sleep_millisecs_attr.attr, &alloc_sleep_millisecs_attr.attr, NULL, }; struct attribute_group khugepaged_attr_group = { .attrs = khugepaged_attr, .name = "khugepaged", }; #endif /* CONFIG_SYSFS */ int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags, int advice) { switch (advice) { case MADV_HUGEPAGE: #ifdef CONFIG_S390 /* * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 * can't handle this properly after s390_enable_sie, so we simply * ignore the madvise to prevent qemu from causing a SIGSEGV. */ if (mm_has_pgste(vma->vm_mm)) return 0; #endif *vm_flags &= ~VM_NOHUGEPAGE; *vm_flags |= VM_HUGEPAGE; /* * If the vma become good for khugepaged to scan, * register it here without waiting a page fault that * may not happen any time soon. */ khugepaged_enter_vma(vma, *vm_flags); break; case MADV_NOHUGEPAGE: *vm_flags &= ~VM_HUGEPAGE; *vm_flags |= VM_NOHUGEPAGE; /* * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning * this vma even if we leave the mm registered in khugepaged if * it got registered before VM_NOHUGEPAGE was set. */ break; } return 0; } int __init khugepaged_init(void) { mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", sizeof(struct khugepaged_mm_slot), __alignof__(struct khugepaged_mm_slot), 0, NULL); if (!mm_slot_cache) return -ENOMEM; khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; return 0; } void __init khugepaged_destroy(void) { kmem_cache_destroy(mm_slot_cache); } static inline int hpage_collapse_test_exit(struct mm_struct *mm) { return atomic_read(&mm->mm_users) == 0; } void __khugepaged_enter(struct mm_struct *mm) { struct khugepaged_mm_slot *mm_slot; struct mm_slot *slot; int wakeup; mm_slot = mm_slot_alloc(mm_slot_cache); if (!mm_slot) return; slot = &mm_slot->slot; /* __khugepaged_exit() must not run from under us */ VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { mm_slot_free(mm_slot_cache, mm_slot); return; } spin_lock(&khugepaged_mm_lock); mm_slot_insert(mm_slots_hash, mm, slot); /* * Insert just behind the scanning cursor, to let the area settle * down a little. */ wakeup = list_empty(&khugepaged_scan.mm_head); list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); spin_unlock(&khugepaged_mm_lock); mmgrab(mm); if (wakeup) wake_up_interruptible(&khugepaged_wait); } void khugepaged_enter_vma(struct vm_area_struct *vma, unsigned long vm_flags) { if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && hugepage_flags_enabled()) { if (hugepage_vma_check(vma, vm_flags, false, false, true)) __khugepaged_enter(vma->vm_mm); } } void __khugepaged_exit(struct mm_struct *mm) { struct khugepaged_mm_slot *mm_slot; struct mm_slot *slot; int free = 0; spin_lock(&khugepaged_mm_lock); slot = mm_slot_lookup(mm_slots_hash, mm); mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { hash_del(&slot->hash); list_del(&slot->mm_node); free = 1; } spin_unlock(&khugepaged_mm_lock); if (free) { clear_bit(MMF_VM_HUGEPAGE, &mm->flags); mm_slot_free(mm_slot_cache, mm_slot); mmdrop(mm); } else if (mm_slot) { /* * This is required to serialize against * hpage_collapse_test_exit() (which is guaranteed to run * under mmap sem read mode). Stop here (after we return all * pagetables will be destroyed) until khugepaged has finished * working on the pagetables under the mmap_lock. */ mmap_write_lock(mm); mmap_write_unlock(mm); } } static void release_pte_page(struct page *page) { mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), -compound_nr(page)); unlock_page(page); putback_lru_page(page); } static void release_pte_pages(pte_t *pte, pte_t *_pte, struct list_head *compound_pagelist) { struct page *page, *tmp; while (--_pte >= pte) { pte_t pteval = *_pte; page = pte_page(pteval); if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && !PageCompound(page)) release_pte_page(page); } list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { list_del(&page->lru); release_pte_page(page); } } static bool is_refcount_suitable(struct page *page) { int expected_refcount; expected_refcount = total_mapcount(page); if (PageSwapCache(page)) expected_refcount += compound_nr(page); return page_count(page) == expected_refcount; } static int __collapse_huge_page_isolate(struct vm_area_struct *vma, unsigned long address, pte_t *pte, struct collapse_control *cc, struct list_head *compound_pagelist) { struct page *page = NULL; pte_t *_pte; int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; bool writable = false; for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte++, address += PAGE_SIZE) { pte_t pteval = *_pte; if (pte_none(pteval) || (pte_present(pteval) && is_zero_pfn(pte_pfn(pteval)))) { ++none_or_zero; if (!userfaultfd_armed(vma) && (!cc->is_khugepaged || none_or_zero <= khugepaged_max_ptes_none)) { continue; } else { result = SCAN_EXCEED_NONE_PTE; count_vm_event(THP_SCAN_EXCEED_NONE_PTE); goto out; } } if (!pte_present(pteval)) { result = SCAN_PTE_NON_PRESENT; goto out; } page = vm_normal_page(vma, address, pteval); if (unlikely(!page) || unlikely(is_zone_device_page(page))) { result = SCAN_PAGE_NULL; goto out; } VM_BUG_ON_PAGE(!PageAnon(page), page); if (page_mapcount(page) > 1) { ++shared; if (cc->is_khugepaged && shared > khugepaged_max_ptes_shared) { result = SCAN_EXCEED_SHARED_PTE; count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); goto out; } } if (PageCompound(page)) { struct page *p; page = compound_head(page); /* * Check if we have dealt with the compound page * already */ list_for_each_entry(p, compound_pagelist, lru) { if (page == p) goto next; } } /* * We can do it before isolate_lru_page because the * page can't be freed from under us. NOTE: PG_lock * is needed to serialize against split_huge_page * when invoked from the VM. */ if (!trylock_page(page)) { result = SCAN_PAGE_LOCK; goto out; } /* * Check if the page has any GUP (or other external) pins. * * The page table that maps the page has been already unlinked * from the page table tree and this process cannot get * an additional pin on the page. * * New pins can come later if the page is shared across fork, * but not from this process. The other process cannot write to * the page, only trigger CoW. */ if (!is_refcount_suitable(page)) { unlock_page(page); result = SCAN_PAGE_COUNT; goto out; } /* * Isolate the page to avoid collapsing an hugepage * currently in use by the VM. */ if (isolate_lru_page(page)) { unlock_page(page); result = SCAN_DEL_PAGE_LRU; goto out; } mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), compound_nr(page)); VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(PageLRU(page), page); if (PageCompound(page)) list_add_tail(&page->lru, compound_pagelist); next: /* * If collapse was initiated by khugepaged, check that there is * enough young pte to justify collapsing the page */ if (cc->is_khugepaged && (pte_young(pteval) || page_is_young(page) || PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, address))) referenced++; if (pte_write(pteval)) writable = true; } if (unlikely(!writable)) { result = SCAN_PAGE_RO; } else if (unlikely(cc->is_khugepaged && !referenced)) { result = SCAN_LACK_REFERENCED_PAGE; } else { result = SCAN_SUCCEED; trace_mm_collapse_huge_page_isolate(page, none_or_zero, referenced, writable, result); return result; } out: release_pte_pages(pte, _pte, compound_pagelist); trace_mm_collapse_huge_page_isolate(page, none_or_zero, referenced, writable, result); return result; } static void __collapse_huge_page_copy(pte_t *pte, struct page *page, struct vm_area_struct *vma, unsigned long address, spinlock_t *ptl, struct list_head *compound_pagelist) { struct page *src_page, *tmp; pte_t *_pte; for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte++, page++, address += PAGE_SIZE) { pte_t pteval = *_pte; if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { clear_user_highpage(page, address); add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); if (is_zero_pfn(pte_pfn(pteval))) { /* * ptl mostly unnecessary. */ spin_lock(ptl); ptep_clear(vma->vm_mm, address, _pte); spin_unlock(ptl); } } else { src_page = pte_page(pteval); copy_user_highpage(page, src_page, address, vma); if (!PageCompound(src_page)) release_pte_page(src_page); /* * ptl mostly unnecessary, but preempt has to * be disabled to update the per-cpu stats * inside page_remove_rmap(). */ spin_lock(ptl); ptep_clear(vma->vm_mm, address, _pte); page_remove_rmap(src_page, vma, false); spin_unlock(ptl); free_page_and_swap_cache(src_page); } } list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { list_del(&src_page->lru); mod_node_page_state(page_pgdat(src_page), NR_ISOLATED_ANON + page_is_file_lru(src_page), -compound_nr(src_page)); unlock_page(src_page); free_swap_cache(src_page); putback_lru_page(src_page); } } static void khugepaged_alloc_sleep(void) { DEFINE_WAIT(wait); add_wait_queue(&khugepaged_wait, &wait); __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); remove_wait_queue(&khugepaged_wait, &wait); } struct collapse_control khugepaged_collapse_control = { .is_khugepaged = true, }; static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) { int i; /* * If node_reclaim_mode is disabled, then no extra effort is made to * allocate memory locally. */ if (!node_reclaim_enabled()) return false; /* If there is a count for this node already, it must be acceptable */ if (cc->node_load[nid]) return false; for (i = 0; i < MAX_NUMNODES; i++) { if (!cc->node_load[i]) continue; if (node_distance(nid, i) > node_reclaim_distance) return true; } return false; } #define khugepaged_defrag() \ (transparent_hugepage_flags & \ (1<node_load[nid] > max_value) { max_value = cc->node_load[nid]; target_node = nid; } for_each_online_node(nid) { if (max_value == cc->node_load[nid]) node_set(nid, cc->alloc_nmask); } return target_node; } #else static int hpage_collapse_find_target_node(struct collapse_control *cc) { return 0; } #endif static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node, nodemask_t *nmask) { *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask); if (unlikely(!*hpage)) { count_vm_event(THP_COLLAPSE_ALLOC_FAILED); return false; } prep_transhuge_page(*hpage); count_vm_event(THP_COLLAPSE_ALLOC); return true; } /* * If mmap_lock temporarily dropped, revalidate vma * before taking mmap_lock. * Returns enum scan_result value. */ static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, bool expect_anon, struct vm_area_struct **vmap, struct collapse_control *cc) { struct vm_area_struct *vma; if (unlikely(hpage_collapse_test_exit(mm))) return SCAN_ANY_PROCESS; *vmap = vma = find_vma(mm, address); if (!vma) return SCAN_VMA_NULL; if (!transhuge_vma_suitable(vma, address)) return SCAN_ADDRESS_RANGE; if (!hugepage_vma_check(vma, vma->vm_flags, false, false, cc->is_khugepaged)) return SCAN_VMA_CHECK; /* * Anon VMA expected, the address may be unmapped then * remapped to file after khugepaged reaquired the mmap_lock. * * hugepage_vma_check may return true for qualified file * vmas. */ if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) return SCAN_PAGE_ANON; return SCAN_SUCCEED; } static int find_pmd_or_thp_or_none(struct mm_struct *mm, unsigned long address, pmd_t **pmd) { pmd_t pmde; *pmd = mm_find_pmd(mm, address); if (!*pmd) return SCAN_PMD_NULL; pmde = pmd_read_atomic(*pmd); #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* See comments in pmd_none_or_trans_huge_or_clear_bad() */ barrier(); #endif if (pmd_none(pmde)) return SCAN_PMD_NONE; if (pmd_trans_huge(pmde)) return SCAN_PMD_MAPPED; if (pmd_bad(pmde)) return SCAN_PMD_NULL; return SCAN_SUCCEED; } static int check_pmd_still_valid(struct mm_struct *mm, unsigned long address, pmd_t *pmd) { pmd_t *new_pmd; int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); if (result != SCAN_SUCCEED) return result; if (new_pmd != pmd) return SCAN_FAIL; return SCAN_SUCCEED; } /* * Bring missing pages in from swap, to complete THP collapse. * Only done if hpage_collapse_scan_pmd believes it is worthwhile. * * Called and returns without pte mapped or spinlocks held. * Note that if false is returned, mmap_lock will be released. */ static int __collapse_huge_page_swapin(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, int referenced) { int swapped_in = 0; vm_fault_t ret = 0; unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); for (address = haddr; address < end; address += PAGE_SIZE) { struct vm_fault vmf = { .vma = vma, .address = address, .pgoff = linear_page_index(vma, haddr), .flags = FAULT_FLAG_ALLOW_RETRY, .pmd = pmd, }; vmf.pte = pte_offset_map(pmd, address); vmf.orig_pte = *vmf.pte; if (!is_swap_pte(vmf.orig_pte)) { pte_unmap(vmf.pte); continue; } ret = do_swap_page(&vmf); /* * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because * we do not retry here and swap entry will remain in pagetable * resulting in later failure. */ if (ret & VM_FAULT_RETRY) { trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); /* Likely, but not guaranteed, that page lock failed */ return SCAN_PAGE_LOCK; } if (ret & VM_FAULT_ERROR) { mmap_read_unlock(mm); trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); return SCAN_FAIL; } swapped_in++; } /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ if (swapped_in) lru_add_drain(); trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); return SCAN_SUCCEED; } static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, struct collapse_control *cc) { gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : GFP_TRANSHUGE); int node = hpage_collapse_find_target_node(cc); if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask)) return SCAN_ALLOC_HUGE_PAGE_FAIL; if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp))) return SCAN_CGROUP_CHARGE_FAIL; count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC); return SCAN_SUCCEED; } static int collapse_huge_page(struct mm_struct *mm, unsigned long address, int referenced, int unmapped, struct collapse_control *cc) { LIST_HEAD(compound_pagelist); pmd_t *pmd, _pmd; pte_t *pte; pgtable_t pgtable; struct page *hpage; spinlock_t *pmd_ptl, *pte_ptl; int result = SCAN_FAIL; struct vm_area_struct *vma; struct mmu_notifier_range range; VM_BUG_ON(address & ~HPAGE_PMD_MASK); /* * Before allocating the hugepage, release the mmap_lock read lock. * The allocation can take potentially a long time if it involves * sync compaction, and we do not need to hold the mmap_lock during * that. We will recheck the vma after taking it again in write mode. */ mmap_read_unlock(mm); result = alloc_charge_hpage(&hpage, mm, cc); if (result != SCAN_SUCCEED) goto out_nolock; mmap_read_lock(mm); result = hugepage_vma_revalidate(mm, address, true, &vma, cc); if (result != SCAN_SUCCEED) { mmap_read_unlock(mm); goto out_nolock; } result = find_pmd_or_thp_or_none(mm, address, &pmd); if (result != SCAN_SUCCEED) { mmap_read_unlock(mm); goto out_nolock; } if (unmapped) { /* * __collapse_huge_page_swapin will return with mmap_lock * released when it fails. So we jump out_nolock directly in * that case. Continuing to collapse causes inconsistency. */ result = __collapse_huge_page_swapin(mm, vma, address, pmd, referenced); if (result != SCAN_SUCCEED) goto out_nolock; } mmap_read_unlock(mm); /* * Prevent all access to pagetables with the exception of * gup_fast later handled by the ptep_clear_flush and the VM * handled by the anon_vma lock + PG_lock. */ mmap_write_lock(mm); result = hugepage_vma_revalidate(mm, address, true, &vma, cc); if (result != SCAN_SUCCEED) goto out_up_write; /* check if the pmd is still valid */ result = check_pmd_still_valid(mm, address, pmd); if (result != SCAN_SUCCEED) goto out_up_write; anon_vma_lock_write(vma->anon_vma); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address, address + HPAGE_PMD_SIZE); mmu_notifier_invalidate_range_start(&range); pte = pte_offset_map(pmd, address); pte_ptl = pte_lockptr(mm, pmd); pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ /* * This removes any huge TLB entry from the CPU so we won't allow * huge and small TLB entries for the same virtual address to * avoid the risk of CPU bugs in that area. * * Parallel fast GUP is fine since fast GUP will back off when * it detects PMD is changed. */ _pmd = pmdp_collapse_flush(vma, address, pmd); spin_unlock(pmd_ptl); mmu_notifier_invalidate_range_end(&range); tlb_remove_table_sync_one(); spin_lock(pte_ptl); result = __collapse_huge_page_isolate(vma, address, pte, cc, &compound_pagelist); spin_unlock(pte_ptl); if (unlikely(result != SCAN_SUCCEED)) { pte_unmap(pte); spin_lock(pmd_ptl); BUG_ON(!pmd_none(*pmd)); /* * We can only use set_pmd_at when establishing * hugepmds and never for establishing regular pmds that * points to regular pagetables. Use pmd_populate for that */ pmd_populate(mm, pmd, pmd_pgtable(_pmd)); spin_unlock(pmd_ptl); anon_vma_unlock_write(vma->anon_vma); goto out_up_write; } /* * All pages are isolated and locked so anon_vma rmap * can't run anymore. */ anon_vma_unlock_write(vma->anon_vma); __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl, &compound_pagelist); pte_unmap(pte); /* * spin_lock() below is not the equivalent of smp_wmb(), but * the smp_wmb() inside __SetPageUptodate() can be reused to * avoid the copy_huge_page writes to become visible after * the set_pmd_at() write. */ __SetPageUptodate(hpage); pgtable = pmd_pgtable(_pmd); _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); spin_lock(pmd_ptl); BUG_ON(!pmd_none(*pmd)); page_add_new_anon_rmap(hpage, vma, address); lru_cache_add_inactive_or_unevictable(hpage, vma); pgtable_trans_huge_deposit(mm, pmd, pgtable); set_pmd_at(mm, address, pmd, _pmd); update_mmu_cache_pmd(vma, address, pmd); spin_unlock(pmd_ptl); hpage = NULL; result = SCAN_SUCCEED; out_up_write: mmap_write_unlock(mm); out_nolock: if (hpage) { mem_cgroup_uncharge(page_folio(hpage)); put_page(hpage); } trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); return result; } static int hpage_collapse_scan_pmd(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, bool *mmap_locked, struct collapse_control *cc) { pmd_t *pmd; pte_t *pte, *_pte; int result = SCAN_FAIL, referenced = 0; int none_or_zero = 0, shared = 0; struct page *page = NULL; unsigned long _address; spinlock_t *ptl; int node = NUMA_NO_NODE, unmapped = 0; bool writable = false; VM_BUG_ON(address & ~HPAGE_PMD_MASK); result = find_pmd_or_thp_or_none(mm, address, &pmd); if (result != SCAN_SUCCEED) goto out; memset(cc->node_load, 0, sizeof(cc->node_load)); nodes_clear(cc->alloc_nmask); pte = pte_offset_map_lock(mm, pmd, address, &ptl); for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; _pte++, _address += PAGE_SIZE) { pte_t pteval = *_pte; if (is_swap_pte(pteval)) { ++unmapped; if (!cc->is_khugepaged || unmapped <= khugepaged_max_ptes_swap) { /* * Always be strict with uffd-wp * enabled swap entries. Please see * comment below for pte_uffd_wp(). */ if (pte_swp_uffd_wp(pteval)) { result = SCAN_PTE_UFFD_WP; goto out_unmap; } continue; } else { result = SCAN_EXCEED_SWAP_PTE; count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); goto out_unmap; } } if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { ++none_or_zero; if (!userfaultfd_armed(vma) && (!cc->is_khugepaged || none_or_zero <= khugepaged_max_ptes_none)) { continue; } else { result = SCAN_EXCEED_NONE_PTE; count_vm_event(THP_SCAN_EXCEED_NONE_PTE); goto out_unmap; } } if (pte_uffd_wp(pteval)) { /* * Don't collapse the page if any of the small * PTEs are armed with uffd write protection. * Here we can also mark the new huge pmd as * write protected if any of the small ones is * marked but that could bring unknown * userfault messages that falls outside of * the registered range. So, just be simple. */ result = SCAN_PTE_UFFD_WP; goto out_unmap; } if (pte_write(pteval)) writable = true; page = vm_normal_page(vma, _address, pteval); if (unlikely(!page) || unlikely(is_zone_device_page(page))) { result = SCAN_PAGE_NULL; goto out_unmap; } if (page_mapcount(page) > 1) { ++shared; if (cc->is_khugepaged && shared > khugepaged_max_ptes_shared) { result = SCAN_EXCEED_SHARED_PTE; count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); goto out_unmap; } } page = compound_head(page); /* * Record which node the original page is from and save this * information to cc->node_load[]. * Khugepaged will allocate hugepage from the node has the max * hit record. */ node = page_to_nid(page); if (hpage_collapse_scan_abort(node, cc)) { result = SCAN_SCAN_ABORT; goto out_unmap; } cc->node_load[node]++; if (!PageLRU(page)) { result = SCAN_PAGE_LRU; goto out_unmap; } if (PageLocked(page)) { result = SCAN_PAGE_LOCK; goto out_unmap; } if (!PageAnon(page)) { result = SCAN_PAGE_ANON; goto out_unmap; } /* * Check if the page has any GUP (or other external) pins. * * Here the check is racy it may see total_mapcount > refcount * in some cases. * For example, one process with one forked child process. * The parent has the PMD split due to MADV_DONTNEED, then * the child is trying unmap the whole PMD, but khugepaged * may be scanning the parent between the child has * PageDoubleMap flag cleared and dec the mapcount. So * khugepaged may see total_mapcount > refcount. * * But such case is ephemeral we could always retry collapse * later. However it may report false positive if the page * has excessive GUP pins (i.e. 512). Anyway the same check * will be done again later the risk seems low. */ if (!is_refcount_suitable(page)) { result = SCAN_PAGE_COUNT; goto out_unmap; } /* * If collapse was initiated by khugepaged, check that there is * enough young pte to justify collapsing the page */ if (cc->is_khugepaged && (pte_young(pteval) || page_is_young(page) || PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, address))) referenced++; } if (!writable) { result = SCAN_PAGE_RO; } else if (cc->is_khugepaged && (!referenced || (unmapped && referenced < HPAGE_PMD_NR / 2))) { result = SCAN_LACK_REFERENCED_PAGE; } else { result = SCAN_SUCCEED; } out_unmap: pte_unmap_unlock(pte, ptl); if (result == SCAN_SUCCEED) { result = collapse_huge_page(mm, address, referenced, unmapped, cc); /* collapse_huge_page will return with the mmap_lock released */ *mmap_locked = false; } out: trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, none_or_zero, result, unmapped); return result; } static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) { struct mm_slot *slot = &mm_slot->slot; struct mm_struct *mm = slot->mm; lockdep_assert_held(&khugepaged_mm_lock); if (hpage_collapse_test_exit(mm)) { /* free mm_slot */ hash_del(&slot->hash); list_del(&slot->mm_node); /* * Not strictly needed because the mm exited already. * * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); */ /* khugepaged_mm_lock actually not necessary for the below */ mm_slot_free(mm_slot_cache, mm_slot); mmdrop(mm); } } #ifdef CONFIG_SHMEM /* * Notify khugepaged that given addr of the mm is pte-mapped THP. Then * khugepaged should try to collapse the page table. * * Note that following race exists: * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A, * emptying the A's ->pte_mapped_thp[] array. * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and * retract_page_tables() finds a VMA in mm_struct A mapping the same extent * (at virtual address X) and adds an entry (for X) into mm_struct A's * ->pte-mapped_thp[] array. * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X, * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry * (for X) into mm_struct A's ->pte-mapped_thp[] array. * Thus, it's possible the same address is added multiple times for the same * mm_struct. Should this happen, we'll simply attempt * collapse_pte_mapped_thp() multiple times for the same address, under the same * exclusive mmap_lock, and assuming the first call is successful, subsequent * attempts will return quickly (without grabbing any additional locks) when * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap * check, and since this is a rare occurrence, the cost of preventing this * "multiple-add" is thought to be more expensive than just handling it, should * it occur. */ static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) { struct khugepaged_mm_slot *mm_slot; struct mm_slot *slot; bool ret = false; VM_BUG_ON(addr & ~HPAGE_PMD_MASK); spin_lock(&khugepaged_mm_lock); slot = mm_slot_lookup(mm_slots_hash, mm); mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) { mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; ret = true; } spin_unlock(&khugepaged_mm_lock); return ret; } /* hpage must be locked, and mmap_lock must be held in write */ static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp, struct page *hpage) { struct vm_fault vmf = { .vma = vma, .address = addr, .flags = 0, .pmd = pmdp, }; VM_BUG_ON(!PageTransHuge(hpage)); mmap_assert_write_locked(vma->vm_mm); if (do_set_pmd(&vmf, hpage)) return SCAN_FAIL; get_page(hpage); return SCAN_SUCCEED; } /* * A note about locking: * Trying to take the page table spinlocks would be useless here because those * are only used to synchronize: * * - modifying terminal entries (ones that point to a data page, not to another * page table) * - installing *new* non-terminal entries * * Instead, we need roughly the same kind of protection as free_pgtables() or * mm_take_all_locks() (but only for a single VMA): * The mmap lock together with this VMA's rmap locks covers all paths towards * the page table entries we're messing with here, except for hardware page * table walks and lockless_pages_from_mm(). */ static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp) { pmd_t pmd; mmap_assert_write_locked(mm); if (vma->vm_file) lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem); /* * All anon_vmas attached to the VMA have the same root and are * therefore locked by the same lock. */ if (vma->anon_vma) lockdep_assert_held_write(&vma->anon_vma->root->rwsem); pmd = pmdp_collapse_flush(vma, addr, pmdp); tlb_remove_table_sync_one(); mm_dec_nr_ptes(mm); page_table_check_pte_clear_range(mm, addr, pmd); pte_free(mm, pmd_pgtable(pmd)); } /** * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at * address haddr. * * @mm: process address space where collapse happens * @addr: THP collapse address * @install_pmd: If a huge PMD should be installed * * This function checks whether all the PTEs in the PMD are pointing to the * right THP. If so, retract the page table so the THP can refault in with * as pmd-mapped. Possibly install a huge PMD mapping the THP. */ int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, bool install_pmd) { unsigned long haddr = addr & HPAGE_PMD_MASK; struct vm_area_struct *vma = vma_lookup(mm, haddr); struct page *hpage; pte_t *start_pte, *pte; pmd_t *pmd; spinlock_t *ptl; int count = 0, result = SCAN_FAIL; int i; mmap_assert_write_locked(mm); /* Fast check before locking page if already PMD-mapped */ result = find_pmd_or_thp_or_none(mm, haddr, &pmd); if (result == SCAN_PMD_MAPPED) return result; if (!vma || !vma->vm_file || !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) return SCAN_VMA_CHECK; /* * If we are here, we've succeeded in replacing all the native pages * in the page cache with a single hugepage. If a mm were to fault-in * this memory (mapped by a suitably aligned VMA), we'd get the hugepage * and map it by a PMD, regardless of sysfs THP settings. As such, let's * analogously elide sysfs THP settings here. */ if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) return SCAN_VMA_CHECK; /* * Symmetry with retract_page_tables(): Exclude MAP_PRIVATE mappings * that got written to. Without this, we'd have to also lock the * anon_vma if one exists. */ if (vma->anon_vma) return SCAN_VMA_CHECK; /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ if (userfaultfd_wp(vma)) return SCAN_PTE_UFFD_WP; hpage = find_lock_page(vma->vm_file->f_mapping, linear_page_index(vma, haddr)); if (!hpage) return SCAN_PAGE_NULL; if (!PageHead(hpage)) { result = SCAN_FAIL; goto drop_hpage; } if (compound_order(hpage) != HPAGE_PMD_ORDER) { result = SCAN_PAGE_COMPOUND; goto drop_hpage; } switch (result) { case SCAN_SUCCEED: break; case SCAN_PMD_NONE: /* * In MADV_COLLAPSE path, possible race with khugepaged where * all pte entries have been removed and pmd cleared. If so, * skip all the pte checks and just update the pmd mapping. */ goto maybe_install_pmd; default: goto drop_hpage; } /* * We need to lock the mapping so that from here on, only GUP-fast and * hardware page walks can access the parts of the page tables that * we're operating on. * See collapse_and_free_pmd(). */ i_mmap_lock_write(vma->vm_file->f_mapping); /* * This spinlock should be unnecessary: Nobody else should be accessing * the page tables under spinlock protection here, only * lockless_pages_from_mm() and the hardware page walker can access page * tables while all the high-level locks are held in write mode. */ start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); result = SCAN_FAIL; /* step 1: check all mapped PTEs are to the right huge page */ for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { struct page *page; /* empty pte, skip */ if (pte_none(*pte)) continue; /* page swapped out, abort */ if (!pte_present(*pte)) { result = SCAN_PTE_NON_PRESENT; goto abort; } page = vm_normal_page(vma, addr, *pte); if (WARN_ON_ONCE(page && is_zone_device_page(page))) page = NULL; /* * Note that uprobe, debugger, or MAP_PRIVATE may change the * page table, but the new page will not be a subpage of hpage. */ if (hpage + i != page) goto abort; count++; } /* step 2: adjust rmap */ for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { struct page *page; if (pte_none(*pte)) continue; page = vm_normal_page(vma, addr, *pte); if (WARN_ON_ONCE(page && is_zone_device_page(page))) goto abort; page_remove_rmap(page, vma, false); } pte_unmap_unlock(start_pte, ptl); /* step 3: set proper refcount and mm_counters. */ if (count) { page_ref_sub(hpage, count); add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); } /* step 4: remove pte entries */ collapse_and_free_pmd(mm, vma, haddr, pmd); i_mmap_unlock_write(vma->vm_file->f_mapping); maybe_install_pmd: /* step 5: install pmd entry */ result = install_pmd ? set_huge_pmd(vma, haddr, pmd, hpage) : SCAN_SUCCEED; drop_hpage: unlock_page(hpage); put_page(hpage); return result; abort: pte_unmap_unlock(start_pte, ptl); i_mmap_unlock_write(vma->vm_file->f_mapping); goto drop_hpage; } static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) { struct mm_slot *slot = &mm_slot->slot; struct mm_struct *mm = slot->mm; int i; if (likely(mm_slot->nr_pte_mapped_thp == 0)) return; if (!mmap_write_trylock(mm)) return; if (unlikely(hpage_collapse_test_exit(mm))) goto out; for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false); out: mm_slot->nr_pte_mapped_thp = 0; mmap_write_unlock(mm); } static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff, struct mm_struct *target_mm, unsigned long target_addr, struct page *hpage, struct collapse_control *cc) { struct vm_area_struct *vma; int target_result = SCAN_FAIL; i_mmap_lock_write(mapping); vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { int result = SCAN_FAIL; struct mm_struct *mm = NULL; unsigned long addr = 0; pmd_t *pmd; bool is_target = false; /* * Check vma->anon_vma to exclude MAP_PRIVATE mappings that * got written to. These VMAs are likely not worth investing * mmap_write_lock(mm) as PMD-mapping is likely to be split * later. * * Note that vma->anon_vma check is racy: it can be set up after * the check but before we took mmap_lock by the fault path. * But page lock would prevent establishing any new ptes of the * page, so we are safe. * * An alternative would be drop the check, but check that page * table is clear before calling pmdp_collapse_flush() under * ptl. It has higher chance to recover THP for the VMA, but * has higher cost too. It would also probably require locking * the anon_vma. */ if (vma->anon_vma) { result = SCAN_PAGE_ANON; goto next; } addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); if (addr & ~HPAGE_PMD_MASK || vma->vm_end < addr + HPAGE_PMD_SIZE) { result = SCAN_VMA_CHECK; goto next; } mm = vma->vm_mm; is_target = mm == target_mm && addr == target_addr; result = find_pmd_or_thp_or_none(mm, addr, &pmd); if (result != SCAN_SUCCEED) goto next; /* * We need exclusive mmap_lock to retract page table. * * We use trylock due to lock inversion: we need to acquire * mmap_lock while holding page lock. Fault path does it in * reverse order. Trylock is a way to avoid deadlock. * * Also, it's not MADV_COLLAPSE's job to collapse other * mappings - let khugepaged take care of them later. */ result = SCAN_PTE_MAPPED_HUGEPAGE; if ((cc->is_khugepaged || is_target) && mmap_write_trylock(mm)) { /* * When a vma is registered with uffd-wp, we can't * recycle the pmd pgtable because there can be pte * markers installed. Skip it only, so the rest mm/vma * can still have the same file mapped hugely, however * it'll always mapped in small page size for uffd-wp * registered ranges. */ if (hpage_collapse_test_exit(mm)) { result = SCAN_ANY_PROCESS; goto unlock_next; } if (userfaultfd_wp(vma)) { result = SCAN_PTE_UFFD_WP; goto unlock_next; } collapse_and_free_pmd(mm, vma, addr, pmd); if (!cc->is_khugepaged && is_target) result = set_huge_pmd(vma, addr, pmd, hpage); else result = SCAN_SUCCEED; unlock_next: mmap_write_unlock(mm); goto next; } /* * Calling context will handle target mm/addr. Otherwise, let * khugepaged try again later. */ if (!is_target) { khugepaged_add_pte_mapped_thp(mm, addr); continue; } next: if (is_target) target_result = result; } i_mmap_unlock_write(mapping); return target_result; } /** * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. * * @mm: process address space where collapse happens * @addr: virtual collapse start address * @file: file that collapse on * @start: collapse start address * @cc: collapse context and scratchpad * * Basic scheme is simple, details are more complex: * - allocate and lock a new huge page; * - scan page cache replacing old pages with the new one * + swap/gup in pages if necessary; * + fill in gaps; * + keep old pages around in case rollback is required; * - if replacing succeeds: * + copy data over; * + free old pages; * + unlock huge page; * - if replacing failed; * + put all pages back and unfreeze them; * + restore gaps in the page cache; * + unlock and free huge page; */ static int collapse_file(struct mm_struct *mm, unsigned long addr, struct file *file, pgoff_t start, struct collapse_control *cc) { struct address_space *mapping = file->f_mapping; struct page *hpage; pgoff_t index, end = start + HPAGE_PMD_NR; LIST_HEAD(pagelist); XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); int nr_none = 0, result = SCAN_SUCCEED; bool is_shmem = shmem_file(file); int nr; VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); result = alloc_charge_hpage(&hpage, mm, cc); if (result != SCAN_SUCCEED) goto out; /* * Ensure we have slots for all the pages in the range. This is * almost certainly a no-op because most of the pages must be present */ do { xas_lock_irq(&xas); xas_create_range(&xas); if (!xas_error(&xas)) break; xas_unlock_irq(&xas); if (!xas_nomem(&xas, GFP_KERNEL)) { result = SCAN_FAIL; goto out; } } while (1); __SetPageLocked(hpage); if (is_shmem) __SetPageSwapBacked(hpage); hpage->index = start; hpage->mapping = mapping; /* * At this point the hpage is locked and not up-to-date. * It's safe to insert it into the page cache, because nobody would * be able to map it or use it in another way until we unlock it. */ xas_set(&xas, start); for (index = start; index < end; index++) { struct page *page = xas_next(&xas); VM_BUG_ON(index != xas.xa_index); if (is_shmem) { if (!page) { /* * Stop if extent has been truncated or * hole-punched, and is now completely * empty. */ if (index == start) { if (!xas_next_entry(&xas, end - 1)) { result = SCAN_TRUNCATED; goto xa_locked; } xas_set(&xas, index); } if (!shmem_charge(mapping->host, 1)) { result = SCAN_FAIL; goto xa_locked; } xas_store(&xas, hpage); nr_none++; continue; } if (xa_is_value(page) || !PageUptodate(page)) { struct folio *folio; xas_unlock_irq(&xas); /* swap in or instantiate fallocated page */ if (shmem_get_folio(mapping->host, index, &folio, SGP_NOALLOC)) { result = SCAN_FAIL; goto xa_unlocked; } page = folio_file_page(folio, index); } else if (trylock_page(page)) { get_page(page); xas_unlock_irq(&xas); } else { result = SCAN_PAGE_LOCK; goto xa_locked; } } else { /* !is_shmem */ if (!page || xa_is_value(page)) { xas_unlock_irq(&xas); page_cache_sync_readahead(mapping, &file->f_ra, file, index, end - index); /* drain pagevecs to help isolate_lru_page() */ lru_add_drain(); page = find_lock_page(mapping, index); if (unlikely(page == NULL)) { result = SCAN_FAIL; goto xa_unlocked; } } else if (PageDirty(page)) { /* * khugepaged only works on read-only fd, * so this page is dirty because it hasn't * been flushed since first write. There * won't be new dirty pages. * * Trigger async flush here and hope the * writeback is done when khugepaged * revisits this page. * * This is a one-off situation. We are not * forcing writeback in loop. */ xas_unlock_irq(&xas); filemap_flush(mapping); result = SCAN_FAIL; goto xa_unlocked; } else if (PageWriteback(page)) { xas_unlock_irq(&xas); result = SCAN_FAIL; goto xa_unlocked; } else if (trylock_page(page)) { get_page(page); xas_unlock_irq(&xas); } else { result = SCAN_PAGE_LOCK; goto xa_locked; } } /* * The page must be locked, so we can drop the i_pages lock * without racing with truncate. */ VM_BUG_ON_PAGE(!PageLocked(page), page); /* make sure the page is up to date */ if (unlikely(!PageUptodate(page))) { result = SCAN_FAIL; goto out_unlock; } /* * If file was truncated then extended, or hole-punched, before * we locked the first page, then a THP might be there already. * This will be discovered on the first iteration. */ if (PageTransCompound(page)) { struct page *head = compound_head(page); result = compound_order(head) == HPAGE_PMD_ORDER && head->index == start /* Maybe PMD-mapped */ ? SCAN_PTE_MAPPED_HUGEPAGE : SCAN_PAGE_COMPOUND; goto out_unlock; } if (page_mapping(page) != mapping) { result = SCAN_TRUNCATED; goto out_unlock; } if (!is_shmem && (PageDirty(page) || PageWriteback(page))) { /* * khugepaged only works on read-only fd, so this * page is dirty because it hasn't been flushed * since first write. */ result = SCAN_FAIL; goto out_unlock; } if (isolate_lru_page(page)) { result = SCAN_DEL_PAGE_LRU; goto out_unlock; } if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) { result = SCAN_PAGE_HAS_PRIVATE; putback_lru_page(page); goto out_unlock; } if (page_mapped(page)) try_to_unmap(page_folio(page), TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); xas_lock_irq(&xas); xas_set(&xas, index); VM_BUG_ON_PAGE(page != xas_load(&xas), page); /* * The page is expected to have page_count() == 3: * - we hold a pin on it; * - one reference from page cache; * - one from isolate_lru_page; */ if (!page_ref_freeze(page, 3)) { result = SCAN_PAGE_COUNT; xas_unlock_irq(&xas); putback_lru_page(page); goto out_unlock; } /* * Add the page to the list to be able to undo the collapse if * something go wrong. */ list_add_tail(&page->lru, &pagelist); /* Finally, replace with the new page. */ xas_store(&xas, hpage); continue; out_unlock: unlock_page(page); put_page(page); goto xa_unlocked; } nr = thp_nr_pages(hpage); if (is_shmem) __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); else { __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); filemap_nr_thps_inc(mapping); /* * Paired with smp_mb() in do_dentry_open() to ensure * i_writecount is up to date and the update to nr_thps is * visible. Ensures the page cache will be truncated if the * file is opened writable. */ smp_mb(); if (inode_is_open_for_write(mapping->host)) { result = SCAN_FAIL; __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr); filemap_nr_thps_dec(mapping); goto xa_locked; } } if (nr_none) { __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); /* nr_none is always 0 for non-shmem. */ __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); } /* Join all the small entries into a single multi-index entry */ xas_set_order(&xas, start, HPAGE_PMD_ORDER); xas_store(&xas, hpage); xa_locked: xas_unlock_irq(&xas); xa_unlocked: /* * If collapse is successful, flush must be done now before copying. * If collapse is unsuccessful, does flush actually need to be done? * Do it anyway, to clear the state. */ try_to_unmap_flush(); if (result == SCAN_SUCCEED) { struct page *page, *tmp; /* * Replacing old pages with new one has succeeded, now we * need to copy the content and free the old pages. */ index = start; list_for_each_entry_safe(page, tmp, &pagelist, lru) { while (index < page->index) { clear_highpage(hpage + (index % HPAGE_PMD_NR)); index++; } copy_highpage(hpage + (page->index % HPAGE_PMD_NR), page); list_del(&page->lru); page->mapping = NULL; page_ref_unfreeze(page, 1); ClearPageActive(page); ClearPageUnevictable(page); unlock_page(page); put_page(page); index++; } while (index < end) { clear_highpage(hpage + (index % HPAGE_PMD_NR)); index++; } SetPageUptodate(hpage); page_ref_add(hpage, HPAGE_PMD_NR - 1); if (is_shmem) set_page_dirty(hpage); lru_cache_add(hpage); /* * Remove pte page tables, so we can re-fault the page as huge. */ result = retract_page_tables(mapping, start, mm, addr, hpage, cc); unlock_page(hpage); hpage = NULL; } else { struct page *page; /* Something went wrong: roll back page cache changes */ xas_lock_irq(&xas); if (nr_none) { mapping->nrpages -= nr_none; shmem_uncharge(mapping->host, nr_none); } xas_set(&xas, start); xas_for_each(&xas, page, end - 1) { page = list_first_entry_or_null(&pagelist, struct page, lru); if (!page || xas.xa_index < page->index) { if (!nr_none) break; nr_none--; /* Put holes back where they were */ xas_store(&xas, NULL); continue; } VM_BUG_ON_PAGE(page->index != xas.xa_index, page); /* Unfreeze the page. */ list_del(&page->lru); page_ref_unfreeze(page, 2); xas_store(&xas, page); xas_pause(&xas); xas_unlock_irq(&xas); unlock_page(page); putback_lru_page(page); xas_lock_irq(&xas); } VM_BUG_ON(nr_none); xas_unlock_irq(&xas); hpage->mapping = NULL; } if (hpage) unlock_page(hpage); out: VM_BUG_ON(!list_empty(&pagelist)); if (hpage) { mem_cgroup_uncharge(page_folio(hpage)); put_page(hpage); } /* TODO: tracepoints */ return result; } static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, struct file *file, pgoff_t start, struct collapse_control *cc) { struct page *page = NULL; struct address_space *mapping = file->f_mapping; XA_STATE(xas, &mapping->i_pages, start); int present, swap; int node = NUMA_NO_NODE; int result = SCAN_SUCCEED; present = 0; swap = 0; memset(cc->node_load, 0, sizeof(cc->node_load)); nodes_clear(cc->alloc_nmask); rcu_read_lock(); xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { if (xas_retry(&xas, page)) continue; if (xa_is_value(page)) { ++swap; if (cc->is_khugepaged && swap > khugepaged_max_ptes_swap) { result = SCAN_EXCEED_SWAP_PTE; count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); break; } continue; } /* * TODO: khugepaged should compact smaller compound pages * into a PMD sized page */ if (PageTransCompound(page)) { struct page *head = compound_head(page); result = compound_order(head) == HPAGE_PMD_ORDER && head->index == start /* Maybe PMD-mapped */ ? SCAN_PTE_MAPPED_HUGEPAGE : SCAN_PAGE_COMPOUND; /* * For SCAN_PTE_MAPPED_HUGEPAGE, further processing * by the caller won't touch the page cache, and so * it's safe to skip LRU and refcount checks before * returning. */ break; } node = page_to_nid(page); if (hpage_collapse_scan_abort(node, cc)) { result = SCAN_SCAN_ABORT; break; } cc->node_load[node]++; if (!PageLRU(page)) { result = SCAN_PAGE_LRU; break; } if (page_count(page) != 1 + page_mapcount(page) + page_has_private(page)) { result = SCAN_PAGE_COUNT; break; } /* * We probably should check if the page is referenced here, but * nobody would transfer pte_young() to PageReferenced() for us. * And rmap walk here is just too costly... */ present++; if (need_resched()) { xas_pause(&xas); cond_resched_rcu(); } } rcu_read_unlock(); if (result == SCAN_SUCCEED) { if (cc->is_khugepaged && present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { result = SCAN_EXCEED_NONE_PTE; count_vm_event(THP_SCAN_EXCEED_NONE_PTE); } else { result = collapse_file(mm, addr, file, start, cc); } } trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); return result; } #else static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, struct file *file, pgoff_t start, struct collapse_control *cc) { BUILD_BUG(); } static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) { } static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) { return false; } #endif static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, struct collapse_control *cc) __releases(&khugepaged_mm_lock) __acquires(&khugepaged_mm_lock) { struct vma_iterator vmi; struct khugepaged_mm_slot *mm_slot; struct mm_slot *slot; struct mm_struct *mm; struct vm_area_struct *vma; int progress = 0; VM_BUG_ON(!pages); lockdep_assert_held(&khugepaged_mm_lock); *result = SCAN_FAIL; if (khugepaged_scan.mm_slot) { mm_slot = khugepaged_scan.mm_slot; slot = &mm_slot->slot; } else { slot = list_entry(khugepaged_scan.mm_head.next, struct mm_slot, mm_node); mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); khugepaged_scan.address = 0; khugepaged_scan.mm_slot = mm_slot; } spin_unlock(&khugepaged_mm_lock); khugepaged_collapse_pte_mapped_thps(mm_slot); mm = slot->mm; /* * Don't wait for semaphore (to avoid long wait times). Just move to * the next mm on the list. */ vma = NULL; if (unlikely(!mmap_read_trylock(mm))) goto breakouterloop_mmap_lock; progress++; if (unlikely(hpage_collapse_test_exit(mm))) goto breakouterloop; vma_iter_init(&vmi, mm, khugepaged_scan.address); for_each_vma(vmi, vma) { unsigned long hstart, hend; cond_resched(); if (unlikely(hpage_collapse_test_exit(mm))) { progress++; break; } if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { skip: progress++; continue; } hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); if (khugepaged_scan.address > hend) goto skip; if (khugepaged_scan.address < hstart) khugepaged_scan.address = hstart; VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); while (khugepaged_scan.address < hend) { bool mmap_locked = true; cond_resched(); if (unlikely(hpage_collapse_test_exit(mm))) goto breakouterloop; VM_BUG_ON(khugepaged_scan.address < hstart || khugepaged_scan.address + HPAGE_PMD_SIZE > hend); if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { struct file *file = get_file(vma->vm_file); pgoff_t pgoff = linear_page_index(vma, khugepaged_scan.address); mmap_read_unlock(mm); *result = hpage_collapse_scan_file(mm, khugepaged_scan.address, file, pgoff, cc); mmap_locked = false; fput(file); } else { *result = hpage_collapse_scan_pmd(mm, vma, khugepaged_scan.address, &mmap_locked, cc); } switch (*result) { case SCAN_PTE_MAPPED_HUGEPAGE: { pmd_t *pmd; *result = find_pmd_or_thp_or_none(mm, khugepaged_scan.address, &pmd); if (*result != SCAN_SUCCEED) break; if (!khugepaged_add_pte_mapped_thp(mm, khugepaged_scan.address)) break; } fallthrough; case SCAN_SUCCEED: ++khugepaged_pages_collapsed; break; default: break; } /* move to next address */ khugepaged_scan.address += HPAGE_PMD_SIZE; progress += HPAGE_PMD_NR; if (!mmap_locked) /* * We released mmap_lock so break loop. Note * that we drop mmap_lock before all hugepage * allocations, so if allocation fails, we are * guaranteed to break here and report the * correct result back to caller. */ goto breakouterloop_mmap_lock; if (progress >= pages) goto breakouterloop; } } breakouterloop: mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ breakouterloop_mmap_lock: spin_lock(&khugepaged_mm_lock); VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); /* * Release the current mm_slot if this mm is about to die, or * if we scanned all vmas of this mm. */ if (hpage_collapse_test_exit(mm) || !vma) { /* * Make sure that if mm_users is reaching zero while * khugepaged runs here, khugepaged_exit will find * mm_slot not pointing to the exiting mm. */ if (slot->mm_node.next != &khugepaged_scan.mm_head) { slot = list_entry(slot->mm_node.next, struct mm_slot, mm_node); khugepaged_scan.mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); khugepaged_scan.address = 0; } else { khugepaged_scan.mm_slot = NULL; khugepaged_full_scans++; } collect_mm_slot(mm_slot); } return progress; } static int khugepaged_has_work(void) { return !list_empty(&khugepaged_scan.mm_head) && hugepage_flags_enabled(); } static int khugepaged_wait_event(void) { return !list_empty(&khugepaged_scan.mm_head) || kthread_should_stop(); } static void khugepaged_do_scan(struct collapse_control *cc) { unsigned int progress = 0, pass_through_head = 0; unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); bool wait = true; int result = SCAN_SUCCEED; lru_add_drain_all(); while (true) { cond_resched(); if (unlikely(kthread_should_stop() || try_to_freeze())) break; spin_lock(&khugepaged_mm_lock); if (!khugepaged_scan.mm_slot) pass_through_head++; if (khugepaged_has_work() && pass_through_head < 2) progress += khugepaged_scan_mm_slot(pages - progress, &result, cc); else progress = pages; spin_unlock(&khugepaged_mm_lock); if (progress >= pages) break; if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { /* * If fail to allocate the first time, try to sleep for * a while. When hit again, cancel the scan. */ if (!wait) break; wait = false; khugepaged_alloc_sleep(); } } } static bool khugepaged_should_wakeup(void) { return kthread_should_stop() || time_after_eq(jiffies, khugepaged_sleep_expire); } static void khugepaged_wait_work(void) { if (khugepaged_has_work()) { const unsigned long scan_sleep_jiffies = msecs_to_jiffies(khugepaged_scan_sleep_millisecs); if (!scan_sleep_jiffies) return; khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; wait_event_freezable_timeout(khugepaged_wait, khugepaged_should_wakeup(), scan_sleep_jiffies); return; } if (hugepage_flags_enabled()) wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); } static int khugepaged(void *none) { struct khugepaged_mm_slot *mm_slot; set_freezable(); set_user_nice(current, MAX_NICE); while (!kthread_should_stop()) { khugepaged_do_scan(&khugepaged_collapse_control); khugepaged_wait_work(); } spin_lock(&khugepaged_mm_lock); mm_slot = khugepaged_scan.mm_slot; khugepaged_scan.mm_slot = NULL; if (mm_slot) collect_mm_slot(mm_slot); spin_unlock(&khugepaged_mm_lock); return 0; } static void set_recommended_min_free_kbytes(void) { struct zone *zone; int nr_zones = 0; unsigned long recommended_min; if (!hugepage_flags_enabled()) { calculate_min_free_kbytes(); goto update_wmarks; } for_each_populated_zone(zone) { /* * We don't need to worry about fragmentation of * ZONE_MOVABLE since it only has movable pages. */ if (zone_idx(zone) > gfp_zone(GFP_USER)) continue; nr_zones++; } /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ recommended_min = pageblock_nr_pages * nr_zones * 2; /* * Make sure that on average at least two pageblocks are almost free * of another type, one for a migratetype to fall back to and a * second to avoid subsequent fallbacks of other types There are 3 * MIGRATE_TYPES we care about. */ recommended_min += pageblock_nr_pages * nr_zones * MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; /* don't ever allow to reserve more than 5% of the lowmem */ recommended_min = min(recommended_min, (unsigned long) nr_free_buffer_pages() / 20); recommended_min <<= (PAGE_SHIFT-10); if (recommended_min > min_free_kbytes) { if (user_min_free_kbytes >= 0) pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", min_free_kbytes, recommended_min); min_free_kbytes = recommended_min; } update_wmarks: setup_per_zone_wmarks(); } int start_stop_khugepaged(void) { int err = 0; mutex_lock(&khugepaged_mutex); if (hugepage_flags_enabled()) { if (!khugepaged_thread) khugepaged_thread = kthread_run(khugepaged, NULL, "khugepaged"); if (IS_ERR(khugepaged_thread)) { pr_err("khugepaged: kthread_run(khugepaged) failed\n"); err = PTR_ERR(khugepaged_thread); khugepaged_thread = NULL; goto fail; } if (!list_empty(&khugepaged_scan.mm_head)) wake_up_interruptible(&khugepaged_wait); } else if (khugepaged_thread) { kthread_stop(khugepaged_thread); khugepaged_thread = NULL; } set_recommended_min_free_kbytes(); fail: mutex_unlock(&khugepaged_mutex); return err; } void khugepaged_min_free_kbytes_update(void) { mutex_lock(&khugepaged_mutex); if (hugepage_flags_enabled() && khugepaged_thread) set_recommended_min_free_kbytes(); mutex_unlock(&khugepaged_mutex); } static int madvise_collapse_errno(enum scan_result r) { /* * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide * actionable feedback to caller, so they may take an appropriate * fallback measure depending on the nature of the failure. */ switch (r) { case SCAN_ALLOC_HUGE_PAGE_FAIL: return -ENOMEM; case SCAN_CGROUP_CHARGE_FAIL: return -EBUSY; /* Resource temporary unavailable - trying again might succeed */ case SCAN_PAGE_LOCK: case SCAN_PAGE_LRU: case SCAN_DEL_PAGE_LRU: return -EAGAIN; /* * Other: Trying again likely not to succeed / error intrinsic to * specified memory range. khugepaged likely won't be able to collapse * either. */ default: return -EINVAL; } } int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end) { struct collapse_control *cc; struct mm_struct *mm = vma->vm_mm; unsigned long hstart, hend, addr; int thps = 0, last_fail = SCAN_FAIL; bool mmap_locked = true; BUG_ON(vma->vm_start > start); BUG_ON(vma->vm_end < end); *prev = vma; if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) return -EINVAL; cc = kmalloc(sizeof(*cc), GFP_KERNEL); if (!cc) return -ENOMEM; cc->is_khugepaged = false; mmgrab(mm); lru_add_drain_all(); hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; hend = end & HPAGE_PMD_MASK; for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { int result = SCAN_FAIL; if (!mmap_locked) { cond_resched(); mmap_read_lock(mm); mmap_locked = true; result = hugepage_vma_revalidate(mm, addr, false, &vma, cc); if (result != SCAN_SUCCEED) { last_fail = result; goto out_nolock; } hend = vma->vm_end & HPAGE_PMD_MASK; } mmap_assert_locked(mm); memset(cc->node_load, 0, sizeof(cc->node_load)); nodes_clear(cc->alloc_nmask); if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { struct file *file = get_file(vma->vm_file); pgoff_t pgoff = linear_page_index(vma, addr); mmap_read_unlock(mm); mmap_locked = false; result = hpage_collapse_scan_file(mm, addr, file, pgoff, cc); fput(file); } else { result = hpage_collapse_scan_pmd(mm, vma, addr, &mmap_locked, cc); } if (!mmap_locked) *prev = NULL; /* Tell caller we dropped mmap_lock */ handle_result: switch (result) { case SCAN_SUCCEED: case SCAN_PMD_MAPPED: ++thps; break; case SCAN_PTE_MAPPED_HUGEPAGE: BUG_ON(mmap_locked); BUG_ON(*prev); mmap_write_lock(mm); result = collapse_pte_mapped_thp(mm, addr, true); mmap_write_unlock(mm); goto handle_result; /* Whitelisted set of results where continuing OK */ case SCAN_PMD_NULL: case SCAN_PTE_NON_PRESENT: case SCAN_PTE_UFFD_WP: case SCAN_PAGE_RO: case SCAN_LACK_REFERENCED_PAGE: case SCAN_PAGE_NULL: case SCAN_PAGE_COUNT: case SCAN_PAGE_LOCK: case SCAN_PAGE_COMPOUND: case SCAN_PAGE_LRU: case SCAN_DEL_PAGE_LRU: last_fail = result; break; default: last_fail = result; /* Other error, exit */ goto out_maybelock; } } out_maybelock: /* Caller expects us to hold mmap_lock on return */ if (!mmap_locked) mmap_read_lock(mm); out_nolock: mmap_assert_locked(mm); mmdrop(mm); kfree(cc); return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 : madvise_collapse_errno(last_fail); }